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Abstract

Purpose: Blepharoptosis is a known cause of reversible vision loss. Accurate assessment can be 

difficult, especially amongst non-specialists. Existing automated techniques disrupt clinical 

workflow by requiring user input, or placement of reference markers. Neural networks are known 

to be effective in image classification tasks. We aim to develop an algorithm that can accurately 

identify blepharoptosis from a clinical photo.

Methods: A total of 500 clinical photographs from patients with and without blepharoptosis were 

sourced from a tertiary ophthalmic center in Taiwan. Images were labeled by two oeuloplastie 

surgeons, with an independent third oeuloplastie surgeon to adjudicate disagreements. These 

images were used to train a series of convolutional neural networks (CNNs) to ascertain the best 

CNN architecture for this particular task.
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Results: Of the models that trained on the dataset, most were able to identify ptosis images with 

reasonable accuracy. We found the best performing model to use the DenseNet121 architecture 

without pre-training which achieved a sensitivity of 90.1 % with a specificity of 82.4 %, compared 

to the worst performing model which was used a Resnet34 architecture with pre-training, 

achieving a sensitivity of 74.1 %, and specificity of 63.6 %. Models with and without pre-training 

performed similarly (mean accuracy 82.6 % vs. 85.8 % respectively, p = 0.06), though models 

with pre-training took less time to train (1-minute vs. 16 min, p < 0.01).

Conclusions: We report the use of AI to accurately diagnose blepharoptosis from a clinical 

photograph with no external reference markers or user input requirement. Most current-generation 

CNN architectures performed reasonably on this task, with the DenseNet121, and Resnet18 

architectures without pre-training performing best in our dataset.
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1. Introduction

Blepharoptosis, commonly referred to as ptosis, is the inferior displacement or drooping of 

the upper eyelid. In addition to its cosmetic implications, it is a known cause of reversible 

vision loss in adults [1] and amblyopia in children. Ptosis can also be a subtle clinical sign of 

genetic, neurologic, myogenic, or systemic disease. Therefore, it is important for primary 

care physicians and non-specialist healthcare workers to accurately diagnose ptosis for a 

proper referral to an ophthalmologist. Ptosis is diagnosed by using a ruler and light source to 

measure important landmarks such as the distance between the pupillary light reflex and the 

upper lid margin (margin reflex distance 1, or MRD1), together with clinical photographs. 

Commercial devices are also available which can make these measurements with varying 

degrees of accuracy [2]. While the reliability of these measurements is excellent amongst 

experienced experts, there is a learning curve [3,4]. Accurate diagnosis is particularly 

challenging for non-specialist healthcare workers who are referring patients and insurance 

company reviewers who often base authorization on MRD1 measurements [5]. This can lead 

to missed diagnoses, difficulties triaging referrals to a tertiary oculoplastic clinic, as well as 

challenges with insurance denials.

Recently, there has been a surge of interest in computer-based image recognition tasks due to 

advances in the field of deep learning, a subset of machine learning where multiple layers of 

a neural network aim to generate predictions from input data by modeling complex non-

linear data patterns [6]. This approach led to a series of rapid advancements, with 

convolutional neural networks (CNNs) architectures such as AlexNet [7], ResNet [8], VGG 

[9], SqueezeNet [10], and DenseNet [11] showing excellent performance in image 

recognition, as demonstrated by their success in the ImageNet Large Scale Visual 

Recognition Competition [12]. These advances are now being translated into clinical tasks, 

with many successful examples demonstrating the use of artificial intelligence (AI) models 

in diabetic retinopathy, glaucoma [13–16], AMD [17,18], and numerous other areas of 

medicine [19–24]. Typically, CNN’s used for specialized purposes such as ours are 
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initialized using pretrained weights from large general purposes imaging datasets to help 

them learn detection of basic shapes. The final layers of these models are then modified to 

suit the specialized needs of the task at hand. While this approach of transfer learning is 

successful in many domains, it is unclear whether relatively homogenous oculoplastic 

photos would benefit from this process.

We propose the use of an automated photo-based technique that will allow for a convenient, 

inexpensive alternative to manual assessment of ptosis with the potential for improving the 

reliability of measurements amongst non-experts. Given the recent advances in AI-assisted 

image recognition techniques and the lack of literature on this application to oculoplastics, 

we explore various AI architectures to create a highly sensitive and specific AI model for 

blepharoptosis. By using a CNN architecture, we aim to create a model that allows for 

greater flexibility on the input image. Herein, we report the first published CNN based AI 

model which can accurately diagnose blepharoptosis from a clinical photograph with no 

external reference markers or user input.

2. Methods

2.1. Dataset - Inclusion/Exclusion criteria

Full face images, collected as part of the oculoplastic clinic evaluation at a tertiary 

ophthalmology clinic in Taiwan, were de-identified and cropped to include one eye from 

each patient (data processing details provided below).

From this databank, 250 patients with blepharoptosis were chosen at random, and individual 

eye images were extracted. From these 500 images, 66 photographs with severe 

dermatochalasis, upper eyelid retraction, and photographs with poor image quality were 

removed, leaving 434 images used in this study (Fig. 1). The brow region is not included in 

the photos, so brow ptosis cannot be excluded. IRB approval was granted for this 

retrospective study by both Stanford University and National Taiwan University Hospital, 

and the research was conducted following the data use agreement signed by these two 

institutions. Pediatric patients (<18 years old) were excluded from this study.

2.2. Dataset - pre-processing

The photos were taken with a regular digital camera together with a flashlight as a standard 

full-face photo. In order to crop a standardized image of a single eye, we used the OpenFace 

[25] open-source package to identify key facial landmarks in each photo. With these 

landmark positions, we can then crop single eye images as shown in Fig. 2. The resulting 

single eye images were 400 × 600 pixels each, which were then resized to 224 × 224 pixels 

(to match the input size most CNN architectures are optimized to use). These images were 

then used for further evaluation.

2.3. Dataset - ground truth labelling

The ground truth of the blepharoptosis was decided by three oculoplastic surgeons, through 

a voting system. Two of the three labelers both reviewed all 500 photographs in the first 

round of the labeling process. Where there was disagreement in the first round, a consensus 
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meeting was then held by the same two oculoplastic surgeons to attempt to come to a 

consensus decision. For images where the two surgeons were unable to come to a consensus 

after the meeting, these images were adjudicated by an independent third oculoplastic 

surgeon. Their decision was then used to cast the deciding vote. Only single-eye regional 

photographs were provided to the labelers. Other information, such as the condition of the 

fellow eye, medical or surgical history, the measurements including margin to reflex distance 

1,2,3 are not supplemented. The final labels assigned to the images designated them in a 

binary fashion as ‘blepharoptosis present’ or ‘blepharoptosis absent’. We consider the 

‘blepharoptosis absent’ patients to be healthy, normal patients.

2.4. Dataset - subdivision

To train the AI model, the data was split randomly into a training set, validation set, and test 

set (Table 1). This enables the AI model to train using the “Training Dataset” while 

optimizing model weights by checking against the “Validation dataset”. Once all model 

parameters were finalized, the “Test Dataset” (which the model had not previously seen) was 

used to evaluate the accuracy of the trained model. Given the relatively small size of our 

dataset, we chose to perform 5-fold cross-validation on our dataset, reducing the probability 

that our findings are due to an aberrant split of data through chance. Results presented in the 

manuscript are the average results across all 5 folds unless specified.

2.5. Model selection

We tested the eleven leading CNN architectures with Fast.AI implementations due to their 

excellent performance in image recognition when tested on the ImageNet challenge. Whilst 

it is possible to create a custom CNN architecture, many well-established CNN architectures 

are known to perform well in image classification problems and are unlikely to be beaten by 

a new custom architecture. By choosing models already available via Fast.AI, we can limit 

variations in implementation which may adversely affect experiment repeatability. These 

models have also been trained on large databases of images and can be initialized with pre-

trained weights. This technique of transfer learning allows our models to utilize the 

‘knowledge’ learned from training on these large image databases to optimize their 

performance. Given the lack of oculoplastic AI-specific research, we chose to perform a 

series of experiments using different model architectures with and without pretrained 

weights to determine which approach would provide the most accurate results, and to see the 

variance in outcomes from different models.

Each model’s last fully connected layer is modified to generate a vector of size two, 

followed by a SoftMax layer to predict a probability output value for our blepharoptosis 

binary classification problem. For example, our customized DenseNet121’s architecture can 

be seen in Table 2.

And we trained our model with the binary cross entropy loss as follows:

Loss = − 1
N ∑

i = 1

N
gilogsi + (1 − gi)log(1 − si)
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Where N is the total number of training samples, i is the index of one training sample. The 

binary variable gi is i-th training sample’s groundtruth labeling, with value 1’s for positive 

samples (with blepharoptosis) and value 0’s for negative samples (without blepharoptosis). 

The variable si is our model’s SoftMax layer output’s first component, representing the 

probability that our model believes the i-th input training image has blepharoptosis.

2.6. Data augmentation

The dataset used consisted of a relatively small number of images for training a robust AI 

network. If a model is trained only using these images, the results usually generalize poorly 

to images the network has not previously seen. As such, we augmented our data to create a 

larger dataset by generating multiple variations of our images by randomly applying 

transformations:

• Flip images horizontally

• Rotate images up to 10 degrees

• Zoom in on image up to 10 %

• Adjust brightness/contrast by 20 %

• Perspective warping images by 20 %

By applying these transformations, our model was better able to generalize to images it had 

not seen before.

2.7. AI training pipeline

The Fast.AI library was used for AI model development in this study. It is a high-level API 

built on top of PyTorch, which facilitates the incorporation of best practices to maximize 

performance. The analysis was performed on a machine with Intel Xeon CPU @ 2.2Ghz, 

13GB RAM, and a Tesla P100 (16GB VRAM) GPU.

Images were loaded into the training and validation sets with data transformations applied to 

the training data set, and normalization was applied to all images. The chosen CNN 

architecture was then initialized either with or without pretrained weights depending on the 

experiment parameters. The model was then trained till convergence using a one-cycle 

policy [26]. This allows us to incorporate cyclical learning rates in the model where the 

learning rate continuously oscillates between reasonable minimum and maximum bounds, 

helping models converge much faster than using a constant learning rate. To calculate the 

optimal learning rate range – this was calculated using a function within the FastAI library 

which helps identify the optimal learning rate range for each model/dataset. We found in our 

datasets, the learning rate bounds tended to be between 3 × 10−6, and 3 × 10−4. The Adam 

optimizer was used in all models for consistency.

Where pretrained ImageNet weights were used, the classification head of the model is 

removed and substituted with a blank classification head, and the rest of the model was 

frozen. This was then trained for 4 epochs using a one-cycle policy as described above. Then 

the rest of the model was unfrozen and retrained for another 2 epochs using the one-cycle 

policy while adjusting weights in a graded manner where earlier layers of the model are 
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affected to a lesser extent than later ones. We found in all cases of pretrained models, further 

epochs of training did not improve performance. For models where pretrained weights were 

not used, the entire model is kept unfrozen, and the optimal learning rate range for each 

model was calculated. These were then trained using the one-cycle policy for 100 epochs, as 

they took longer to reach convergence – as expected without the pretraining weights. 

Training loss, validation loss, and accuracy were monitored to minimize overfitting, which 

was ultimately verified by checking model performance against the unseen test dataset.

Each model was then created and tested 5 times using 5-fold cross-validation for each 

training/evaluation loop. This allows us to generate averaged evaluation statistics for the 

models across each of the 5 folds.

2.8. Statistical analysis

Metrics were calculated, and graphs plotted using Python (version 3.8, Python Software 

Foundation). A combination of packages was used to generate these, including fast.ai, 

PyTorch, matplotlib, and scikit-learn.

A variety of model performance metrics were calculated based on the number of true 

positive samples (TP), number of false positive samples (FP), number of true negative 

samples (TN), and number of false negative samples (FN). These were averaged across the 5 

folds of cross-validation. The derivation of these performance metrics is shown below:

Positive Predictive V alue = TP
TP + FP

Negative Predictive V alue = TN
TN + FN

Accuracy = TP + TN
TP + FP + TN + FN

Sensitivity = TP
TP + FN

Specificity = TN
FP + TN

Precision = Positive Predictive V alue

Recall = Sensitivity
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F1 Score = 2
1

Precision + 1
Recall

ROC AUC = Area under tℎe Receiver Operating Cℎaracteristic curve

Where statistical significance was assessed, p values were calculated using Fisher’s exact 

test for binary variables and one way ANOVA for continuous variables with a p-value <0.05 

considered significant.

3. Results

After the first round of independent labeling by the two oculoplastic surgeons, the agreement 

rate was 82 %. The remaining images with disagreement were then resolved as per the study 

protocol.

Following the test protocol, a total of 22 separate CNNs was trained. For each of these 

models, the accuracy score was calculated by testing the model against the Test image 

dataset. As seen in Table 3, there is a significant variation in accuracy seen between the 

models. The pre-trained models had an average accuracy of 82.6 %, and the models without 

pre-training had an average accuracy of 85.8 %, with no significant difference between the 

two groups (p = 0.06). A notable advantage of utilizing models with pre-training was that 

the time taken to take each model was significantly lower at 1 min vs. 16 min (p < 0.01).

Rather than present detailed scores for all 22 models, we chose to calculate scores for the 

best (DenseNet121 without pre-training) and worst (Resnet34 with pre-training) performing 

models. This was done to provide a contrasting overview of the range of model 

performances (Table 4). ResNet18 without pre-training also had the same results as 

DenseNet121 without pre-training. We chose to include only one ‘best performing model’ 

for simplicity and clarity of findings. DenseNet121 with pre-training was chosen as the best 

model, as larger models tend to generalize to unseen data more accurately. The best 

performing model (DenseNet121 without pre-training) achieved a sensitivity of 90.3 % with 

a specificity of 82.4 %, which was significantly better than the worst performing model 

(Resnet34 pretrained), which achieved a sensitivity of 74.1 %, and specificity of 63.6 %. 

This is demonstrated well in the confusion matrices (Fig. 3) revealing a far higher rate of 

false positives and false negatives in the worst-performing model. The AUROC (0.95 vs 

0.84) and FI scores (88.2 % vs 72.6 %) also reflect these differences in model performance.

4. Discussion

Blepharoptosis is a frequent cause of peripheral vision loss which, typically requires surgical 

intervention when significant. The accurate diagnosis of blepharoptosis is complex and 

relies heavily on accurate MRD1 measurement in traditional clinical assessment. Studies 

have found MRD1 to be the most predictive measurement of visual field loss [27]. However 

accurate measurement of MRD1 by non-expert clinicians is known to be sub-optimal [3,4]. 
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To facilitate accurate diagnosis by non-experts, we present the first publication 

demonstrating an AI algorithm to accurately and reliably diagnose blepharoptosis from a 

single photo without the need for external reference markers or manual annotation. We also 

explored various CNN architectures for this task and found many models that had reasonable 

performance, with the best models reaching a sensitivity of 90.1 % and specificity of 82.4 % 

on a previously unseen test dataset.

Several experiments were performed during the construction of our AI algorithm to help 

determine which architectures would lead to the best results in our particular task [28]. 

Transfer learning and large models are known to be effective in many medical image 

recognition tasks [29–31], however, our dataset differs in that there is limited variation in our 

images, and our data set is relatively small. Transfer learning is a technique that is designed 

to enhance the performance of a neural network by ‘pre-training’ the network on a large 

dataset that may not be related to the intended use (e.g. in this case on the 14 million images 

contained in the ImageNet database). This allows the model to learn general features of 

images, which can then be applied to the target image set. We tested some of the leading 

CNN architectures with and without pre-training and found that the DenseNet [11] and 

ResNet [8] architectures without pre-training provided the best performance. A number of 

the other architectures also performed quite well. In our study, we found that models without 

pre-training and those with pre-training had similar performance. Typically, pretrained 

models have better performance as they have already learned many common shapes and 

image patterns which makes it easier for them to deal with a wide variety of image 

recognition tasks. However, the authors hypothesize the limited benefit in this scenario may 

be due to limited variation in ocular photos used for this. The use of the pretrained networks 

did however significantly reduce the training time for the models. The complexity of the 

architectures also had a limited impact, with the 18-layer ResNet18 performing similarly to 

the 121-layer DenseNet121 architecture. The authors believe this is also due to the relative 

lack of variation in eyelid images, and thus the number of layers and weights needed for an 

accurate model is fewer for this particular task.

4.1. Discussion - comparison to previous techniques

Previous reports investigating automated blepharoptosis detection from facial photos have 

relied on traditional computer vision processing methodologies. The relative contrast 

between the eyelid vs sclera/iris does make this task possible under most circumstances as it 

is possible to handcraft these features. However, these techniques tend to fail when lighting 

is suboptimal, or the lid contours do not fit the expected parameters, thus leading to failure 

in challenging situations. Furthermore, specifically created computer vision techniques are 

limited to exactly what features are hand-coded initially, which limits the scope of their 

abilities. For example, cases of severe dermatochalasis could not be differentiated from true 

blepharoptosis through these algorithms (where the apparent lower lid margin may actually 

be overhanging skin rather than the true lid margin). Some techniques require hand 

annotation of images by the user [32,33], and others require a reference marker [34, 35] to 

be placed on the patient before the image is taken. This usually takes the form of a sticker of 

pre-specified dimensions being placed on the patient’s forehead before photos are taken. 

Requiring hand annotation of images takes a significant amount of time, and it is not 
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practical to expect a busy clinician to annotate these photos when the software is being used 

at the point of care. For images where a reference marker is required – this also poses issues 

to clinical workflow, as clinicians must obtain the reference marker of appropriate size for 

that particular software, then have the reference markers available at all times – which can 

be limiting. For example, when reviewing a patient who is unwell in a hospital bed and 

unable to come to the eye clinic. Both of these methodologies thus have challenges to their 

implementation in a real-world clinical context. By utilizing a CNN architecture, we have 

shown that it is possible to identify ptosis in a variety of clinical settings, without any extra 

steps required from clinicians which may disrupt existing clinical workflows.

4.2. Discussion - limitations

It is important to note some limitations to this study. Firstly, our dataset has a relatively 

small number of images compared to the typical numbers of images used in AI imaging 

studies. This however reflects the difficulty of acquiring images in a subspecialty field, 

especially considering the sensitivity of the original clinical images - full face images. For 

this study, we chose to exclude patients with severe dermatochalasis, upper eyelid retraction, 

and poor image quality. The source images were from patients who were given a ptosis 

diagnosis at some stage, though the images for each eye of all patients were separated, and 

independently assessed by a consensus of oculoplastic surgeons to ascertain our ground truth 

labels. This early study was designed to establish the possibility of creating an AI algorithm 

to identify ptosis, and as such the image set was relatively simple. Furthermore, the image 

set consists of patients only from an Asian ethnic background, which limits the applicability 

of these findings to other ethnic groups given differences in eyelid features between 

populations. These are both issues we aim to address in future studies utilizing a larger 

dataset. We believe that a larger dataset including a more diverse range of photos will allow 

a more accurate model to be developed. Firstly, by having a larger dataset, we will be able to 

further optimize model hyperparameters. In our paper, we chose not to attempt further 

hyperparameter optimization beyond what has been described in the methodology of this 

paper, due to the relatively small size of our dataset. Having a larger range of clinical 

examples from different populations will also help the model be able to train across a larger 

set of examples, and ultimately perform better when generalizing to other patients.

Even amongst experts, there can be some subjectivity in the diagnosis of ptosis, especially 

when making judgments from an isolated clinical photo. As such we sought to have a 

consensus agreement between oculoplastic surgeons to try and increase the accuracy of our 

ground truth labels and feel that expert opinion is a reasonable method of classification in 

this situation. Finally, with regards to the choice of model, it is often impossible to predict 

which model will perform best on a particular dataset. As such we experimented with 

numerous different model types, potentially introducing an element of chance into model 

selection. We hope that future studies will be able to reference this study to have a more in-

depth understanding of how different models perform on oculoplastic images and guide their 

model choices for study.
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4.3. Discussion - future directions

To further validate our findings and fine-tune our algorithm, a multi-center prospective trial 

is underway to build a larger dataset with a broader set of eyelid pathologies and validate our 

algorithm against external datasets, and the diagnosis of other non-expert physicians. 

Finally, all photos taken for this study are formal clinical photos taken as part of clinical 

care. As such the quality of these images is likely to be of a higher caliber than images taken 

by primary care physicians or patients. To help account for this, our model was trained with 

data augmentation to vary the lighting and image quality which helps improve the 

generalizability of our model results. In future studies, we aim to capture imaging from a 

wider variety of devices.

Further studies are also warranted to explore additional applications of AI in oculoplastic 

and eyelid evaluation. By utilizing a larger dataset, we propose moving beyond binary 

classification to a multilabel classification of eyelid position, exploring degrees of 

blepharoptosis, and diagnosing other eyelid pathologies such as dermatochalasis, eyelid 

retraction, or eyelid malposition. Our long-term vision is to incorporate these tools into a 

clinically validated decision support tool that can be used in a variety of settings. For 

primary care physicians and ER physicians, it can offer a convenient way to way to assess 

patients with suspected ptosis either in the context of suspected systemic/neurologic disease 

or to facilitate referral to an oculoplastic surgeon. For ophthalmologists, it allows 

conveniently labeled photo documentation, with the potential to replace manual MRD1 

measurements and visual field testing for insurance approvals.

5. Conclusion

This paper demonstrates that an AI algorithm utilizing CNN’s can detect patients with 

blepharoptosis with a high degree of accuracy, without manual user annotation, or the need 

for reference markers on the patient. We explored a variety of CNN architectures and found 

that most leading architectures had reasonable performance on this task, with the 

DenseNet121 and ResNet18 architectures achieving the highest accuracy. Pre-trained 

models had similar performance to non-pretrained models, though model training time was 

significantly lower for pre-trained models. Our findings form a foundation for future 

research applying AI in oculoplastics by demonstrating the possibility of accurate model 

creation and guiding CNN architecture selection in this subspecialty. We believe that 

through the use of a larger more diverse dataset, future studies will be able to create an AI 

algorithm with increased accuracy.
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Fig. 1. 
Normal (a), blepharoptosis (b), and excluded (c) examples. (Right eyes).
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Fig. 2. 
Automated extraction of single eye images from a full-face photo using the OpenFace 

package. Key facial landmarks were identified (black dots in the center image) and then used 

to crop each eye for further evaluation.
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Fig. 3. 
Confusion matrices showing results of test set for the best performing model (Densenet121 

Not pretrained), and poorest performing model (Resnet34 Pretrained). Taken from a single 

representative fold during cross validation.
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Table 1

The number of images in Training, Validation, and Test datasets.

Number of Normal Eyelid Images Number of Blepharoptosis Images

Training Set 136 177

Validation Set 34 45

Test Set 18 24
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Table 2

DenseNet121 [11] architecture.

Layers Architecture Output Size

Convolution 7 × 7 conv, stride 2 112 × 112

Pooling 3 × 3 max pool, stride 2 56 × 56

Dense Block (1) [1 × 1 conv, 3 × 3 conv] x 6 56 × 56

Transition Layer (1) 1 × 1 conv, 2 × 2 avg pool, stride 2 28 × 28

Dense Block (2) [1 × 1 conv, 3 × 3 conv] x 12 28 × 28

Transition Layer (2) 1 × 1 conv, 2 × 2 avg pool, stride 2 14 × 14

Dense Block (3) [1 × 1 conv, 3 × 3 conv] x 24 14 × 14

Transition Layer (3) 1 × 1 conv, 2 × 2 avg pool, stride 2 7 × 7

Dense Block (4) [1 × 1 conv, 3 × 3 conv] x 16 7 × 7

Classification Layer global avg pool, 2D fully connected, softmax 1 × 1
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Table 3

Comparative Accuracy scores for a variety of CNN architectures both initialized with pretrained weights and 

without pretrained weights.

Accuracy of Pretrained Version Accuracy of Not Pretrained Version

VGG11 80.5% 83.8 %

VGG13 86.2% 83.8 %

VGG16 85.7% 85.2 %

VGG19 87.1 % 84.7 %

ResNet18 81.0% 88.6 %

ResNet34 71.4 % 86.7 %

ResNet50 81.9% 83.3 %

AlexNet 85.2 % 87.1 %

SqueezeNet 84.7 % 84.8 %

DenseNet121 88.0% 88.6 %

DenseNet201 76.7% 87.1 %
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Table 4

Comparative performance metrics for the best performing model (DenseNet121 - Not Pretrained) vs. a poorly 

performing model (Resnet34 - Pretrained).

DenseNet121 - Not Pretrained (High Accuracy) Resnet34 - Pretrained (Poorer Accuracy)

Positive Predictive Value 93.3 % 85.1 %

Negative Predictive Value 75.5 % 46.6 %

Accuracy 88.6 % 71.4 %

F1 Score 88.2 % 72.6 %

ROC AUC 0.95 0.84

Sensitivity 90.1 % 74.1 %

Specificity 82.4 % 63.6 %
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