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Abstract

ATAC-seq, the assay for transposase-accessible chromatin using sequencing, is a quick and 

efficient approach to investigating the chromatin accessibility landscape. Investigating chromatin 

accessibility has broad utility for answering many biological questions, such as mapping 

nucleosomes, identifying transcription factor binding sites, and measuring differential activity of 

DNA regulatory elements. Because the ATAC-seq protocol is both simple and relatively 

inexpensive, there has been a rapid increase in the availability of chromatin accessibility data. 

Furthermore, advances in ATAC-seq protocols are rapidly extending its breadth to additional 

experimental conditions, cell types, and species. Accompanying the increase in data, there has also 

been an explosion of new tools and analytical approaches for analyzing it. Here, we explain the 

fundamentals of ATAC-seq data processing, summarize common analysis approaches, and review 

computational tools to provide recommendations for different research questions. This primer 

provides a starting point and a reference for analysis of ATAC-seq data.
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INTRODUCTION

As our understanding of gene regulation has improved, so has our awareness of the 

increasingly complex chromatin landscape that governs that regulation. Assays to better 

evaluate this landscape have been rapidly developed and improved, and the Assay for 

Transpose Accessible Chromatin using sequencing (ATAC-seq) has become a common first 

step for studying gene regulation. ATAC-seq interrogates chromatin openness, or chromatin 
accessibility, similar to earlier assays such as DNase-seq, MNase-seq, or FAIRE-seq 

(Nordström et al., 2019; Sheffield & Furey, 2012). These assays identify DNA regions that 

are accessible to external factors, which have been shown to correspond to regulatory 

elements, including promoters, enhancers, and other types of elements (Klemm, Shipony, & 
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Greenleaf, 2019; Pálfy, Schulze, Valen, & Vastenhouw, 2020; Sheffield et al., 2013; Song et 

al., 2011; Thurman et al., 2012). Activity of regulatory elements varies spatially, temporally, 

and among cell types to influence the binding of transcription factors and the expression of 

target genes (Sheffield et al., 2013; Song et al., 2011). Studying the activity of regulatory 

elements promises to not only increase understanding of the fundamental biology of gene 

regulation, but also its influence on human health and disease (Chan et al., 2018; Corces et 

al., 2016; Corces, et al., 2018; Hatzi et al., 2019; Lara-Astiaso et al., 2014; Polak et al., 

2015; Spivakov & Fraser, 2016; Tewari et al., 2012; Wang et al., 2018).

ATAC-seq has been adopted rapidly in the scientific community, with the number of studies 

using ATAC-seq approaching 10,000 in just a few years (Fig. 1A). The primary factor 

driving this adoption is efficiency, as ATAC-seq has dramatically improved the efficiency in 

cost, time, and required amount of sample over previous similar assays (Buenrostro, Giresi, 

Zaba, Chang, & Greenleaf, 2013). ATAC-seq relies on the activity of a hyperactive Tn5 

transposase (Buenrostro et al., 2013; Reznikoff, 2008). This transposase is leveraged, 

through a process known as tagmentation (Adey et al., 2010), to simultaneously fragment 

the genome while inserting sequencing adapters (Buenrostro et al., 2013). These sequences 

can be PCR amplified and then sequenced using 2–4 orders of magnitude fewer cells, fewer 

protocol steps, and less time than analogous assays (Fig. 1B; Buenrostro et al., 2013; Chang, 

Gohain, Yen, & Chen, 2018). Protocols for ATAC-seq have improved since it was first 

introduced in 2013 (Buenrostro et al., 2013; Buenrostro, Wu, Chang, & Greenleaf, 2015), 

for example, with improved removal of contaminating mitochondrial DNA (Corces et al., 

2017; Montefiori et al., 2017) and extension to single cells (Buenrostro, Wu, & Litzenburger, 

et al., 2015; Cusanovich et al., 2015; Cusanovich et al., 2018). As the protocol has 

developed and increased in popularity, analytical approaches have also been multiplying 

rapidly. Here, we provide guidance for both novice and experienced analysts on the 

advantages and limitations of ATAC-seq analysis pipelines, methods, and tools.

FUNDAMENTALS OF ATAC-SEQ DATA ANALYSIS

A typical ATAC-seq analysis can be divided into two major components: (1) general 

processing of raw sequencing reads, which produces intermediate outputs like annotated 

peak calls; and (2) detailed downstream analysis, which is more specific to a particular 

biological question (Fig. 2). In general, the first step is universal to all downstream analysis 

types, whereas the second step then requires more specialized software.

Alignment, Adapters, and Mitochondrial Reads

Analysis of ATAC data typically starts by processing raw sequences through a series of 

pipeline steps into outputs relevant to detailed biological questions (Fig. 2). A generalized 

workflow includes the following: first, reads are screened for quality, then adapter sequences 

are removed, and finally the reads are aligned to a reference assembly. After alignment, 

many pipelines are equipped to handle high mitochondrial DNA content, because ATAC-seq 

libraries are prone to high levels of mitochondrial DNA, which is typically considered 

undesirable. While recent protocol adaptations have succeeded in reducing mitochondrial 

DNA using optimized reagents (Corces et al., 2017; Rickner, Niu, & Cheng, 2019) or 

molecular biology techniques (Montefiori et al., 2017), many pipelines address this 
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computationally by filtering out mitochondrial sequences. These sequences are removed 

through sequential alignments to mitochondrial DNA before genomic DNA, through 

removal of mitochondrial DNA from genome-wide genomic indices, or through blacklists of 

mitochondrial DNA after alignment. In our work, sequential alignment is the most accurate 

and computationally efficient way to eliminate mitochondrial contaminants–and also allows 

for later analysis of mitochondrial reads (Smith et al., 2020).

Removing Duplicates

Following adapter removal and alignment, pipelines remove read duplicates, although 

typical computational strategies may be overzealous in this approach if using only single-

end sequencing data, since there is only a single end to compare. Single-end sequencing also 

provides less information, as it reduces the ability to identify PCR duplicates, which are 

typically removed. It also eliminates the ability to determine fragment lengths and whether 

identified fragments are therefore subnucleosomal or nucleosomal, which are important 

considerations if nucleosome positioning is of interest to the analyst. For these reasons, it is 

recommended to use paired-end ATAC-seq data when possible. After alignment and 

duplicate removal, low-quality, multi-mapping, or unmapped paired reads also typically get 

removed from downstream analyses.

Generating Signal Tracks

Once reads are aligned and filtered, they are shifted to accommodate the mechanics of 

transposase Tn5 activity (Adey et al., 2010; Buenrostro et al., 2013; Reznikoff, 2008). When 

the Tn5 transposase interacts with DNA, it effectively occupies about 9 bp of DNA and 

introduces the sequencing adapter at the 5' end of the interaction site. The Tn5 adapters are 

inserted in a staggered manner into the 5' ends of target sequence strands with a 9-bp gap 

between them (Adey et al., 2010; Buenrostro et al., 2013; Reznikoff, 2008). This means that 

the center of the Tn5 binding is actually 4 bp to the right of the edge on positive-strand 

reads, or 5 bp to the left on negative-strand reads. This shifting is intended to identify the 

center of the locus where Tn5 interaction occurred. An alternative approach is to account for 

the 9-bp size of the transposase binding event by mapping the reads as 9-bp insertion events 

instead of at nucleotide resolution. In either case, mapped reads are then transformed into 

signal tracks for visualization and further data analysis.

Peak Calling

As the goal of ATAC-seq is the identification of regions of accessible chromatin, and, by 

proxy, regulatory elements and sites of transcription factor binding, we must next identify 

those regions of interest. To do this, we identify areas of the genome that are enriched for 

aligned reads. These regions are identified and visualized as peaks. Calling peaks therefore 

represents the identification of regions of concentrated ATAC-seq signal that indicate regions 

of open chromatin. Peak calling necessitates choosing an appropriate peak-calling algorithm 

or tool that balances sensitivity and specificity of called peaks. User-defined settings can 

widely influence the number, width, and confidence of identified peaks (Bailey et al., 2013). 

Following the identification of peaks, they are typically broadly annotated into genomic 

partitions including known features such as promoters, exons, introns, or 3′ and 5′ UTR, 

among others.
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Peak calling is typically the end of the general data processing pipeline that considers each 

sample independently. With signal tracks and called peaks for each sample, analysts are 

prepared for downstream analyses using more specialized analysis approaches that depend 

on specific user-defined biological questions.

Downstream Analysis

For detailed downstream analysis, the data is generally integrated across samples. These 

analyses include differential accessibility analysis, motif analysis, footprinting, and peak and 

region enrichment analysis. Because these analyses are more specific to particular biological 

questions, they are not typically performed by general-purpose ATAC-seq pipelines and 

must be manually performed for each study. Therefore, only a subset of these analyses will 

be relevant for a particular analysis, which should be determined before investing significant 

effort in a particular tool. We describe these analysis types in more detail in the next section.

SURVEY OF TOOLS FOR ATAC-SEQ ANALYSIS

Here, we present a survey of tools divided into classes based on their primary goal. This 

includes four classes geared toward general ATAC-seq data processing: step-by-step analysis 
guides, raw sequence pipelines and workflows, quality control, and peak calling tools. The 

remaining tools are for more detailed downstream analyses, which we divide into five 

additional categories: differential accessibility, motif enrichment and footprinting, 
nucleosome positioning, region enrichment, and single-cell analysis. The advantages and 

disadvantages of the tools vary widely, and some are targeted for novices while others 

require an experienced analyst. Our survey provides an overview of each analysis type, 

along with a table of some characteristics of relevant tools, such as mode of operation, 

language, and update frequency, along with a link to more information.

Step-by-Step Analysis Guides

For users who would prefer following a manual, stepwise procedure, several tutorials are 

available to walk a user through ATAC-seq data analysis (Table 1). These guides are a great 

starting point for an inexperienced user, as they explain how each step is manipulating raw 

data toward the goal of called peaks and further analyses. Users are required only to be able 

to work at the command line and have experience installing prerequisites. Examples include 

either formal classes available publicly (Steve Parker, Rockefeller University), training 

guides from public platforms (Delisle, Doyle, & Heyl, 2020), or guides from individual 

researchers sharing their own experiences (e.g., Yiwei Niu and John M. Gaspar). These step-

by-step guides are primarily educational tools and are not intended to be automatic, re-

usable pipelines that can be easily deployed on many samples across multiple projects; for 

this application, users will be more interested in the reusable pipelines described next.

Raw Sequence Pipelines and Workflows

A more common need is a standardized pipeline to process raw data through fastq 

processing, alignment, peak calling, and signal track generation (Fig. 2). A number of raw 

data processing pipelines are available (Table 2). Many comprehensive pipelines now exist, 

with different target audiences. Some pipelines are geared toward the bench biologist, with 
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graphical user interfaces (GUIs), including both open-source (I-ATAC, GUAVA) and 

commercial options (Basepair). While the GUI may simplify things for some users, these 

tools tend to have less documentation and also give less power to the user. The majority of 

raw data processing pipelines are executable at a command-line interface (CLI). Among 

these pipelines, there is a wide range of possible pipeline end-points. Some pipelines are 

geared toward doing only universal analysis, ending at annotated peaks to provide a starting 

point for more detailed downstream analysis. Other pipelines include substantial cross-

sample analysis after peak calling. To delineate this distinction, we have categorized 

pipelines into two groups: entry-point pipelines provide a series of outputs intended as the 

beginning of a user-controlled downstream analysis, while end-point pipelines are intended 

as a complete analysis, running integrated analysis internally.

Entry-point pipelines (AIAP, ENCODE, PEPATAC) are generally robust and reproducible, 

yielding consistent processing of few to many samples. This goal necessarily excludes some 

downstream steps–to improve efficiency and because not all researchers may wish to do all 

analyses all the time. This is particularly important if those additional procedures are not 

specific to the biological question being investigated. In that case, those additional 

procedures come at the increased cost of time and computational resources. All three of the 

entry-point pipelines include some level of shared and novel quality-control metrics to 

identify quality libraries with minimal project-specific analyses included.

The majority of the pipelines are end-point oriented, with substantial downstream processing 

following peak calling and signal track generation. The advantage of end-point pipelines is 

that they require the least additional effort for a complete analysis. These pipelines typically 

include the ability to incorporate sample structure (case versus control) for differential 

analysis of accessible regions, transcription factor binding sites, or motifs. However, the cost 

of this convenience is a lack of customizability, as the exact downstream analysis may or 

may not match the requirements of a particular study, and the exact settings and assumptions 

must be considered. Furthermore, the increased complexity of pipelines that include 

numerous downstream analyses may waste analysis time and computational resources if that 

analysis is irrelevant for the question under investigation.

Quality Control

Raw data processing pipelines have nearly universally adopted several standard quality 

control (QC) metrics. Briefly, these include QC of the raw and aligned sequence data, the 

distribution of aligned sequence fragments to confirm the presence of nucleosomes, 

measures of library complexity, the fraction of reads in peaks (FRiP), and the enrichment of 

reads at transcription start sites (TSS). Quality-control tools are dedicated tools that provide 

these and more advanced QC metrics (Table 3). Advanced metrics include the enrichment of 

promoter signal relative to gene body, measures of the proportion of nucleosome-free reads, 

and measures of signal to noise.

Peak Calling

Comprehensive ATAC-seq pipelines typically employ one of just a few widely adopted peak 

callers, which include tools originally developed for ChIP-seq or DNase-seq experiments, 
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such as F-Seq (Boyle, Guinney, Crawford, & Furey, 2008), MACS (Zhang et al., 2008), or 

PeaKDEck (McCarthy & O’Callaghan, 2014). There are also other options built specifically 

for ATAC-seq data, including Genrich (Gaspar, 2018) and HMMRATAC (Tarbell & Liu, 

2019; Table 4). The widely employed peak callers developed for ChIP-seq and DNase-seq 

experiments offer the advantage of years of demonstrated utility, support, and understanding 

of their strengths and weaknesses, but may neglect features of ATAC-seq data such as 

nucleosome positioning and transposase biases. Because ATAC-seq seeks to identify regions 

of open chromatin, the peak-calling step is critical, so there will likely continue to be effort 

dedicated to improving peak-calling tools and leveraging ATAC-specific data features to 

improve accuracy.

Differential Accessibility

ATAC-seq peaks correspond to regions of open chromatin, which have been shown to 

identify regulatory regions. One of the most common analyses is to identify differentially 

accessible regions. Analagous to identifying differential expression between two sample 

types, differential accessibility can demonstrate how gene regulation is governed in different 

biological settings. Typically, differential regions are identified by counting sequencing 

reads in individual peaks and then using mainstream count-based statistical tests to assess 

for statistical differences. Most analysis uses popular R packages for count-based data, such 

as edgeR (McCarthy, Chen, & Smyth, 2012; Robinson, McCarthy, & Smyth, 2010), DESeq2 

(Love, Huber, & Anders, 2014), or DiffBind (Stark & Brown, 2011). While designed for 

other data types, e.g., RNA-seq, because ATAC-seq data is count-based, the statistical 

assumptions are often transferable.

After identifying differentially accessible regions, we typically want to better understand 

what factors are acting at these regions. A common follow-up is to identify which 

transcription factors are also differentially active between scenarios (Table 5). To accomplish 

this, there are at least two tools optimized to work with ATAC-seq data to identify 

differential transcription factor activity. By incorporating chromatin accessibility 

information and reported transcription factor binding sites, it becomes possible to identify 

differential TF activity (DAStk, Tripodi, Allen, & Dowell, 2018; diffTF, Berest et al., 2019). 

Should an experiment also include corresponding gene expression information, it is possible 

to then classify differential transcription factors as activators or repressors (Berest et al., 

2019).

Motif Enrichment and TF Footprinting

Another common analysis of differentially accessible regions is de novo motif analysis, 

which entails looking for an overrepresentation of transcription factor motifs in regions of 

interest relative to some background set. Motif discovery is typically used in analysis of 

ChIP-seq data, but is also relevant for accessible chromatin peaks with some specificity, such 

as for a particular cell type or treatment. Motif discovery has been an ongoing field of study 

for decades, and there are many tools to identify enriched motifs (Bailey et al., 2009; Berest 

et al., 2019; Galas & Schmitz, 1978; Heinz et al., 2010; Tripodi et al., 2018). Tools initially 

designed for ChIP-seq or DNase-seq experiments have been widely applied to ATAC-seq 

data as well (MEME Suite, Bailey et al., 2009; HOMER, Heinz et al., 2010). There are now 
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dozens or hundreds of individual motif-finding tools (Hashim, Mabrouk, & Al-Atabany, 

2019).

A related approach called footprinting explores the microarchitecture of reads within peaks 

to identify physical evidence of bound transcription factors that decrease the accessibility at 

small binding sites (typically under 20 bp) within an overall area of higher accessibility 

(Table 6; Vierstra & Stamatoyannopoulos, 2016). Following the introduction and rapid 

adoption of DNase-seq, the number of tools to perform TF footprinting rapidly expanded. A 

number of these were designed for DNase-seq, but have often been employed using ATAC-

seq data successfully (CENTIPEDE, Pique-Regi et al., 2011; PIQ, Sherwood et al., 2014; 

DNase2TF, Sung, Guertin, Baek, & Hager, 2014; BinDNase, Kähärä & Lähdesmäki, 2015; 

Wellington, Piper et al., 2013; Piper, Elze, et al., 2013; TRACE, Ouyang & Boyle, 2019). 

One advantage of using tools designed for DNase-seq simply lies in their demonstrated 

utility, even when applied to ATAC-seq data. Yet, there are unique features of ATAC-seq 

data including nucleosome positioning information and transposase cleavage biases that can 

be used to inform on TF footprinting. Research has shown that biases and transcription 

factor dynamics must be carefully considered when interpreting results of footprinting 

analysis, whether from DNase-seq or ATAC-seq assays (Calviello et al., 2019; Martins, 

Walavalkar, Anderson, Zang, & Guertin, 2017; Sung, Baek, & Hager, 2016). Newer tools 

either have specific settings to work with ATAC-seq data, or were designed specifically for 

ATAC-seq and may be more appropriate going forward (DeFCoM, Quach & Furey, 2017; 

TOBIAS, Bentsen et al., 2019; HINT-ATAC, Li, Schulz, et al., 2019; BiFET, Youn, 

Marquez, Lawlor, Stitzel, & Ucar, 2019).

Nucleosome Positioning

Nucleosome positioning is crucial in a number of DNA regulatory processes, particularly 

gene expression, and may be directly interrogated using ATAC-seq data (Radman-Livaja & 

Rando, 2010; Schep et al., 2015; Struhl & Segal, 2013). ATAC-seq is designed to assay 

regions of open chromatin–in other words, to identify regions not currently packaged into 
nucleosomes. As a consequence of this, sequenced fragment lengths and alignments occur in 

structured patterns that inform on the presence and positioning of nucleosomes (Table 7). 

Essentially, short ATAC-seq fragments represent nucleosome-free regions, and longer 

fragments represent nucleosome-associated DNA (Buenrostro et al., 2013). The earliest tool, 

NucleoATAC (Schep et al., 2015) reports the position and occupancy of nucleosomes. 

Building on the fact that this information is inherent in ATAC-seq data, later tools have 

extended the biological information that can be obtained from a more thorough 

understanding of nucleosome positioning. The use of nucleosome positioning information 

may now be easily compared between sample conditions, which ultimately allows for 

concurrent identification of transcription factor binding sites alongside additional epigenetic 

marks (NucTools, Vainshtein, Rippe, & Teif, 2017). Furthermore, this information may be 

leveraged to improve peak calling by incorporating nucleosome positioning and enrichment 

to more accurately predict true positive open chromatin (HMMRATAC, Tarbell & Liu, 

2019).
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Region Enrichment

A widely successful analysis type for gene expression data is gene ontology analysis or gene 

set enrichment analysis, which can be extended to region-based enrichments. In this context, 

instead of genes as the units of interest, the analysis is done on non-coding regions 

corresponding to regulatory elements. As chromatin accessibility has increased, so has 

interest in assigning biological meaning to non-coding loci. Region-set enrichment analyses 

are one approach to this problem. Generally, these tools compare a set of regions of interest 

(i.e., called peaks) to regions with known biological function. The tools then assess 

similarity to determine whether there are significant enrichments of overlap between the 

region sets. This approach can function by identifying significantly enriched GO terms 

(GREAT, McLean et al., 2010) and/or by comparing any previously annotated region set 

with your unknown peak set (regioneR, Gel et al., 2016; LOLA, Sheffield & Bock, 2016; 

annotatr, Cavalcante & Sartor, 2017; GIGGLE, Layer et al., 2018). Therefore, to assign more 

meaningful biological relationships to annotated ATAC-seq peaks, one can investigate what 

specific biological features are correlated or enriched in your peak set (Table 8). These tools 

and other related tools have been reviewed elsewhere in detail (Dozmorov, 2017; Simovski 

et al., 2018).

Single-Cell

Although single-cell ATAC-seq (scATAC-seq) is only a few years old (Buenrostro, Wu, & 

Litzenburger et al., 2015; Cusanovich et al., 2015), the number of available analysis tools 

has proliferated rapidly (Table 9). A primary challenge to any single-cell sequencing assay is 

the sparsity of data. For that reason, modifications to general ATAC-seq data processing are 

necessary. Tools specific to single-cell ATAC-seq analysis include both raw processing 

pipelines (Cell Ranger ATAC; BROCKMAN, de Boer & Regev, 2018; Scasat, Baker et al., 

2019; SnapATAC, Fang et al., 2019; scATAC-pro, Yu, Uzun, Zhu, Chen, & Tan, 2019) and 

downstream analysis tools, particularly for clustering individual cells into separate cell-type 

populations (BAP, Lareau et al., 2019; scABC, Zamanighomi et al., 2018; SCALE, Xiong et 

al., 2019) and identifying transcription factor accessibility (SCRAT, Ji, Zhou, & Ji, 2017; 

chromVAR, Schep, Wu, Buenrostro, & Greenleaf, 2017; Cicero, Pliner et al., 2018; 

cisTopic, Bravo González-Blas et al., 2019; scOpen, Li & Kuppe, et al., 2019). Single-cell 

ATAC-seq analysis is a rapidly changing area, with many of these tools published only 

within the past year.

CONCLUSION

Chromatin accessibility analysis is becoming increasingly relevant for a range of biological 

research areas. As scientists realize the richness of chromatin accessibility data, new 

analytical approaches and tools are being developed. At the same time, chromatin 

accessibility analysis is now approachable by individuals with a wider range of perspective 

and experience. This has led to a wide increase in biological results, tools, and analytical 

approaches.

In our survey of ATAC-seq analysis tools, we identified more than 50 tools employed 

specifically for ATAC-seq data analysis. In assessing this diverse range of tools, we have 
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found it useful to categorize them by primary aim. Because the diversity and number of 

available tools and approaches is likely only to increase as ATAC-seq analysis becomes 

mainstream, we believe it will be important to continue to revisit such tool surveys as the 

field develops. To address this, we maintain an expanding list of ATAC-seq tools at https://

github.com/databio/awesome-atac-analysis. These summaries provide novices with a basic 

understanding and starting point, and also give experienced analysts a reference resource to 

provide ideas for more detailed analysis.
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Figure 1. 
(A) Increasing prevalence of ‘ATAC-seq’ DataSets in the Gene Expression Omnibus (GEO). 

Color = species; gray line = fitted exponential growth model. (B) Generalized ATAC-seq 

library preparation protocol.
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Figure 2. 
ATAC-seq general workflow. Raw reads are processed through a series of steps to produce 

uniform intermediate results, which can then be further analyzed with more specific analyses 

relevant to a biological research question.
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