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ABSTRACT: We demonstrate that physics-based calculations of
intrinsic aqueous solubility can rival cheminformatics-based
machine learning predictions. A proof-of-concept was developed
for a physics-based approach via a sublimation thermodynamic
cycle, building upon previous work that relied upon several
thermodynamic approximations, notably the 2RT approximation,
and limited conformational sampling. Here, we apply improve-
ments to our sublimation free-energy model with the use of crystal
phonon mode calculations to capture the contributions of the
vibrational modes of the crystal. Including these improvements
with lattice energies computed using the model-potential-based Ψmol method leads to accurate estimates of sublimation free energy.
Combining these with hydration free energies obtained from either molecular dynamics free-energy perturbation simulations or
density functional theory calculations, solubilities comparable to both experiment and informatics predictions are obtained. The
application to coronene, succinic acid, and the pharmaceutical desloratadine shows how the methods must be adapted for the
adoption of different conformations in different phases. The approach has the flexibility to extend to applications that cannot be
covered by informatics methods.

■ INTRODUCTION
Solubility is a fundamental physicochemical property, under-
standing of which is essential for design and manufacturing
processes in industries ranging from petrochemicals to energy
materials. It is of particular significance for the pharmaceutical
industry, with up to 70% of drugs in development having
solubility problems and with low aqueous solubility being a
frequent cause of failure of drug candidates.1,2 Although the
pharmaceutical industry makes extensive use of experimental
solubility measurements, they are time-consuming, resource-
intensive, and only applicable to already-synthesized molecules,
which limits their breadth of application. Consequently, there
is a pressing need for accurate computational models to predict
solubility.
Recently, various physics-based approaches have been

proposed to compute intrinsic aqueous solubility, specifically
the equilibrium solubility of the neutral form of the solute,
written as S0. Such methods generally rely on explicit
simulations, as with the Frenkel group’s method that identified
the nonstandard conditions where the solution has the same
chemical potential as the solid.3,4 They calculated reversible
paths between the Einstein crystal, a simple hypothetical model
of a solid, and the real crystalline solute using molecular
dynamics (MD) simulations. The aqueous solution phase was
modeled with a separate simulation where a cavity was grown
in water. A molecule of the solute compound was then placed
inside it before the cavity was computationally shrunk to leave
the molecule in a simulated aqueous solution. Another method

is the direct coexistence approach of Kolafa,5 who explicitly
simulated a solute dissolving in a solvent and counted the
number of solute particles in the simulated solution phase to
identify the concentration at which equilibrium was reached. In
a strikingly different methodology, the Anwar group used
Monte Carlo simulations to compute the density of states of
the solution phase. This was designed to produce two separate
peaks, one corresponding to the pure solute and the other to
the saturated solution. This second peak’s mole fraction of
solute was the equilibrium solubility.6,7 Lüder and co-workers
published four papers aimed at computing the solubility of
druglike compounds via simulations.8−11 Their studies
considered a roundabout route from the solid via amorphous
solid and supercooled liquid to the aqueous solution and took
advantage of an empirical relationship between the solubilities
of the crystalline and amorphous phases, rather than modeling
the crystal lattice explicitly. They were able to generate
reasonable solubility predictions using only widely affordable
simulation techniques but also found that the additional
expense of free-energy perturbation (FEP) calculations was
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rewarded with substantially more accurate results. Mondal et
al. have recently also found that free-energy perturbation
calculations can successfully model solubility.12

The most relevant comparison for the present study is with
our own previous work,13 which also bears some similarity to
the more recent approach of Abramov et al.14 We used a
sublimation cycle approach, computing the free-energy
changes of sublimation and hydration under standard
conditions and then summing them to obtain the free energy
of solution and hence the equilibrium constant describing
aqueous solubility. Those preliminary results showed that
solubility can be accurately calculated without empirical
parameterization against experimental data, with possible
procedural improvements further narrowing the gap between
predicted and experimental data. Such improvements are now
possible, as we can calculate all of the modes in the crystal
using periodic density functional methods, and hence no
longer need to use rigid-body crystal modes to estimate the
entropy of sublimation. Careful analysis of the vibrational
modes enables us to convert lattice energies into sublimation
enthalpies without relying on the 2RT approximation used in
previous work. Improved hydration free energies are computed
using two separate approaches: density functional theory
(DFT) with full enumeration of low-energy gas and solution-
phase conformers, and molecular dynamics (MD) simulations
with free-energy perturbation (FEP). It is our belief that such
physics-based solubility predictions can rival the currently
dominant cheminformatics and machine learning methods
with a more physically grounded approach, representing the
thermodynamics of each stage of the solubility process.

■ THEORY

Calculation of Intrinsic Aqueous Solubility from
Solution Free Energy. Intrinsic aqueous solubility is defined
as the concentration of the neutral form of the molecule in a
saturated aqueous solution at thermodynamic equilibrium.15,16

If the activity coefficient for the solute in solution is assumed to
be unity, then the link between intrinsic solubility and Gibbs
solution free energy is

Δ * = Δ * + Δ * =−G G G RT S Vln( )sol sub hyd 0 m (1)

where ΔGsol* , ΔGsub* , and ΔGhyd* are the Gibbs free energies for
solution, sublimation, and hydration, respectively, R is the
molar gas constant, T is the temperature, Vm describes the
molar volume of the crystal, and S0 refers to the intrinsic
solubility (using moles per liter, mol/L). The superscript
asterisk indicates that the Ben-Naim terminology is being used
and refers to the Gibbs free energy for transfer of a molecule
between two phases at a fixed center of mass in each phase.17,18

The relationship between ΔGsol* , ΔGsub* , and ΔGhyd* is based on
a thermodynamic cycle via the gas phase, as illustrated in
Figure 1.
Although solvation free energies are commonly reported in

the Ben-Naim standard states, sublimation free energies are
more commonly calculated and reported relative to a 1 atm
standard state in the gas phase, ΔGsub

0 . The conversion between
them is

Δ * = Δ −G G RT V p RTln( / )sub sub
0

m 0 (2)

where p0 is the atmospheric pressure. Combining eqs 1 and 2
gives an expression for So that does not include Vm

=
Δ + Δ *

−
S

p

RT

G G

RT
expo

o sub
o

hydi

k
jjjjjj

y

{
zzzzzz

(3)

Calculation of Sublimation Free Energy beyond the
2RT Approximation. Previous calculations of solubility via
the sublimation cycle have relied upon the 2RT approximation
to convert calculated crystal lattice energies into sublimation
enthalpies.13 Breaking down this approximation by first
ignoring phonon dispersion in the crystal (i.e., considering
the Γ-point phonons only) and assuming that the intra-
molecular vibrations of a molecule are the same in the gas
phase and the crystal enable the sublimation enthalpy to be
written as

Figure 1. Thermodynamic cycle for transfer from crystal to gas to solution.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00130
J. Chem. Theory Comput. 2021, 17, 3700−3709

3701

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00130?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00130?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00130?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00130?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00130?rel=cite-as&ref=PDF&jav=VoR


∑

∑

ω

ω

Δ ° =− + −
ℏ

−
ℏ

−ω

′

′

′

′
ℏ ′( )

H T E RT( ) 4
2

exp 1

i

i
s

i

i

k T

sub latt

s

i
s

B

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz
(4)

The summations run only over the intermolecular phonon
modes, which are assumed not to mix with the intramolecular
vibrational modes at all, an approximation that is clearly more
appropriate to small rigid molecules. If the intermolecular
modes were at low frequencies (<200 cm−1), then at room
temperature, they could be considered as classical harmonic
oscillators, i.e., their zero-point energies can be ignored and the
equipartition theorem can be applied. There are six such
modes for each molecule in the unit cell; thus, the last two
terms in eq 4 can be replaced as −6RT, and one arrives at the
2RT approximation19 using eq 5

Δ ° ≈ − −H T E RT( ) 2sub latt (5)

However, the 2RT approximation is not sufficiently accurate
for quantitative solubility predictions. Indeed, recent calcu-
lations even on small organic crystals have shown that the
approximation inherent in eq 5 can be seriously in error.20

When there is intermolecular hydrogen bonding or intra-
molecular modes that are similar to or even lower in frequency
than the lattice phonon modes, the assumptions that the
modes do not mix and that their contributions follow
equipartition are highly questionable.20 Hence, we contend
that a clear route to improvement in modeling lattice
thermodynamics lies in revisiting the 2RT approximation.
Through resource-intensive phonon calculations, current
periodic DFT-D codes can provide the enthalpy, entropy,
and free-energy contributions of each vibrational and phonon
mode. We believe that such accurate computation is a
prerequisite for the chemical accuracy needed to compute
aqueous solubility with an RMS error comparable with that of
informatics methods,21 around 0.7−1.1 log S0 units, or the
typical experimental error of around 0.6−0.7 log S0 units.22
Hydration Free-Energy Calculations. Previous predic-

tions of solubility via a sublimation cycle have used implicit
solvent models to compute hydration free energy from a single
low-energy conformer in each phase. Here, we investigate two
alternative approaches that explicitly account for the conforma-
tional degrees of freedom of the solute. First, we use density
functional theory and a Boltzmann-weighting scheme to
compute hydration free energies from an ensemble of low-
energy conformers in each phase. Second, we compute
hydration free energies from atomistic molecular dynamics
simulations using free-energy perturbation methods.

■ COMPUTATIONAL METHODS

Data Set. A small data set of three druglike molecules,
succinic acid, coronene, and desloratadine, was used to test
these physics-based methods. These three molecules contain
differing chemical structures and functional groups, represent-
ing a wide range of flexibilities, sizes, and solubilities. All three
have multiple polymorphs; however, this study focuses only on
the thermodynamically most stable form of each compound
under ambient conditions. The chemical structures, common
molecular names, and Cambridge Structural Database (CSD)

refcodes for the polymorph used in calculations are shown in
Figure 2.

Experimental data was found in the literature, with intrinsic
aqueous solubilities (measured as mol/L) reported for each
molecule as follows: Forbes and Coolidge23 reported a value of
log S0 = −0.22 at 25 °C for succinic acid; Miller et al.24

reported a value of log S0 = −9.33 at 25 °C for coronene;
Popovic ́ et al.25 reported a value of log S0 = −3.42 at 25 °C for
desloratadine. Since the crystalline polymorphic forms of the
solutes in these solubility assays were not specified, the
sublimation calculations were performed using the polymorph
of each solute that is known to be most stable under ambient
conditions. The sublimation calculations were performed using
the β polymorph of succinic acid (CSD26 refcode:
SUCACB03), the γ polymorph of coronene (CSD refcode:
CORONE03), and Form I of desloratadine (CSD refcode:
GEHXEX). Further details of the polymorphs and crystal
structures of these three compounds are given in the
Supporting Information, along with full details of the
computational methods and a diagrammatic workflow in
Figure S2.
Experimental sublimation enthalpies were found for succinic

acid and coronene, reported as 123.2 kJ/mol by Ribeiro da
Silva et al.27 and 148.2 kJ/mol by Chickos et al.,28 respectively.
A hydration free energy of −61.08 kJ/mol, measured by Rees
and Wolfe,29 was found for succinic acid. Where experimental
values could not be found, in some cases, it was possible to
estimate pseudo-experimental values using available data and
standard thermodynamic relationships.

Calculation of Sublimation Free Energy Using CA-
STEP and the Model-Potential-Based Ψmol Method. For
all three crystal structures, full DFT-D crystal structure
optimizations were carried out with CASTEP30 using the
Perdew−Burke−Ernzerhof (PBE) functional and the Tkatch-
enko−Scheffler (TS)31 dispersion correction scheme, with on-
the-fly pseudopotentials. The input coordinates were the
experimental structures (CORONE03, SUCACB03, GEH-
XEX)32,33 in the Cambridge Structural Database with the C−
H bond lengths corrected to neutron values.34 The optimized
crystal structures are in very good agreement with the
experimental low-temperature structure determinations
(Table S1 in the Supporting Information).
PBE-TS harmonic phonon calculations were performed

using either linear response or a finite differencing algorithm
with a supercell selected to ensure there were no imaginary
frequencies across the phonon Brillouin zone. Once a phonon
calculation was completed, the phonon Brillouin zone was

Figure 2. Structures, Cambridge Structural Database refcodes, and
experimental solubilities of the three compounds considered in this
study.
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further sampled with a finer nuclear Brillouin zone grid and the
resultant phonon density of states was integrated to obtain the
thermodynamic corrections for the crystal, namely, zero-point
energy (EZPE

s ), internal energy (Ucorr
s ), and Helmholtz free

energy (Acorr
s ) of the crystal and the solid-state contribution to

TΔSsub at 298.15 K. Details of these calculations and their
results are given in Tables S2 and S3 of the Supporting
Information. The phonon curve of desloratadine is in
reasonable agreement with the room-temperature terahertz
spectrum.35

The molecular conformations were extracted from the
optimized crystal structure using NEIGHCRYS.36 These were
used to obtain molecular energy in its crystal conformation
(Emol_in_cryst) and distributed multipoles (DMA) by GDMA37

analysis for use in the lattice energy calculations. Both the
PBE/6-311++G(2d,p) and PBE0/6-31G(d,p) charge distribu-
tions were obtained using Gaussian 0938 with and without a
polarizable continuum model (PCM) model (ε = 3.0). The
PCM calculations used default settings in Gaussian 09 and a
relative dielectric constant of 3.0, typical for organic crystals.39

The sensitivity of the results to these four model charge
distributions is explored in Table S5 of the Supporting
Information, which also shows that the periodic DFT-D lattice
energies with the PBE functional are inadequate.
The molecular conformations were optimized using the

PBE/6-311++G(2d,p) charge density within the PCM model
(ε = 3.0) to the global minimum of the molecule to obtain
Emol_min, and the harmonic vibrational modes are calculated. In
the cases of succinic acid and desloratadine, starting from the
extracted conformations led to the closest local stationary
points on the potential energy surfaces, which were planar and
the AAA conformation, respectively. Further optimizations
located the global minimum (gauche or SAA), with an energy
of Emol_min. The conformational energy difference between the
molecule’s lowest energy gas-phase conformation and the
crystal conformation is obtained as the difference between
Emol_min and Emol_in_cryst. The molecular vibrations were
computed for each gas-phase molecular structure at the global
minimum for each compound, with Gaussian 0937 with each
functional/basis set/PCM combination and “tight” conver-
gence criteria. Thermal analysis by Gaussian 0937 yielded EZPE

g ,
Hcorr

g , and Acorr
g for the most stable isolated molecular

conformation.
The PBE-TS-optimized crystal structure was reoptimized

using DMACRYS36 to obtain the intermolecular lattice energy,
Uinter, keeping the molecule rigid. The lattice energy was
evaluated using the distributed multipoles from the various
molecular charge densities (Ψmol-approach

36) combined with
the FIT exp-6 intermolecular repulsion−dispersion pair
potential, which has been parameterized by fitting to crystal
structures and some heats of sublimation. The lattice energy is
then obtained as

= + −_ _ _E U E Elatt inter mol in cryst mol min (6)

Thermodynamic terms calculated above were then com-
bined to obtain ΔGsub° according to

Δ ° = Δ ° +

=− + − +

G T A T RT

E A T A T RT

( ) ( )

( ) ( )
sub sub

latt corr
g

corr
s

(7)

Calculation of Hydration Free Energy Using Implicit
Continuum Models. Hydration free energies were calculated
using the PBE,40 PBE0,41 and PBE0-DH42 functionals with the

6-311++G(2d,p) basis set and the SMD solvent model.43 All
hydration calculations were carried out in Gaussian 16.44 The
PBE functional and basis set were chosen for consistency with
the sublimation free-energy calculations, and PBE0 and PBE0-
DH were included as potentially more accurate functionals.
The SMD solvent model was selected because it performs well
for organic molecules.43

Three different approaches were investigated to account for
conformational degrees of freedom in the calculation of
hydration free energy. In the first two approaches, the solute in
the gas phase was modeled using the same single conformer as
in the sublimation calculations, and the solute in the solution-
phase was modeled using either a Boltzmann-weighted
ensemble of conformers (SFE1) or a single global minimum
energy solution-phase conformer (SFE2). Both of these
methods allow for favorable cancellation of errors when the
sublimation and hydration legs of the cycle use the same DFT
methods. The third approach uses a Boltzmann-weighted
ensemble of conformers in each phase separately (SFE3).
Conformational searches were carried out using a force-field-
based genetic algorithm in OpenBabel45 before the low-energy
conformers were reoptimized using DFT. Optimized structures
were clustered to remove duplicates prior to Boltzmann
weighting (see the Supporting Information for further details).
Eight dominant solution-phase conformations have previously
been identified for desloratadine,35 which were used in these
calculations. Due to the rigidity of coronene, no conforma-
tional search was needed, and a single conformer was used for
calculations.

Calculation of Hydration Free Energy Using Molec-
ular Dynamics Simulations and Free-Energy Perturba-
tion Theory. For each solute, parameters from the general
Amber force field (GAFF) with AM1-BCC charges were
assigned using the ACPYPE server.46 Molecular dynamics
simulations were performed using Gromacs 2020.3.47 A
rhombic dodecahedron box with periodic boundary conditions
was used. Water was represented using an SPC/E model,48 and
no counterions were added. All bonds involving hydrogen were
kept rigid using the LINCS algorithm of the fourth order.
Dynamics were simulated using a stochastic dynamics
integrator, with a reference temperature of 298K. Neighbor
searching was performed using a pair list generated by a Verlet
cutoff scheme. Short-range interactions used the particle-mesh
Ewald (PME) method,49 with Lennard-Jones interactions
switched off at 10 Å. Electrostatic interactions were treated
using the PME method with a cutoff of 10 Å, a Fourier spacing
of 1.2 Å, a fourth-order interpolation, and a tolerance of 10−4.
Hydration free energy was computed using 21 values of the

scaling factor λ, with Lennard-Jones and electrostatics
interactions between the solute and solvent scaled together.
Intramolecular interactions were kept the same at all λ values.
Calculations were performed at 21 λ values at intervals of 0.05
from 0 to 1. Each simulation with its corresponding λ ran for
1300 ps during its production run. Prior to running a
production MD simulation, 2500 steps of steepest descent
optimization and a 50 ps equilibration were performed. A time
step of 2 fs was used for each simulation. In both equilibration
and production runs, the pressure was kept constant at 1 bar
using the Parrinello−Rahman pressure coupling50 and a
compressibility of 4.5 × 10−5 bar−1. After each simulation
was complete, hydration free energy was evaluated using the
Bennett acceptance ratio (BAR).51
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Prediction of Intrinsic Aqueous Solubility Using
Machine Learning Algorithms. Three machine learning
models were implemented for predicting the intrinsic solubility
of succinic acid, desloratadine, and coronene. These models
used the Extra Trees,52 Random Forest,53 and Bagging54

algorithms, each trained on a set of 117 druglike compounds
with 173 CDK descriptors55 used for each molecule and
implemented as described in reference 56. The training set for
these ML models does not include succinic acid, desloratadine,
or coronene. These models were initially developed for an
entry to the 2019 Solubility Challenge.56

■ RESULTS
Sublimation Free Energy. In Table 1, we present

sublimation thermodynamics computed using the DMACRYS
PBE/6-311++G(2d,p)/PCM Ψmol-based lattice energies and
the thermal corrections computed from periodic PBE-TS
phonons, as described in the Computational Methods section
and elaborated on in the Supporting Information. The
calculated sublimation enthalpies are in good agreement with
the measured values for succinic acid (ΔHsub°

expt − ΔHsub°
calcd =

2.16 kJ/mol) and coronene (ΔHsub°
expt − ΔHsub°

calcd = 4.69 kJ/
mol); no experimental sublimation data was available for
desloratadine. These errors would correspond to 2.4- and 6.6-
fold errors in solubility (based on eq 1), respectively, which is
encouraging given that machine learning models commonly
report 10-fold errors. The influence of using crystal phonon
modes rather than the 2RT approximation to convert lattice
energies into sublimation enthalpies can be assessed by
considering the value of the term ΔHsub° + Elatt in Table 1.
Although there is good agreement between ΔHsub°

calcd + Elatt and
−4.96 kJ/mol (=−2RT) for succinic acid, for coronene and
desloratadine, the differences would correspond to more than
17- and 10-fold differences in solubility, respectively. Clearly,
the method used to convert lattice energy into sublimation
enthalpy has a large effect on predicted solubility.
Hydration Free Energy. Table 2 reports hydration free

energies computed using atomistic MD/FEP simulations and
three DFT methods (PBE/6-311++G(2d,p)/SMD, PBE0/6-
311++G(2d,p)/SMD, PBE0-DH/6-311++G(2d,p)/SMD).
For succinic acid and coronene, for which experimental or
pseudo-experimental values are available, MD/FEP is the most
accurate method for computing hydration free energy and
gives relatively small errors (ΔGhyd

expt − ΔGhyd
calcd of −3.61 and 1.6

kJ/mol, respectively). For the DFT methods, taking a
Boltzmann-weighted average of multiple conformers, rather
than a single minimum energy conformer in the gas and/or
solution phase, had relatively little effect on the results, leading
to small changes in ΔGhyd for succinic acid in most cases
(Table S8 in the Supporting Information). Slightly larger
changes were observed for desloratadine when using the PBE0
or PBE0-DH functionals (ΔΔGhyd < 2 kJ/mol), but there was
no evidence that the Boltzmann-weighting scheme led to more
accurate results overall. For that reason, Table 2 presents SMD

results obtained by the SFE2 approach only. However, for all
solutes, changing from PBE to PBE0 or PBE0-DH functionals
led to a non-negligible change in hydration free energy. For
succinic acid, PBE0-DH agrees reasonably well with experi-
ment (ΔGhyd

expt − ΔGhyd
calcd =−4.85 kJ/mol), whereas PBE does

not (ΔGhyd
expt − ΔGhyd

calcd = −11.75 kJ/mol). A similar trend is
observed for coronene although neither PBE nor PBE0-DH
gives satisfactory results. For desloratadine, the DFT and MD/
FEP methodologies give self-consistent results, but there is no
experimental data with which to compare them.

Machine Learning Intrinsic Solubility Predictions.
Table 3 reports intrinsic solubility predictions from the Extra

Table 1. Lattice and Sublimation Energetics in kJ/mol Based on DMACRYS PBE/6-311++G(2d,p)/PCM Calculations and
Thermal Correctionsa

compound Elatt ΔHsub°
calcd ΔHsub°

expt ΔHsub° ΔGsub° TΔHsub° ΔHsub°
calcd + Elatt

succinic acid −125.89 121.04 123.2 49.06 51.54 69.50 −4.85
coronene −155.61 143.51 148.2 76.57 79.05 64.46 −12.10
desloratadine −144.40 133.72 57.29 59.77 73.95 −10.68

aThe experimental ΔHsub°
expt is given where available.27,28

Table 2. Hydration Free Energies from Experiment and
Computed from DFT or MD/FEP Simulations Using the
SFE2 Approacha

compound hydration model
ΔGhyd*calcd
(kJ/mol)

ΔGhyd*expt
(kJ/mol)

succinic acid PBE/6-311++G(2d,p)/
SMD

−49.33 −61.08

PBE0/6-311++G(2d,p)/
SMD

−52.78

PBE0-DH/6-311+
+G(2d,p)/SMD

−56.23

GAFF/AM1-BCC, SPC/E −57.47
coronene PBE/6-311++G(2d,p)/

SMD
−18.68 −38.40

PBE0/6-311++G(2d,p)/
SMD

−23.01

PBE0-DH/6-311+
+G(2d,p)/SMD

−26.32

GAFF/AM1-BCC, SPC/E −40.00
desloratadine PBE/6-311++G(2d,p)/

SMD
−45.11

PBE0/6-311++G(2d,p)/
SMD

−48.08

PBE0-DH/6-311+
+G(2d,p)/SMD

−50.38

GAFF/AM1−BCC, SPC/E −44.93
aThe experimental ΔGhyd*expt is given where available.29 While we do
not have a true experimental hydration free energy for coronene, we
can infer its value if we assume that the experimental log S0 and ΔHsub°
values24,28 and the computed TΔSsub° are correct. Rearranging eq 3
then leads to a back-calculated pseudo-experimental ΔGhyd* of −38.40
kJ/mol.

Table 3. Predicted Log S0 Values Derived from Machine
Learning Extra Trees, Random Forest, and Bagging
Algorithms

log S0
calcd

compound log S0
expt extra trees random forest bagging

succinic acid −0.22 0.05 −1.00 −1.21
coronene −9.33 −8.05 −7.35 −6.22
desloratadine −3.42 −4.30 −4.20 −3.96
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Trees, Random Forest, and Bagging algorithms. The Extra
Trees model performed better than the Random Forest and
Bagging models for our data set and was chosen as the
benchmark for the physics-based models. The same model was
submitted to the 2019 Solubility Challenge by one of us and
known for the purposes of that Challenge as JMSA_B.53,57,58

Physics-Based Intrinsic Solubility Predictions. The
computed ΔGsub° and ΔGhyd* combine according to eq 3 to give
the log S0 values reported in Table 4. The computed log S0
values are based on DMACRYS PBE/6-311++G(2d,p)/PCM
calculations with thermal corrections as the sublimation
method and PBE/6-311++G(2d,p)/SMD, PBE0/6-311++G-
(2d,p)/SMD, PBE0-DH/6-311++G(2d,p)/SMD, or MD/FEP
as the hydration method.
For succinic acid, PBE/6-311++G(2d,p)/SMD underesti-

mated the magnitude of the hydration free energy, which
resulted in an underestimation of the solubility of 1.56 log S0
units. Replacing PBE by the PBE0-DH functional improved
the calculated hydration free energy and log S0 to within −4.85
kJ/mol and 0.35 log units of their experimental results,
respectively. The MD/FEP calculations gave the most accurate
hydration free energy and as a result predicted log S0 = −0.35,
only 0.13 log units from the experimental value.
For coronene, using the PBE/6-311++G(2d,p)/SMD

hydration model again leads to underestimation of the
magnitude of the hydration free energy, with an error of
19.76 kJ/mol as compared to the back-calculated pseudo-
experimental ΔGhyd* . This results in a prediction of log S0 lower
than the experimental24 value by 2.64 units. (The derivation of
our back-calculated pseudo-experimental ΔGhyd* is described in
the footnote of Table 2.) Using instead the PBE0-DH/6-311+
+G(2d,p)/SMD hydration model gives a more accurate value
of ΔGhyd

calcd and leads to a predicted log S0 of only 1.30 log units
below the experimental value, as shown in Table 4. The most
accurate hydration free energy was obtained from the MD/
FEP simulations, which overestimated the magnitude of
ΔGhyd

calcd by only 1.6 kJ/mol compared to the pseudo-
experimental value, and resulted in a prediction of solubility
within 1.10 log units of the experimental value.
The PBE/6-311++G(2d,p)/SMD hydration model appears

to perform better for desloratadine than for the other solutes
and gives a calculated log S0 within 0.54 log S0 units of the
experimental value.25 Since we have no experimental

sublimation or hydration thermodynamics data, however, it is
unclear whether our predictions of ΔGsub° and ΔGhyd* are both
accurate or whether we are relying on a cancellation of errors
to arrive at an accurate log S0 prediction. The underestimation
of solubility suggests that the PBE/6-311++G(2d,p)/SMD
hydration model underestimates the magnitude of the
hydration free energy, which would be in keeping with the
trend observed for coronene and succinic acid, but cannot be
independently validated with the available experimental data.
Using the PBE0 or PBE0-DH functionals rather than the PBE
functional leads to more accurate estimates of solubility, within
0.02 log units and 0.39 log units of the experimental value,
respectively. Using the solvation free energy computed by
MD/FEP simulations gives a predicted solubility that is almost
identical to that obtained using the PBE/6-311++G(2d,p)/
SMD model, with an error compared to experiment of 0.57 log
units. For desloratadine, all three solvent models give
predictions with errors <0.6 log S0 units, which compares
favorably with the Extra Trees regressor that gives an error of
0.88 log S0 units.
The absolute error in log S0 for each model is summarized in

Figure 3. The Extra Trees results (yellow bars) provide an

Table 4. Computed Physics-Based Log S0 Values Derived from Hydration Free Energy Results Obtained by PBE/6-311+
+G(2d,p)/SMD, PBE0/6-311++G(2d,p)/SMD, and PBE0-DH/6-311++G(2d,p)/SMD Calculations and MD/FEP Simulations

compound sublimation model hydration model log S0
calcd log S0

expt error

succinic acid PBE/6-311++G(2d,p)/PCM PBE/6-311++G(2d,p)/SMD −1.78 −0.22 1.56
PBE0/6-311++G(2d,p)/SMD −1.17 0.95
PBE0-DH/6-311++G(2d,p)/SMD −0.57 0.35
GAFF/AM1-BCC, SPC/E −0.35 0.13

extra trees 0.05 −0.27
coronene PBE/6-311++G(2d,p)/PCM PBE/6-311++G(2d,p)/SMD −11.97 −9.33 2.64

PBE0/6-311++G(2d,p)/SMD −11.21 1.88
PBE0-DH/6-311++G(2d,p)/SMD −10.63 1.30
GAFF/AM1-BCC, SPC/E −8.23 −1.10

extra trees −8.05 −1.28
desloratadine PBE/6-311++G(2d,p)/PCM PBE/6-311++G(2d,p)/SMD −3.96 −3.42 0.54

PBE0/6-311++G(2d,p)/SMD −3.44 0.02
PBE0-DH/6-311++G(2d,p)/SMD −3.03 −0.39
GAFF/AM1-BCC, SPC/E −3.99 0.57

extra trees −4.30 0.88

Figure 3. Absolute error in calculated log S0 for succinic acid,
desloratadine, and coronene. The physics-based predictions of
solubility use the PBE/6-311++G(2d,p)/PCM sublimation free
energies and the PBE/6-311++G(2d,p)/SMD (orange), PBE0/6-
311++G(2d,p)/SMD (blue), PBE0-DH/6-311++G(2d,p)/SMD
(green), or MD/FEP (black) hydration free energies. The machine
learning predictions use the Extra Trees algorithm (yellow).
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example of a state-of-the-art machine learning model against
which the physics-based models have been evaluated. Using
the DMACRYS PBE/6-311++G(2d,p)/PCM Ψmol-based
sublimation method, and either PBE0-DH/6-311++G(2d,p)/
SMD or MD/FEP hydration calculations, we obtained
predicted solubilities that rival the accuracy of the Extra
Trees model.

■ DISCUSSION
Our previous physics-based solubility prediction work13 gave
an RMSE of 1.45 log S0 units over 25 druglike compounds
while incorporating the 2RT approximation. Although that was
a promising result, further improvements were required to
match the predictive accuracy of machine learning. The
present work achieves this aim by improving upon the 2RT
approximation for enthalpies of sublimation by utilizing a full
analysis of the vibrational and phonon contributions to the
sublimation enthalpy and entropy. Succinic acid and
desloratadine adopt different conformations in the solid from
the isolated molecule at low temperatures and the ensemble in
the liquid. Fortunately, our results suggest that the hydration
results are rather insensitive to conformational averaging, and
so the conformational search could be limited, provided that
the global minimum (gas-phase) conformation and the crystal
conformation are known.
We have used the experimental crystal structures in these

calculations, but this could be obtained from a crystal structure
prediction study.57 Indeed, we envisage that these physics-
based solubility calculations would be performed alongside
such a crystal structure prediction study as these are now
becoming more routine in the industry58 and being developed
to be used during early drug development59 at the solid form
selection stage and as a complement to solid form screen-
ing.60,61 The key advantage of a physics-based approach over
informatics would then be realized, by being able to adapt the
calculations to different solvents, polymorphs, and temper-
atures.
The linking of the solubility calculations into a workflow

involving crystal structure prediction, which includes determin-
ing the range of conformations that can occur in solid state,
means that the development of this approach to solubility
prediction can be closely coupled to the current work on
improving the calculation of free energies of polymorphs.
Absolute lattice energies calculated using periodic DFT-D and
currently affordable functionals like PBE are known to be
poor,62 but the progress in developing reliable calculations of
relative energies of polymorphs63 and sublimation pressures64

suggests that a fully quantum-mechanical prediction of the
solid-state contributions14,65 could provide accurate solubil-
ities. This may need to be coupled with the use of higher-level
calculations on the isolated molecule, as this has been found to
provide a major improvement in CSP results in certain cases of
conformational polymorphism.66,67 However, methods of
mitigating the expense of the phonon calculations, which
appear necessary given the inadequacy of the 2RT approx-
imation, are being developed.68

Alongside developing absolute solubility calculations, it is
also to estimate the solubility difference between polymorphs
or between racemic and enantiopure crystals. The degree of
cancellation of errors is very specific to the crystals involved20

and needs to be highly accurate as the average difference in
molar solubility between polymorphs has been estimated to be
approximately 2-fold,69 which is 4−5 times smaller than the

average error in solubility models. One outcome of our study is
that care has to be taken to ensure cancellation of errors when
calculating absolute sublimation free energies, i.e., at this stage,
it is more accurate to use consistent electronic structure
methods than the best affordable for each phase. It also appears
that the hydration energies improve with the electronic
structure method used.
In this study, we have chosen three diverse molecules

spanning a wide range of solubilities and the results are
extremely encouraging. For all three solutes, the implicit
solvation model improves with the quality of the molecular
charge distribution and is relatively insensitive to the treatment
of the conformational flexibility. The explicit solvation model
using molecular dynamics simulations provides very worth-
while results, which are capable of reflecting the effects of long-
lived, specific hydrogen bonding of solvent to solute, though
such extended residence times do not occur in these three
systems.34 These calculations will depend critically on the
quality of the force field, as do many other molecular
dynamics-based methods.70

Physics-based solubility approaches including the one
presented here are typically tested on only a handful of
compounds at best. In this case, the three compounds chosen
present different types of chemistries, conformational
flexibilities, and solubilities. Critically, the set includes
desloratadine as a more typical pharmaceutical, showing that
the methodology can be applied to larger, flexible molecules
than are typically used to validate physics-based methods. In
comparison, machine learning and QSPR models are typically
validated on tens-to-hundreds of compounds, the two
solubility challenges each having a 100-compound test
set.58,71 A major limitation of informatics approaches is that
they can only be applied to properties for which training data
for sufficient compounds has been measured. Physics-based
approaches have the potential to be modified for different
solvent mixtures,43,72,73 temperatures,74,75 and other proper-
ties,76 vastly extending the possible contribution of digital
design to crystallization processes. Following the proof-of-
concept results presented here, the validation of physics-based
solubility methods on a larger range of molecules is a priority
to drive progress in this field.

■ CONCLUSIONS
The physics-based method presented within this work shows
that intrinsic aqueous solubility can be predicted with
reasonable accuracy, rivaling current cheminformatics and
machine learning approaches. Throughout this process, a full
computational description of each thermodynamic stage of
transferring a molecule from crystal to gas to solution is
produced. Further progress can be made, however, including
systematic improvements to the sublimation and hydration
free-energy models, as well as more rigorous testing on a larger
data set of druglike molecules.
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The Supporting Information is available free of charge at
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Full specification of the theoretical derivations, method-
ology, and more detailed results including; the workflow
developed in this work for physics-based computation of
sublimation and hydration (Figure S1), variations in
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solid and gaseous energies with functional (Tables S5
and S6); tests of hydration free energy methods using
the Minnesota Solvation Database (Figures S2 and S3);
variation of calculated hydration energies with treatment
of conformational variations (Table S8); calculated
solubilities from all combinations of methods (Tables
S9 and S10) (PDF)
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