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ABSTRACT: The cause of nonbacterial chronic prostatitis is unknown, yet its
prevalence accounts for more than 90% of all prostatitis cases. Whole blood, plasma,
and serum have been used to identify prostate cancer biomarkers; however, few studies
have performed protein profiling to identify prostatitis biomarkers. The purpose of this
study was to identify protein biomarkers altered by chronic prostatitis. To perform the
study, we chemically induced chronic prostate inflammation in Sprague Dawley rats
using estradiol benzoate (EB), testosterone (T), and estradiol (E) and then examined
protein levels in their plasma. Plasma was collected on postnatal days (PNDs) 90, 100,
145, and 200; plasma proteins were profiled using liquid chromatography−tandem
mass spectrometry. Chronic inflammation was observed in the rat prostate induced with
EB on PNDs 1, 3, and 5. Rats then were dosed with T+E during PNDs 90−200 via
subcutaneous implants. We identified time-specific expression for several proteins (i.e.,
CFB, MYH9, AZGP1). Some altered proteins that were expressed in the prostate (i.e.,
SERPINF1, CTR9) also were identified in the rat plasma in the EB+T+E group on PNDs 145 and 200. These findings suggest that
the identified proteins could be used as biomarkers of chronic prostatitis. Further studies are needed to verify the results in human
samples.

1. INTRODUCTION

Prostatitis is a swelling and inflammation of the prostate with
symptoms including groin pain, painful and/or difficult
urination, and flu-like symptoms. Several studies in the world
have reported the mean prevalence of prostatitis was
approximately 8.2% or 873/10 617 participants of various
ages.1−3 In addition, the histologic prevalence of chronic
prostatitis in autopsy samples from Caucasian and Asian men
has been shown to be over 70%.4 There are two types of
chronic prostatitis: bacterial and nonbacterial. Nonbacterial
chronic prostatitis, also termed as the chronic pelvic pain
syndrome, has an unknown etiology and represents >90% of all
prostatitis cases.3,5 Chronic prostate inflammation can increase
the risk of cancer development.6 The diagnosis of chronic
prostatitis is based on family/medical history, physical
examination, and/or urine or blood tests.
Early detection/diagnosis is an important aspect, and a

clinical need exists to identify biomarkers for disease diagnosis,
monitoring of treatment, and/or predicting diseases.7 Since
innovative proteomics analysis has been established, many
researchers, using whole blood, plasma, and serum, have
performed proteomic analysis (complex protein profiling)
using high-performance equipment [liquid chromatography−
mass spectrometry (LC/MS), LC−MS/MS, and matrix-
assisted laser desorption/ionization-time of flight (MALDI-
TOF)].8 Currently, there are no prostatitis-specific biomarkers.

Many researchers, using whole blood, plasma, and serum, have
applied proteomics to identify biomarkers for prostate cancer,
but not for prostatitis.8−11 Larkin et al. performed proteomic
profiling/quantitation with an isobaric tag for relative and
absolute quantitation (iTRAQ) 3D LC/MS mass spectrometry
using human samples from prostate cancer patients, and the
results were then validated with ELISA kits.10 On the other
hand, Kagedan et al. performed protein profiling with LC/MS
using seminal plasma from prostatitis patients and identified 59
potential biomarkers.12 However, blood (i.e., serum and
plasma) is a more convenient and useful clinical aid for
diagnosing diseases (https://www.nhlbi.nih.gov/health-topics/
blood-tests).
Rats remain widely used as animal models for prostate

diseases, due to the ability to induce in them such symptoms as
neoplasia and inflammation using endocrine disrupting
chemicals (supplemented with additional testosterone and
estradiol treatments) to examine gene expression profiles
during prostate development through adulthood.13−16
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In our previous study,17,18 rat pups were injected with
estradiol benzoate (EB) on PNDs 1, 3, and 5 and then
underwent additional testosterone (T) and 17β-estradiol (E)
exposure via subcutaneous implantation of a hormone-filled
Silastic tubing from PND 90 through PND 200 by Ho16 and
Nakamura et al.18 Data from that study showed elevated
estrogen levels on PND 100. Additionally, chronic inflamma-
tion was found on PNDs 145 and 200 in the dorsolateral
prostate of rats dosed with EB, T, and E only.
The purpose of this study was to identify possible chronic

prostatitis biomarkers by examining plasma protein levels from
rats with chronic inflammation induced with EB, T, and E. Rat
plasma collected from a previous study was profiled using
liquid chromatography−tandem mass spectrometry.17

2. RESULTS

2.1. Principal Component Analysis (PCA) and Partial
Least Squares Discriminant Analysis (PLS-DA) for
Identifying the Plasma Proteins of Rats Dosed With
EB and/or T and E. To explore the effects of treatment of EB
and/or T and E on the potential pattern of plasma proteome,
both unsupervised multivariate analysis PCA and supervised
multivariate analysis PLS-DA were performed on quantified
proteins at each PND to cluster and classify samples. PCA
score plots (Figure 1) show clear segregations among
treatment groups on each PND. PLS-DA score plots (Figure
2) show clear discriminations among treatment groups on each
PND, and the leave-one-out cross-validation (LOOCV)
yielded classification error rates of 0, 8.3, 0, and 8.3% for

Figure 1. PCA score plot of plasma protein levels in rats dosed post-natally with EB, T, and E.

Figure 2. PLS-DA score plot of plasma protein levels in rats dosed post-natally with EB, T, and E. The error rate of leave-one-out cross-validation is
0% on PND 90, 8.3% on PND 100, 0% on PND 145, and 8.3% on PND 200.
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PND 90, 100, 145, and 200, respectively. The top 10 proteins
that mostly contribute to component one are listed in Table
S1.
2.2. Pathways. Ingenuity pathway analysis (IPA) was used

to determine the pathways in rat plasma that were affected by
EB exposure on PND 90 or EB, T, and E exposure on PNDs
100, 145, and/or 200 (Table S2). Twelve canonical pathways
in the rat plasma were significantly (p < 0.05) altered at all
collection points. LXR/RXR activation, FXR/RXR activation,
and coagulation system pathways in the rat plasma were the
top three pathways most affected by EB or EB+T+E exposure
at all collection time points. The number of pathways
significantly changed specifically on PNDs 90, 100, and 145
or 200 were 1, 6, and 23 or 21, respectively (Table S2). On
each of PNDs 100 and 145 or 200, the numbers of the
pathways that were significantly altered in the EB+T+E group
were 3 and 12 or 3, respectively (Table S2).
2.3. Significantly Changed Proteins. From 183 proteins

(Table S3), 118 proteins were quantified across all treatments
and collection points, among which 40 proteins were not
significantly changed. The protein changes for each group are
as follows: on PND 90 for EB treatment vs control, 32 proteins
were significantly changed; on PND 100 for EB vs control, four
proteins were significantly changed; at EB+T+E vs control, 17
proteins were significantly changed; on PND 145 for EB vs
control, 36 proteins were significantly changed; at EB+T+E vs
control, 50 proteins were significantly changed; on PND 200
for EB vs control, 10 proteins were significantly changed; and
at EB+T+E vs control, 44 proteins were significantly changed.
Interestingly, no significantly altered proteins were identified
across all treatments and collection points. In addition, 17
proteins on PND 90 overlapped with those on PNDs 100, 145,
or 200.
As shown in Table 1, 15 proteins exhibited PND 90-specific

alterations, and most were downregulated except for comple-
ment component C6 (C6), adiponectin A (C1QB), secreted
phosphoprotein 24 (SPP2), and serum amyloid P-component
(APCS). Of 17 proteins, five PND 100-specific altered proteins
were observed to have statistical significance only in the EB+T
+E group compared with the control group (Table 2). Of the
50 proteins that were significantly altered in the EB+T+E
group on PND 145, 16 proteins showed PND 145-specific

changes. Eleven proteins were downregulated, and five proteins
were upregulated in the EB+T+E group (Table 2). On PND
200, of the 44 proteins, the levels of 17 proteins were
specifically altered with statistical significance only in the EB
+T+E group. Most proteins were downregulated, except for
complement C8 gamma chain, LOC500183 protein, vitamin
K-dependent protein C, and C4b-binding protein beta chain
(Table 2). In addition, SERPINF1 was significantly altered in
the rat plasma on both PND 90 for the EB-treated group and
PND 100 for the EB+T+E group (Table 3).
Using the National Center for Biotechnology Information

(NCBI) database, we examined whether the genes/proteins
identified in the rat plasma in this study were expressed in the
prostate (Tables 1−3). Most of the genes either are weakly
expressed or not expressed in the prostate. However, the
following genes are strongly expressed in the prostate: gelsolin
(Gsn) on PND 90; AP2 complex subunit beta (Ap2b1),
complement factor B (Cfb), and ATP subunit alpha,
mitochondrial (Atp5f1a) on PND 100; myosin-9 (Myh9),
alpha-2-glycoprotein 1, zinc (Azgp1), and amyloid-like protein
2 (Aplp2) on PND 145; and chromosome X open reading
frame 64 (Cxorf64)-encoded PRR32 (proline rich 32) on PND
200. In addition, CTR9 homolog Paf1/RNA polymerase II
complex component (Ctr9) is expressed on PNDs 145 and
200; serpin family F member 1 (Serpinf1) on PNDs 90 and
100 genes is strongly expressed in prostates as well (Tables
1−3).
Protein levels encoded in the Gsn gene were significantly

lower in the EB-treated group only on PND 90. The ATP5F1A
and CFB protein levels were rather unique (Figure 3). On
PND 100, protein levels in the rat plasma of the EB+T+E
group had dramatically increased, while on PNDs 90, 145, and
200, no statistical significance in the levels for the treated
group was observed (Figure 3). MYH9, AZGP1, and APLP2
were significantly lower in the EB+T+E group only on PND
145 (Figure 3). PRR32 levels were significantly lower in the EB
and EB+T+E groups than in the control group only on PND
200 (Figure 3). Protein levels of CTR9 and ATGC1 were
significantly lower in the EB and EB+T+E groups on PND 145
and in the EB+T+E group on PND 200. SERPINF1 protein
levels were significantly lower in the EB-treated group on PND
90 but higher in the EB+T+E group on PND 100 (Figure 4).

Table 1. Specifically Altered Plasma Protein Levels in the EB-Treated Group on PND 90 (Fold Change ≥ 1.5, p < 0.05 and
FDR < 0.2)a

an.d.: no data; prostate expression (www.ncbi.nlm.nih.gov/gene) was categorized into four groups: −, no expression; +/−, faint; + weak; ++
moderate; +++, strong. Coral color indicates down-regulated; green color indicates up-regulated. Pink color shows statistical significances.
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Table 2. Specifically Altered Plasma Protein Levels in the EB+T+E Group on PND 100, 145, or 200 (Fold Change ≥ 1.5, p <
0.05, and FDR < 0.2)a

a*Statistical significances were observed in both EB and EB+T+E groups. n.d.: no data; prostate expression (www.ncbi.nlm.nih.gov/gene) was
categorized into four groups: −, no expression; +/−, faint; + weak; ++ moderate; +++, strong. Coral color indicates down-regulated; green color
indicates up-regulated. Pink color shows statistical significances.
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3. DISCUSSION

The present study found that the changes in the protein levels
of rat plasma were time-treatment-specific on PNDs 90, 100,
and 145 or 200. Across collection points, 40 proteins were
without significant change upon treatment across collection
points. Few altered proteins with statistical significances
overlapped among the collection points. These findings suggest
that such changes may be due to the responses to EB and T+E
exposure or specifically to chronic inflammation (Figure 5).
For example, GSN expression was significantly reduced only
on PND 90, suggesting that neonatal EB exposure affected its
expression. AP2B1, ATP5F1A, and CFB may have responded
to the T+E exposure. The changes in SERPINF1 suggest that
CTR9 and ACTG1 were significantly altered in the EB+T+E
group on PNDs 145 and 200; these changes are associated
with the occurrence of chronic inflammation. Taken together,
these proteins are potential marker candidates for the
development of chronic prostatitis.
In addition, within the treated groups, several proteins

identified in the plasma also were expressed in the prostate and
were previously reported in studies using samples from human
prostate cancer patients.8,10−12,19

3.1. Gsn. GSN is highly expressed in prostate cancer, and its
expression correlates with its progression.20

No expression of this protein/gene was observed in benign
prostatic hyperplasia. At this point, we know of no reports
linking gelsolin and an inflammatory response.

3.2. Ap2b1. This protein, encoded by the Ap2b1 gene, acts
as one of the components (AP2 adaptor complex) that are
related to clathrin-coated vesicles.21 Although no reports link
AP2B1 protein and prostate cancer specifically, some studies
on the AP2 adaptor complex and prostate cancer suggest that
the influence of the complex may be due to other proteins that
interact with the AP2 adaptor complex.22,23 As no inflamma-
tion was observed in the rat prostate on PND 100, the elevated
E and T levels on PND 100 due to T+E exposure on PND 90
may have affected this change in the protein levels.17 Further
studies are needed to elucidate the association between T+E
exposure and protein levels.

3.3. Ctr9. The protein encoded in the Ctr9 gene is a key
regulator of estrogen signaling in developing breast cancer.24 In
the inflammation of prostate cancer, CTR9 levels in tumor
tissues were upregulated tumor tissues treated with interleukin-
15.25

3.4. Mhy9. MHY9 belongs to the myosin superfamily and
may play a role in the progression, invasion, and metastasis of
cancers. In addition, MHY9 is thought to act as a tumor
suppressor in neck and head cancers.26 However, the role of
this protein in prostate cancer has not yet been determined.

3.5. Azgp1. AZGP1 protein or the Azgp1 gene plays a role
in lipolysis, which significantly reduces body fats.27 In prostate

Table 3. Significantly Altered Plasma Protein Levels in the EB+T+E Group on Multiple Collection Points (Fold Change ≥ 1.5,
p < 0.05, and FDR < 0.2)a,b

a*Significant differences in the EB and EB+T+E groups on PND 100, PND 145, and PND 200. b**Significant differences only in the EB group on
PND 145. Significant differences only in the EB and EB+T+E groups on PND 200. n.d.: no data; prostate expression (www.ncbi.nlm.nih.gov/gene)
was categorized into four groups: −, no expression; +/−, faint; + weak; ++ moderate; +++, strong. Coral color indicates down-regulated; green
color indicates up-regulated. Pink color shows statistical significances.
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cancer, the loss of the AZGP1 protein or Azgp1 gene
expression is associated with a higher risk of recurring prostate
cancer after prostatectomy, the advanced progression of
prostate cancer, or death from prostate cancer as the worst
case.28−30 Thus, this protein/gene expression is a potential
marker of prostate cancer in the clinic.31

3.6. Aplp2. This protein belongs to the amyloid precursor
protein (APP) family, which is reported to show increased
expression in prostate cancer.32,33 However, the changes in
APLP2 expression levels are still unclear.

3.7. PRR32. The PRR32 protein is encoded by the CXorf64
gene. Expression levels in prostate cancer tissues were low
(https://www.proteinatlas.org/ENSG00000183631-PRR32/
pathology). The role of PRR32 in the prostate and in prostate
cancer has not yet been determined.

3.8. Atp5f1a and cfb. Reduced levels of ATP5F1A
positively correlate with the onset of prostate cancer (ages
and clinical evaluation).34 This protein encoded by the Cfb
gene includes alternative pathways for complement activation,
which is a natural defense against infection. In the prostate, this

Figure 3. Comparison of relative protein abundance among control and treatment groups for GSN, AP2B1, CFB, ATPF51A, MYH9, APLP2,
AZGP1, and PRR32. X indicates group mean, error bars represent mean ± standard deviation, and * indicates a significant change compared to the
CTRL group.
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protein was expressed in the tissues of benign prostatic
hyperplasia.35

3.9. Serpinf1. Pigment epithelium-derived factor (PDEF)
protein encoded by the Serpinf1 gene responded to neonatal
exposure to EB and to T+E. The PDEF protein inhibits tumor
progression in all cancer types (i.e., the development of
malignancy, tumor cell migration invasion, and metastasis).36

In prostate cancer, the protein acts as an antiangiogenic,
promoting neuroendocrine differentiation, suppressing tumor
cell proliferation, inhibiting metastasis, and enabling the
recruitment of macrophages.
Interestingly, the proteins serpin family A member 1

(SERPINA1) and SERPINF1 identified in this study were
the same as those identified by other researchers via proteomic
analysis. These proteins were identified using prostatitis
patients’ seminal plasma.12 Decreased PDEF(SERPINF1)
levels were found in the serum of prostate cancer patients,
suggesting potential protein biomarkers.8 Thus, SERPINF1
(Serpinf1 gene) may be a potential biomarker for prostatitis
and prostate cancer.
This is a preliminary study with a small number of subjects.

Further studies are necessary to validate the findings using an
increased number of human plasma samples from prostate
cancer patients.

4. CONCLUSIONS
This study identified several proteins in the plasma of rats
dosed with EB, T, and E. These proteins have also been
reported to be expressed in the prostate. In addition, their
presence was time-specific, suggesting that alterations in their
expression may be dependent on responses to EB exposure,
additional T+E exposure, or chronic inflammation. Some of
the proteins identified in the rat models used in this study were

the same as those that have been reported by other researchers
to be altered in the serum of prostate cancer patients or in the
seminal plasma of prostatitis patients. Our research, along with
that of others, suggests that SERPINF1 (Serpinf1 gene) may be
a potential biomarker for the development of prostatitis and of
prostate cancer. As these proteins have been identified in rat
plasma, further study is necessary to verify these findings using
human plasma from prostatitis and prostate cancer patients.

5. MATERIALS AND METHODS

5.1. Materials. All reagents were purchased from Thermo
Fisher Scientific (Pittsburgh, PA) and Sigma-Aldrich (St.
Louis, MO), unless otherwise indicated.

5.2. Animals and Treatments. Rat plasma that was
collected and processed in a previous study was evaluated.17

The dosing of male offspring followed the method described
by Ho et al.16 Briefly, fifty 11−13-week-old time-mated female
Hsd:SD rats were purchased from Envigo (Indianapolis, IN)
and delivered to the National Center for Toxicological
Research (NCTR) on gestation day (GD) 3 (day of birth =
PND 0) to produce male pups. The animals were housed
individually and maintained under a 12/12 h light/dark cycle
with controlled room temperature (23 ± 3 °C) and humidity
(50 ± 20%). Their diet upon arrival was low-phytoestrogen
5K96 chow (Purina Mills, St. Louis, MO). Water was provided
ad libitum. All animal procedures were approved by the NCTR
Institutional Animal Care and Use Committee and followed
the guidelines set forth by the National Research Council’s
Guide for the Care and Use of Laboratory Animals.37

A total of 148 male offspring selected at birth (PND 0) were
divided into two groups: untreated and EB-treated. In the EB-
treated group, the male pups were injected subcutaneously
with 2.5 mg/kg body weight (BW) EB (cat # E8515; Sigma-
Aldrich) on PNDs 1, 3, and 5. Male pups in the untreated
group were injected with a vehicle (tocopherol-stripped corn
oil; #0290141584-400; ICN Biomedicals, Inc., Aurora, OH).
On PND 90, each group (untreated and EB-treated) was

divided into two additional groups: control, T and 17β-
estradiol (E) only, EB, and EB+T+E groups. Next, all animals
were subcutaneously implanted with several Silastic tubes
(Dow Corning, Midland, MI; internal diameter [ID], 1.47
mm; absorbance, 1.95 mm; cat# 11-189-15D, Fisher
Scientific). Animals in the control and EB groups were
implanted with three empty Silastic tubing inserts (two 2 cm
tubes and one 1 cm tube); animals in the T+E only and EB+T
+E groups were implanted with two Silastic tubes (two 2 cm
tubes) packed with T powder (cat # T1500; Sigma-Aldrich)

Figure 4. Comparison of relative protein abundance among control and treatment groups for CTR9 and SERPINF1. X indicates group mean, error
bars represent mean ± standard deviation, and * indicates a significant change compared to the CTRL group.

Figure 5. Association between proteins identified in this study and the
responses to EB exposure, T+E exposure, and chronic inflammation.
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and one tube (one 1 cm tube) packed with E (cat# E8875;
Sigma-Aldrich) for additional T and E treatment until PND
200. On PND 146, 8 weeks after the first surgery on PND 90,
the 32 animals underwent a second hormone-containing tube
implantation surgery for replacements. These animals were
sacrificed on PND 200 (Figure 6).

5.3. Proteomic Analysis. Proteomic analysis was
performed by Bioproximity LLC (https://www.bioproximity.
com/; Manassas. VA).
We used rat samples from two groups (control and EB-

treated) on PND 90 and from three groups (control, EB, and
EB+T+E) on PNDs 100, 145, and 200 (n = 4 per group) for
proteomic analysis. Previous studies noted chronic prostate
inflammation was observed in only the EB+T+E group.17,18

Acute inflammation in rat prostates was observed in only the T
+E group on PNDs 145 and 200. As the purpose of this study
is to identify altered proteins in rat plasma with chronic
prostatitis, we did not select the T+E only group.
5.3.1. Protein Depletion, Denaturation, Digestion, and

Desalting. The plasma was thawed on ice, and 25 μL was
removed for processing. Abundant proteins (rat serum
albumin, IgG, fibrinogen, transferrin, IgM haptoglobin, and
alpha-1-antitrypsin) were depleted using affinity chromatog-
raphy (cat# SEP130; Seppro Rat, Sigma-Aldrich) according to
the manufacturer’s directions. The samples were added to a
final concentration of 1% sodium dodecyl sulfate (SDS; cat#
436143; Sigma-Aldrich) and 50 mM Tris−HCl, pH 8.0, and
then were heated to 95 °C for 10 min. Next, samples were
cooled, probe-sonicated, and clarified via centrifugation at
20 000g for 2 min. The final concentration of 5 mM Tris(2-
carboxyethyl) phosphine hydrochloride (TCEP; cat# C4706;
Sigma-Aldrich) were added to the samples and incubated at
RT for 30 min, then samples were alkylated with 20 mM
iodoacetamine (cat# I1149; Sigma-Aldrich) at RT for 30 min
in the dark, then quenched by adding 20 mM dithiothreitol
(cat# 1610611; Bio-Rad). Then, samples were digested with
trypsin using the single-pot solid-phase-enhanced sample
preparation (SP3) paramagnetic bead method previously
described.38 The bead eluates were dried in a vacuum
centrifuge and resuspended in mobile phase A.
5.3.2. Liquid Chromatography−Tandem Mass Spectrom-

etry. Each digestion mixture was analyzed using ultrahigh
performance liquid chromatography−tandem mass spectrom-
etry (UHPLC-MS/MS). UHPLC was performed on an Easy-
nLC 1200 (Thermo Fisher Scientific). Mobile phase A was
99.9% MilliQ water and 0.1% formic acid (Cat# 695076;
Sigma-Aldrich). Mobile phase B was 80% acetonitrile (Cat#
34998, Sigma-Aldrich) and 0.1% formic acid. The 20 min LC

gradient ran from 10% B to 30% B over 16 min, to 45% B over
4 min, and then to 80% B for the remaining 5 min. The
samples were loaded directly into the column. The column was
15 cm × 100 μm I.D. and packed with 1.9 μm Reprosil-Pur
C18-AQ media (Dr. Maisch, GmbH, Ammerbuch, Germany).
The LC was interfaced to a quadrupole-Orbitrap mass
spectrometer (Q-Exactive HF-X, Thermo Fisher) via nano-
electrospray ionization. An electrospray voltage of 2.0 kV was
applied. The mass spectrometer was programmed to acquire,
by data-dependent acquisition, tandem mass spectra from the
top 12 ions in the full scan from 350 to 1400 m/z. Dynamic
exclusion was set for 30 s, singly charged ions were excluded,
isolation width was set to 1.6 Da, full MS resolution to 60 000,
and MS/MS resolution to 15 000. The normalized collision
energy was set to 27, automatic gain control to 3e6, max MS
fill to 45 ms, and max MS/MS fill to 22 ms.

5.3.3. Data Processing and Library Search. Mass
spectrometer RAW data files were converted to the mzML
format using msconvert.39 MGF files were generated from the
mzML files using OpenMS.40 All searches were performed on
Amazon Web Services-based cluster compute instances using
the Proteome Cluster interface. Briefly, all searches stipulated
the requirements of 10 ppm for precursor mass tolerance, 0.02
Da fragment mass tolerance, strict tryptic cleavage with up to
two missed cleavages, fixed modification of cysteine alkylation,
variable modification of methionine oxidation, and protein-
level expectation value scores of 0.0001 or lower. Proteome
Cluster builds species- and genus-specific protein sequence
libraries monthly from the most current UniProtKB distribu-
tion.41

The MGF files were searched using the most recent protein
sequence libraries available from UniProtKB using X!
Tandem42 and Comet.43 XML output files were parsed using
Bibliospec44 and nonredundant protein sets were determined
using Proteome Cluster based on previously published rules.45

MS1-based isotopic features were detected, and peptide peak
areas were calculated using OpenMS.40,46 The proteins were
required to have one or more unique peptides across the
analyzed samples, with E-value scores of 0.0001 or less. Protein
levels were compared with intensity-based absolute quantifi-
cation (iBAQ), which is the sum of peak intensities of all
peptides matching to a specific protein divided by the number
of theoretically observable peptides.47

5.4. Statistical Analysis. For each PND, proteins missing
more than half their value at each time point were excluded
from further analysis, and a two-step missing value imputation
was performed. Briefly, the missing values first were replaced
with their group minimums. Next, the left missing values (the
whole group missing) were replaced with half the minimum of
all samples at the collection time point. The proteins were
normalized to the total proteins (sum of iBAQ values) to
reduce sample-to-sample variation. Principal component
analysis (PCA) and partial least squares discriminant analysis
(PLS-DA) were performed to cluster and classify the samples.
Leave-one-out cross-validation (LOOCV) was used to evaluate
the performance of the PLS-DA models. We used analysis of
variance (ANOVA) to evaluate the effects of the treatments for
each PND group, followed by a post hoc Dunnett’s test to
compare the means of the treatment groups against the control
group mean.48 The Benjamini−Hochberg method was used to
calculate the false discovery rate (FDR).49 For multivariate
analysis, statistical analysis, and data visualization, we
employed R 3.6 software with packages mixOmics, multcomp,

Figure 6. Scheme of the experimental design. Hsd:SD rats were
administered 2.5 mg/kg estradiol benzoate (EB) on PNDs 1, 3, and 5
via subcutaneous injection. On PND 90, the animals received Silastic
tube implants individually packed with estradiol (E) and testosterone
(T), which were kept in place until PND 146. On PND 146, the
implants were replaced.
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and ggplot2, respectively.50 Pathway analysis was performed
with Ingenuity Pathway Analysis (IPA) software (https://
www.qiagenbioinformatics.com/products/ingenuity-pathway-
analysis).
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