Skip to main content
. 2021 May 14;17(6):3700–3709. doi: 10.1021/acs.jctc.1c00130

Table 2. Hydration Free Energies from Experiment and Computed from DFT or MD/FEP Simulations Using the SFE2 Approacha.

compound hydration model ΔGhyd*calcd (kJ/mol) ΔGhyd*expt (kJ/mol)
succinic acid PBE/6-311++G(2d,p)/SMD –49.33 –61.08
PBE0/6-311++G(2d,p)/SMD –52.78
PBE0-DH/6-311++G(2d,p)/SMD –56.23
GAFF/AM1-BCC, SPC/E –57.47
coronene PBE/6-311++G(2d,p)/SMD –18.68 –38.40
PBE0/6-311++G(2d,p)/SMD –23.01
PBE0-DH/6-311++G(2d,p)/SMD –26.32
GAFF/AM1-BCC, SPC/E –40.00
desloratadine PBE/6-311++G(2d,p)/SMD –45.11  
PBE0/6-311++G(2d,p)/SMD –48.08
PBE0-DH/6-311++G(2d,p)/SMD –50.38
GAFF/AM1–BCC, SPC/E –44.93
a

The experimental ΔGhyd*expt is given where available.29 While we do not have a true experimental hydration free energy for coronene, we can infer its value if we assume that the experimental log S0 and ΔHsub values24,28 and the computed TΔSsub° are correct. Rearranging eq 3 then leads to a back-calculated pseudo-experimental ΔGhyd of −38.40 kJ/mol.