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Abstract

ATAC-seq, the assay for transposase-accessible chromatin using sequencing, is a quick and
efficient approach to investigating the chromatin accessibility landscape. Investigating chromatin
accessibility has broad utility for answering many biological questions, such as mapping
nucleosomes, identifying transcription factor binding sites, and measuring differential activity of
DNA regulatory elements. Because the ATAC-seq protocol is both simple and relatively
inexpensive, there has been a rapid increase in the availability of chromatin accessibility data.
Furthermore, advances in ATAC-seq protocols are rapidly extending its breadth to additional
experimental conditions, cell types, and species. Accompanying the increase in data, there has also
been an explosion of new tools and analytical approaches for analyzing it. Here, we explain the
fundamentals of ATAC-seq data processing, summarize common analysis approaches, and review
computational tools to provide recommendations for different research questions. This primer
provides a starting point and a reference for analysis of ATAC-seq data.
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INTRODUCTION

As our understanding of gene regulation has improved, so has our awareness of the
increasingly complex chromatin landscape that governs that regulation. Assays to better
evaluate this landscape have been rapidly developed and improved, and the Assay for
Transpose Accessible Chromatin using sequencing (ATAC-seq) has become a common first
step for studying gene regulation. ATAC-seq interrogates c/iromatin openness, or chromatin
accessibility, similar to earlier assays such as DNase-seq, MNase-seq, or FAIRE-seq
(Nordstrém et al., 2019; Sheffield & Furey, 2012). These assays identify DNA regions that
are accessible to external factors, which have been shown to correspond to regulatory
elements, including promoters, enhancers, and other types of elements (Klemm, Shipony, &
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Greenleaf, 2019; Palfy, Schulze, Valen, & Vastenhouw, 2020; Sheffield et al., 2013; Song et
al., 2011; Thurman et al., 2012). Activity of regulatory elements varies spatially, temporally,
and among cell types to influence the binding of transcription factors and the expression of
target genes (Sheffield et al., 2013; Song et al., 2011). Studying the activity of regulatory
elements promises to not only increase understanding of the fundamental biology of gene
regulation, but also its influence on human health and disease (Chan et al., 2018; Corces et
al., 2016; Corces, et al., 2018; Hatzi et al., 2019; Lara-Astiaso et al., 2014; Polak et al.,
2015; Spivakov & Fraser, 2016; Tewari et al., 2012; Wang et al., 2018).

ATAC-seq has been adopted rapidly in the scientific community, with the number of studies
using ATAC-seq approaching 10,000 in just a few years (Fig. 1A). The primary factor
driving this adoption is efficiency, as ATAC-seq has dramatically improved the efficiency in
cost, time, and required amount of sample over previous similar assays (Buenrostro, Giresi,
Zaba, Chang, & Greenleaf, 2013). ATAC-seq relies on the activity of a hyperactive Tn5
transposase (Buenrostro et al., 2013; Reznikoff, 2008). This transposase is leveraged,
through a process known as tagmentation (Adey et al., 2010), to simultaneously fragment
the genome while inserting sequencing adapters (Buenrostro et al., 2013). These sequences
can be PCR amplified and then sequenced using 2—4 orders of magnitude fewer cells, fewer
protocol steps, and less time than analogous assays (Fig. 1B; Buenrostro et al., 2013; Chang,
Gohain, Yen, & Chen, 2018). Protocols for ATAC-seq have improved since it was first
introduced in 2013 (Buenrostro et al., 2013; Buenrostro, Wu, Chang, & Greenleaf, 2015),
for example, with improved removal of contaminating mitochondrial DNA (Corces et al.,
2017; Montefiori et al., 2017) and extension to single cells (Buenrostro, Wu, & Litzenburger,
et al., 2015; Cusanovich et al., 2015; Cusanovich et al., 2018). As the protocol has
developed and increased in popularity, analytical approaches have also been multiplying
rapidly. Here, we provide guidance for both novice and experienced analysts on the
advantages and limitations of ATAC-seq analysis pipelines, methods, and tools.

FUNDAMENTALS OF ATAC-SEQ DATA ANALYSIS

A typical ATAC-seq analysis can be divided into two major components: (1) general
processing of raw sequencing reads, which produces intermediate outputs like annotated
peak calls; and (2) detailed downstream analysis, which is more specific to a particular
biological question (Fig. 2). In general, the first step is universal to all downstream analysis
types, whereas the second step then requires more specialized software.

Alignment, Adapters, and Mitochondrial Reads

Analysis of ATAC data typically starts by processing raw sequences through a series of
pipeline steps into outputs relevant to detailed biological questions (Fig. 2). A generalized
workflow includes the following: first, reads are screened for quality, then adapter sequences
are removed, and finally the reads are aligned to a reference assembly. After alignment,
many pipelines are equipped to handle high mitochondrial DNA content, because ATAC-seq
libraries are prone to high levels of mitochondrial DNA, which is typically considered
undesirable. While recent protocol adaptations have succeeded in reducing mitochondrial
DNA using optimized reagents (Corces et al., 2017; Rickner, Niu, & Cheng, 2019) or
molecular biology techniques (Montefiori et al., 2017), many pipelines address this
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computationally by filtering out mitochondrial sequences. These sequences are removed
through sequential alignments to mitochondrial DNA before genomic DNA, through
removal of mitochondrial DNA from genome-wide genomic indices, or through blacklists of
mitochondrial DNA after alignment. In our work, sequential alignment is the most accurate
and computationally efficient way to eliminate mitochondrial contaminants—and also allows
for later analysis of mitochondrial reads (Smith et al., 2020).

Removing Duplicates

Following adapter removal and alignment, pipelines remove read duplicates, although
typical computational strategies may be overzealous in this approach if using only single-
end sequencing data, since there is only a single end to compare. Single-end sequencing also
provides less information, as it reduces the ability to identify PCR duplicates, which are
typically removed. It also eliminates the ability to determine fragment lengths and whether
identified fragments are therefore subnucleosomal or nucleosomal, which are important
considerations if nucleosome positioning is of interest to the analyst. For these reasons, it is
recommended to use paired-end ATAC-seq data when possible. After alignment and
duplicate removal, low-quality, multi-mapping, or unmapped paired reads also typically get
removed from downstream analyses.

Generating Signal Tracks

Once reads are aligned and filtered, they are shifted to accommodate the mechanics of
transposase Tn5 activity (Adey et al., 2010; Buenrostro et al., 2013; Reznikoff, 2008). When
the Tnb transposase interacts with DNA, it effectively occupies about 9 bp of DNA and
introduces the sequencing adapter at the 5' end of the interaction site. The Tn5 adapters are
inserted in a staggered manner into the 5' ends of target sequence strands with a 9-bp gap
between them (Adey et al., 2010; Buenrostro et al., 2013; Reznikoff, 2008). This means that
the center of the Tn5 binding is actually 4 bp to the right of the edge on positive-strand
reads, or 5 bp to the left on negative-strand reads. This shifting is intended to identify the
center of the locus where Tn5 interaction occurred. An alternative approach is to account for
the 9-bp size of the transposase binding event by mapping the reads as 9-bp insertion events
instead of at nucleotide resolution. In either case, mapped reads are then transformed into
signal tracks for visualization and further data analysis.

Peak Calling

As the goal of ATAC-seq is the identification of regions of accessible chromatin, and, by
proxy, regulatory elements and sites of transcription factor binding, we must next identify
those regions of interest. To do this, we identify areas of the genome that are enriched for
aligned reads. These regions are identified and visualized as peaks. Calling peaks therefore
represents the identification of regions of concentrated ATAC-seq signal that indicate regions
of open chromatin. Peak calling necessitates choosing an appropriate peak-calling algorithm
or tool that balances sensitivity and specificity of called peaks. User-defined settings can
widely influence the number, width, and confidence of identified peaks (Bailey et al., 2013).
Following the identification of peaks, they are typically broadly annotated into genomic
partitions including known features such as promoters, exons, introns, or 3" and 5" UTR,
among others.
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Peak calling is typically the end of the general data processing pipeline that considers each
sample independently. With signal tracks and called peaks for each sample, analysts are
prepared for downstream analyses using more specialized analysis approaches that depend
on specific user-defined biological questions.

Downstream Analysis

For detailed downstream analysis, the data is generally integrated across samples. These
analyses include differential accessibility analysis, motif analysis, footprinting, and peak and
region enrichment analysis. Because these analyses are more specific to particular biological
questions, they are not typically performed by general-purpose ATAC-seq pipelines and
must be manually performed for each study. Therefore, only a subset of these analyses will
be relevant for a particular analysis, which should be determined before investing significant
effort in a particular tool. We describe these analysis types in more detail in the next section.

SURVEY OF TOOLS FOR ATAC-SEQ ANALYSIS

Here, we present a survey of tools divided into classes based on their primary goal. This
includes four classes geared toward general ATAC-seq data processing: step-by-step analysis
guides, raw sequence pipelines and workflows, quality control, and peak calling tools. The
remaining tools are for more detailed downstream analyses, which we divide into five
additional categories: differential accessibility, motif enrichment and foolprinting,
nucleosome positioning, region enrichment, and single-cell analysis. The advantages and
disadvantages of the tools vary widely, and some are targeted for novices while others
require an experienced analyst. Our survey provides an overview of each analysis type,

along with a table of some characteristics of relevant tools, such as mode of operation,
language, and update frequency, along with a link to more information.

Step-by-Step Analysis Guides

For users who would prefer following a manual, stepwise procedure, several tutorials are
available to walk a user through ATAC-seq data analysis (Table 1). These guides are a great
starting point for an inexperienced user, as they explain how each step is manipulating raw
data toward the goal of called peaks and further analyses. Users are required only to be able
to work at the command line and have experience installing prerequisites. Examples include
either formal classes available publicly (Steve Parker, Rockefeller University), training
guides from public platforms (Delisle, Doyle, & Heyl, 2020), or guides from individual
researchers sharing their own experiences (e.g., Yiwei Niu and John M. Gaspar). These step-
by-step guides are primarily educational tools and are not intended to be automatic, re-
usable pipelines that can be easily deployed on many samples across multiple projects; for
this application, users will be more interested in the reusable pipelines described next.

Raw Sequence Pipelines and Workflows

A more common need is a standardized pipeline to process raw data through fastq
processing, alignment, peak calling, and signal track generation (Fig. 2). A number of raw
data processing pipelines are available (Table 2). Many comprehensive pipelines now exist,
with different target audiences. Some pipelines are geared toward the bench biologist, with
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graphical user interfaces (GUIs), including both open-source (I-ATAC, GUAVA) and
commercial options (Basepair). While the GUI may simplify things for some users, these
tools tend to have less documentation and also give less power to the user. The majority of
raw data processing pipelines are executable at a command-line interface (CLI). Among
these pipelines, there is a wide range of possible pipeline end-points. Some pipelines are
geared toward doing only universal analysis, ending at annotated peaks to provide a starting
point for more detailed downstream analysis. Other pipelines include substantial cross-
sample analysis after peak calling. To delineate this distinction, we have categorized
pipelines into two groups: entry-point pipelines provide a series of outputs intended as the
beginning of a user-controlled downstream analysis, while end-point pipelines are intended
as a complete analysis, running integrated analysis internally.

Entry-point pipelines (AIAP, ENCODE, PEPATAC) are generally robust and reproducible,
yielding consistent processing of few to many samples. This goal necessarily excludes some
downstream steps—to improve efficiency and because not all researchers may wish to do all
analyses all the time. This is particularly important if those additional procedures are not
specific to the biological question being investigated. In that case, those additional
procedures come at the increased cost of time and computational resources. All three of the
entry-point pipelines include some level of shared and novel quality-control metrics to
identify quality libraries with minimal project-specific analyses included.

The majority of the pipelines are end-point oriented, with substantial downstream processing
following peak calling and signal track generation. The advantage of end-point pipelines is
that they require the least additional effort for a complete analysis. These pipelines typically
include the ability to incorporate sample structure (case versus control) for differential
analysis of accessible regions, transcription factor binding sites, or motifs. However, the cost
of this convenience is a lack of customizability, as the exact downstream analysis may or
may not match the requirements of a particular study, and the exact settings and assumptions
must be considered. Furthermore, the increased complexity of pipelines that include
numerous downstream analyses may waste analysis time and computational resources if that
analysis is irrelevant for the question under investigation.

rol

Raw data processing pipelines have nearly universally adopted several standard quality
control (QC) metrics. Briefly, these include QC of the raw and aligned sequence data, the
distribution of aligned sequence fragments to confirm the presence of nucleosomes,
measures of library complexity, the fraction of reads in peaks (FRiP), and the enrichment of
reads at transcription start sites (TSS). Quality-control tools are dedicated tools that provide
these and more advanced QC metrics (Table 3). Advanced metrics include the enrichment of
promoter signal relative to gene body, measures of the proportion of nucleosome-free reads,
and measures of signal to noise.

Comprehensive ATAC-seq pipelines typically employ one of just a few widely adopted peak
callers, which include tools originally developed for ChlP-seq or DNase-seq experiments,
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such as F-Seq (Boyle, Guinney, Crawford, & Furey, 2008), MACS (Zhang et al., 2008), or
PeaKDEck (McCarthy & O’Callaghan, 2014). There are also other options built specifically
for ATAC-seq data, including Genrich (Gaspar, 2018) and HMMRATAC (Tarbell & Liu,
2019; Table 4). The widely employed peak callers developed for ChIP-seq and DNase-seq
experiments offer the advantage of years of demonstrated utility, support, and understanding
of their strengths and weaknesses, but may neglect features of ATAC-seq data such as
nucleosome positioning and transposase biases. Because ATAC-seq seeks to identify regions
of open chromatin, the peak-calling step is critical, so there will likely continue to be effort
dedicated to improving peak-calling tools and leveraging ATAC-specific data features to
improve accuracy.

Differential Accessibility

ATAC-seq peaks correspond to regions of open chromatin, which have been shown to
identify regulatory regions. One of the most common analyses is to identify differentially
accessible regions. Analagous to identifying differential expression between two sample
types, differential accessibility can demonstrate how gene regulation is governed in different
biological settings. Typically, differential regions are identified by counting sequencing
reads in individual peaks and then using mainstream count-based statistical tests to assess
for statistical differences. Most analysis uses popular R packages for count-based data, such
as edgeR (McCarthy, Chen, & Smyth, 2012; Robinson, McCarthy, & Smyth, 2010), DESeq2
(Love, Huber, & Anders, 2014), or DiffBind (Stark & Brown, 2011). While designed for
other data types, e.g., RNA-seq, because ATAC-seq data is count-based, the statistical
assumptions are often transferable.

After identifying differentially accessible regions, we typically want to better understand
what factors are acting at these regions. A common follow-up is to identify which
transcription factors are also differentially active between scenarios (Table 5). To accomplish
this, there are at least two tools optimized to work with ATAC-seq data to identify
differential transcription factor activity. By incorporating chromatin accessibility
information and reported transcription factor binding sites, it becomes possible to identify
differential TF activity (DAStk, Tripodi, Allen, & Dowell, 2018; diffTF, Berest et al., 2019).
Should an experiment also include corresponding gene expression information, it is possible
to then classify differential transcription factors as activators or repressors (Berest et al.,
2019).

Motif Enrichment and TF Footprinting

Another common analysis of differentially accessible regions is de novo motif analysis,
which entails looking for an overrepresentation of transcription factor motifs in regions of
interest relative to some background set. Motif discovery is typically used in analysis of
ChlP-seq data, but is also relevant for accessible chromatin peaks with some specificity, such
as for a particular cell type or treatment. Motif discovery has been an ongoing field of study
for decades, and there are many tools to identify enriched motifs (Bailey et al., 2009; Berest
et al., 2019; Galas & Schmitz, 1978; Heinz et al., 2010; Tripodi et al., 2018). Tools initially
designed for ChlIP-seq or DNase-seq experiments have been widely applied to ATAC-seq
data as well (MEME Suite, Bailey et al., 2009; HOMER, Heinz et al., 2010). There are now
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dozens or hundreds of individual motif-finding tools (Hashim, Mabrouk, & Al-Atabany,
2019).

A related approach called footorinting explores the microarchitecture of reads within peaks
to identify physical evidence of bound transcription factors that decrease the accessibility at
small binding sites (typically under 20 bp) within an overall area of higher accessibility
(Table 6; Vierstra & Stamatoyannopoulos, 2016). Following the introduction and rapid
adoption of DNase-seq, the number of tools to perform TF footprinting rapidly expanded. A
number of these were designed for DNase-seq, but have often been employed using ATAC-
seq data successfully (CENTIPEDE, Pique-Regi et al., 2011; PIQ, Sherwood et al., 2014;
DNase2TF, Sung, Guertin, Baek, & Hager, 2014; BinDNase, K&hard & Lahdesmaki, 2015;
Wellington, Piper et al., 2013; Piper, Elze, et al., 2013; TRACE, Ouyang & Boyle, 2019).
One advantage of using tools designed for DNase-seq simply lies in their demonstrated
utility, even when applied to ATAC-seq data. Yet, there are unique features of ATAC-seq
data including nucleosome positioning information and transposase cleavage biases that can
be used to inform on TF footprinting. Research has shown that biases and transcription
factor dynamics must be carefully considered when interpreting results of footprinting
analysis, whether from DNase-seq or ATAC-seq assays (Calviello et al., 2019; Martins,
Walavalkar, Anderson, Zang, & Guertin, 2017; Sung, Baek, & Hager, 2016). Newer tools
either have specific settings to work with ATAC-seq data, or were designed specifically for
ATAC-seq and may be more appropriate going forward (DeFCoM, Quach & Furey, 2017,
TOBIAS, Bentsen et al., 2019; HINT-ATAC, Li, Schulz, et al., 2019; BIiFET, Youn,
Marquez, Lawlor, Stitzel, & Ucar, 2019).

Nucleosome Positioning

Nucleosome positioning is crucial in a number of DNA regulatory processes, particularly
gene expression, and may be directly interrogated using ATAC-seq data (Radman-Livaja &
Rando, 2010; Schep et al., 2015; Struhl & Segal, 2013). ATAC-seq is designed to assay
regions of open chromatin—in other words, to identify regions not currently packaged into
nucleosomes. As a consequence of this, sequenced fragment lengths and alignments occur in
structured patterns that inform on the presence and positioning of nucleosomes (Table 7).
Essentially, short ATAC-seq fragments represent nucleosome-free regions, and longer
fragments represent nucleosome-associated DNA (Buenrostro et al., 2013). The earliest tool,
NucleoATAC (Schep et al., 2015) reports the position and occupancy of nucleosomes.
Building on the fact that this information is inherent in ATAC-seq data, later tools have
extended the biological information that can be obtained from a more thorough
understanding of nucleosome positioning. The use of nucleosome positioning information
may now be easily compared between sample conditions, which ultimately allows for
concurrent identification of transcription factor binding sites alongside additional epigenetic
marks (NucTools, Vainshtein, Rippe, & Teif, 2017). Furthermore, this information may be
leveraged to improve peak calling by incorporating nucleosome positioning and enrichment
to more accurately predict true positive open chromatin (HMMRATAC, Tarbell & Liu,
2019).
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Region Enrichment

Single-Cell

A widely successful analysis type for gene expression data is gene ontology analysis or gene
set enrichment analysis, which can be extended to region-based enrichments. In this context,
instead of genes as the units of interest, the analysis is done on non-coding regions
corresponding to regulatory elements. As chromatin accessibility has increased, so has
interest in assigning biological meaning to non-coding loci. Region-set enrichment analyses
are one approach to this problem. Generally, these tools compare a set of regions of interest
(i.e., called peaks) to regions with known biological function. The tools then assess
similarity to determine whether there are significant enrichments of overlap between the
region sets. This approach can function by identifying significantly enriched GO terms
(GREAT, McLean et al., 2010) and/or by comparing any previously annotated region set
with your unknown peak set (regioneR, Gel et al., 2016; LOLA, Sheffield & Bock, 2016;
annotatr, Cavalcante & Sartor, 2017; GIGGLE, Layer et al., 2018). Therefore, to assign more
meaningful biological relationships to annotated ATAC-seq peaks, one can investigate what
specific biological features are correlated or enriched in your peak set (Table 8). These tools
and other related tools have been reviewed elsewhere in detail (Dozmorov, 2017; Simovski
etal., 2018).

Although single-cell ATAC-seq (scATAC-seq) is only a few years old (Buenrostro, Wu, &
Litzenburger et al., 2015; Cusanovich et al., 2015), the number of available analysis tools
has proliferated rapidly (Table 9). A primary challenge to any single-cell sequencing assay is
the sparsity of data. For that reason, modifications to general ATAC-seq data processing are
necessary. Tools specific to single-cell ATAC-seq analysis include both raw processing
pipelines (Cell Ranger ATAC; BROCKMAN, de Boer & Regev, 2018; Scasat, Baker et al.,
2019; SnapATAC, Fang et al., 2019; scATAC-pro, Yu, Uzun, Zhu, Chen, & Tan, 2019) and
downstream analysis tools, particularly for clustering individual cells into separate cell-type
populations (BAP, Lareau et al., 2019; scABC, Zamanighomi et al., 2018; SCALE, Xiong et
al., 2019) and identifying transcription factor accessibility (SCRAT, Ji, Zhou, & Ji, 2017,
chromVVAR, Schep, Wu, Buenrostro, & Greenleaf, 2017; Cicero, Pliner et al., 2018;
cisTopic, Bravo Gonzélez-Blas et al., 2019; scOpen, Li & Kuppe, et al., 2019). Single-cell
ATAC-seq analysis is a rapidly changing area, with many of these tools published only
within the past year.

CONCLUSION

Chromatin accessibility analysis is becoming increasingly relevant for a range of biological
research areas. As scientists realize the richness of chromatin accessibility data, new
analytical approaches and tools are being developed. At the same time, chromatin
accessibility analysis is now approachable by individuals with a wider range of perspective
and experience. This has led to a wide increase in biological results, tools, and analytical
approaches.

In our survey of ATAC-seq analysis tools, we identified more than 50 tools employed
specifically for ATAC-seq data analysis. In assessing this diverse range of tools, we have
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found it useful to categorize them by primary aim. Because the diversity and number of
available tools and approaches is likely only to increase as ATAC-seq analysis becomes
mainstream, we believe it will be important to continue to revisit such tool surveys as the
field develops. To address this, we maintain an expanding list of ATAC-seq tools at https://
github.com/databio/awesome-atac-analysis. These summaries provide novices with a basic
understanding and starting point, and also give experienced analysts a reference resource to
provide ideas for more detailed analysis.
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ATAC-seq general workflow. Raw reads are processed through a series of steps to produce
uniform intermediate results, which can then be further analyzed with more specific analyses

relevant to a biological research question.
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