Skip to main content
. Author manuscript; available in PMC: 2021 Jun 10.
Published in final edited form as: Curr Protoc Hum Genet. 2020 Jun;106(1):e101. doi: 10.1002/cphg.101

Table 6.

Motif Enrichment and Transcription Factor Footprinting Tools

Languages Notes Docs Citation
BiFET R Identify overrepresented transcription factor footprints. ++ Youn et al. (2019)
Last updated: 2019
BinDNase R Transcription factor binding prediction using DNase-seq. + Kähärä & Lähdesmäki (2015)
Last updated: 2015
CENTIPEDE R Transcription factor footprinting and binding site prediction. ++ Pique-Regi et al. (2011)
Last updated: 2010
DeFCoM Python Detecting transcription factor footprints and underlying motifs using supervised learning. +++ Quach & Furey (2017)
Last updated: 2017
DNase2TF R Identify footprint candidates from DNase-seq data on user-specified regions. + Sung et al. (2014)
Last updated: 2017
HINT-ATAC Python Use open chromatin data to identify transcription factor footprints with modifications specific to ATAC-seq data. +++ Li et al. (2019)
Last updated: 2019
HOMER Perl; C++ A suite of tools for motif discovery and enrichment. +++ Heinz et al. (2010)
Last updated: 2019
MEME Suite Perl; Python Suite of tools for motif discovery; enrichment; and GO term analyses. +++ Bailey et al. (2009)
Last updated: 2020
PIQ Bash; R Models genome-wide DNase profiles to identify transcription factor binding sites. ++ Sherwood et al. (2014)
Last updated: 2016
TOBIAS Python Identify transcription factor footprints. ++ Bentsen et al. (2019)
Last updated: 2020
TRACE Python Transcription factor footprinting. ++ Ouyang & Boyle (2019)
Last updated: 2020
Wellington Python Identify TF footprints using DNase-seq data. +++ Piper et al. (2013)
Last updated: 2019