Abstract
Yoga is an ancient Indian technique of healthy living. Numerous studies have corroborated yoga's beneficial effects, including a favorable influence on autonomic function and negative emotions. Extensive research in the last few decades has revealed the critical role that yoga can play in eradicating stress. This has laid to the foundation for a scientific understanding of pathophysiological changes attributed to stress, particularly at the molecular and genetic levels. This primarily has helped understand the epigenetic and genetic mechanism at play to induce and alleviate stress, particularly those related to emotional aberrations. As research has indicated, negative emotions are translated into vascular inflammation appropriately accentuated by a sympathetic predominant autonomic function. This cascade is bolstered by multiple factors, including activation of “stressor” genes and elaborating hormones, including steroids with sometimes nocuous consequences, particularly when chronic. Yoga has been categorically found to have inhibited each and every one of these baneful effects of stress. In fact, it also changes the neuronal circuits that potentiate such a plethora of pathological changes. This, in turn, has accentuated yoga's relevance as a powerful preventive intervention in noncommunicable diseases (NCD). NCDs, including heart disease, stroke, and rheumatological disorders, are essentially inflammatory diseases that perpetuate inflammation in different beds like vascular or joint spaces. The precise mechanism by which yoga induces such beneficial changes is yet to be delineated. However, a cornucopia of pointers indicates that neural, endocrine, immunological, cellular, genetic, and epigenetic mechanisms are at play. This article attempts to cobble together newfangled research to delineate a medical model for this 5000-year-old practice from India. This is imperative, as a mechanistic model of this ancient-but-complex system would enable a more comprehensive understanding of its mechanism and reveal its yet-undiscovered positive health effects.
Keywords: Inflammation, mechanism, noncommunicable diseases, yoga
Introduction
Yoga is a 5000-year-old Indian technique of healthy living that comprises the practices of asana (structured physical exercises), pranayama (breathing techniques), dharana (mindfulness), and dhyana (meditation). Yoga is known to be a powerful preventive intervention in many conditions and noncommunicable diseases (NCD), including heart disease, cancer, and rheumatological disorders not only to ameliorate risk but also to modify neurohormonal causes that potentiate the inflammation that results in disease.
Extensive research in the last few decades has revealed the critical role that yoga can play to eradicate stress, laying the foundation for a scientific understanding that stress-induced diseases can be alleviated or eliminated with a yogic lifestyle. The precise mechanism by which yoga induces such beneficial changes is yet to be delineated. However, a plethora of pointers indicates that neural, endocrine, immunological, cellular, genetic, and epigenetic mechanisms are at play.[1]
The beneficial effects of yoga include a wide spectrum of NCD. Cardiovascular disease is the number-one killer worldwide: Its fatality rate is double that of cancer, the second-largest killer. Coronary artery disease, heart failure, and atrial fibrillation are becoming increasingly prevalent, thanks to sedentary lifestyles, unhealthy eating habits, and stress.[2]
Here, we explore existing research to delineate a medical model for this ancient-but-complex practice from India. A medical model of yoga would enable a more comprehensive understanding of its mechanisms and may reveal its yet-undiscovered positive health effects.
The Brain
The use of functional magnetic resonance imaging, computed tomography, and radioactive targeting to discern neuronal activity, neurotransmitter concentration, blood flow, and other physiological correlates have revealed much about yoga's effect on the brain. The practice of yoga has been correlated with greater cortical thickness and gray-matter concentration in brain areas associated with arousal, mood, memory, and cognition and with functional attenuation of areas related to negative emotional processing, including the amygdala.[3,4,5] Changes in brain chemistry and selective neuronal firing elevate mood by enhancing release of neurotransmitters such as serotonin and norepinephrine. Decreased stimulation of brain basal areas associated with negative emotions and stress may moderate activation of the hypothalamic-pituitary-adrenal (HPA) axis, which fosters sympathetic discharges that release a cascade of hormones that initiate the “fight-or-flight” response.
The increased somatic sympathetic tone associated with these responses results in numerous aberrant pathological effects, including vascular inflammation that leads to cardiovascular disease, dangerous arrhythmias, and sudden cardiac death. In fact, all chronic stress is associated with this response and portends cardiovascular disease. Direct damage to the heart also has been reported,[6] along with angina and other forms of chest pain[7] and coronary artery spasm, which decreases nutritional flow to the cardiac musculature.[8]
Among yoga practitioners, electroencephalographic brain-wave recordings indicate increased theta and alpha frequency ranges. A global increase in alpha activity is known to increase feelings of calm and positive affect, thereby attenuating anxiety. Higher-frequency gamma activation (>30 Hz) also has been reported, particularly in long-term meditation practitioners.[9] Gamma frequency appears to be associated with various cognitive functions and may facilitate the neural mechanisms underlying attention.[9,10,11]
Yoga and meditation appear to influence the medulla oblongata, a brain-stem structure that contains a central vagal relay station with thousands of neurons. This neuronal station is instrumental in regulating heart rate and respiration and is modulated by the parasympathetic discharges seen in long-term yoga practitioners,[4] although details about relevant neural pathways remain to be delineated. Yoga elevates mammalian target of rapamycin (mTOR) signaling, which promotes the synthesis of proteins necessary for synapse formation and maturation; mTOR-dependent translational cascade may be the final pathway representing neurogenesis and neuroplasticity.[12,13]
Yoga also influences the sirtuin-1 signaling pathway.[12] Potential molecular mechanisms for enhancing neuroplasticity and alleviating depression by increasing sirtuin-1 include promotion of mTOR signaling, reduction of methylation in brain-derived neurotrophic factor (BDNF) transcription, and regulation of circadian rhythm by inhibiting CLOCK protein, a histone acetyltransferase.[12,14]
The Autonomic Nervous System
The fight-or-flight mechanism is a primal behavior pattern that enables humans to deal with emergencies and stress caused by anxiety, depression, or difficult situations such as economic downturns and pandemics. However, the fight-or-flight response is severely detrimental to cardiovascular health, particularly when protracted due to emotional instigation. Accentuated sympathetic nervous system (SNS) activity unleashed by psychological stress [Figure 1] can induce and propagate heart failure, leading to end-stage heart disease and death. High SNS activity increases heart rate and is believed to be the cause of refractory hypertension, wherein a patient's blood pressure is not amenable to medical therapy. Atrial fibrillation and ventricular tachycardia, both associated with considerable morbidity and mortality, are induced and sustained by an activated SNS.[15,16] Sudden cardiac death is a syndrome of ventricular tachycardia and ventricular fibrillation that can be induced by a sympathetic surge;[17] it is responsible for half of all heart disease deaths. The parasympathetic nervous system (PNS) also is essential for regulating heart rate variability.[18] The SNS works in conjunction with the HPA axis to switch on the inflammatory cascade. Although new methods for attenuating sympathetic overactivity are being tested, most are experimental and come at considerable cost.
In contrast, yoga's beneficial effect in accentuating the PNS over the SNS has long been known.[19] Pranayam, an ancient breathing exercise inherent to yoga practice, regulates the PNS.[20] By effectively attenuating SNS overactivity, yoga reduces heart rate and achieves a better quality of life for patients with atrial fibrillation.[21,22] Yoga has been shown to help patients with discrete SNS overactivity that results in poorly controlled hypertension. Yoga reduces wear and tear on the body produced by chronic stress[23] by lessening sympathetic overactivity and improving parasympathetic tone, as evidenced by oxygen consumption level, heart rate, and the high-frequency component of heart rate variability.[24]
Psychological Effects
Various clinical trials indicate that yoga may play a significant role in defusing aberrant psychological states, such as anxiety, depression, despair, and anger, that foster cardiac changes leading to heart failure.[25] In times of stress, yoga helps its practitioners to develop a positive attitude, to become more self-aware, and to cope more effectively. Asana, pranayama, and meditation techniques enhance calm, mindfulness, and self-control.[26] Hatha yoga (which includes only postures, with little-to-no meditation) hastens recovery from stress by regulating autonomic balance, homeostasis, and the HPA axis.[27]
Endocrine Effects
Acute glucocorticosteroid (GCS) elevation is a survival mechanism that underlies the fight-or-flight response. However, chronic GCS elevation is counterproductive and may produce a plethora of cardiovascular pathologies, including endothelial dysfunction and vascular inflammation that accelerates the development of atherosclerosis, leading to stroke, myocardial infarction, and peripheral arterial disease. Chronic stress perpetuates GCS elevation, which triggers the inflammatory cascade by activating the nuclear factor (NF)κB pathway.
Glucocorticoid modulation occurs through the HPA axis [Figure 2].[28] Growing evidence suggests that yoga acts on the HPA axis to decrease GCS and increase GCS receptors, thereby reversing or even preventing the deleterious effects of chronic stress, cardiovascular disease, and aging.[29]
Cellular Effects
Yoga positively affects the immune system and inflammation pathways. By increasing the number and activity of natural-killer cells, yoga enhances the cell-mediated cytotoxicity of invading infectious organisms. Yoga practice is also associated with improvement in salivary cortisol levels, CD3 + and CD4 + cell counts, and immunoglobulin (Ig) A, a dominant factor in innate immunity.[30] Yoga increases IgA levels, thus preventing invasive organisms from gaining entry, and decreases cortisol, thus amplifying the body's ability to fight infection.
Multiple studies have documented yoga's beneficial role in attenuating the immunological dysfunction that causes overproduction of powerful proinflammatory cytokines and chemokines.[31] Yoga practice can downregulate an array of initiators and modulators of chronic inflammation, including interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α [Figure 3]. Breast cancer patients who practiced yoga had a significant reduction in IL-6 after 3 months, compared with nonyoga controls, and this reduction was even more pronounced when the amount of yoga practice was increased, suggesting a dose-response effect.[32]
Markers for cellular recovery are higher in yoga practitioners. Mind-body interventions such as yoga improve mitochondrial integrity, as evident from increased cyclo-oxygenase activity, which helps to reduce supraphysiological free-radical levels during oxidative phosphorylation, thereby handling the oxidative milieu in a favorable way and preventing endothelial dysfunction, cardiovascular disease, and premature inflammation-related aging.[33]
Genetic Effects
When stress activates the SNS, nuclear factor-κB (NF-κB) is produced. Stress is translated into inflammation by NF-κB acting to change the expression of genes that code for inflammatory cytokines [Figure 2].[34] Yoga and other mind-body interventions directly inhibit the NF-κB pathway, thereby reducing the expression of inflammatory genes.[13]
Epigenetic alterations are an important mechanism of the favorable genetic modification achieved by yoga practitioners. Yoga decreases methylation of the BDNF gene, augmenting its activity and in turn enhancing neuroplasticity and cortical growth. Meditation has also been associated with significant reduction in methylation of the glucocorticoid-receptor gene and thus is related to a decrease in cortisol activity and stress levels. Global modification of histones (H4ac and H3K4 me3) and the silencing of several histone deacetylase genes (HDAC 2, 3, and 9) have been noted in practitioners of yoga and meditation.[13,35]
Telomerase activity has been widely discussed in mind-body intervention studies, as it is associated with premature aging and inflammation. However, results from these studies have been mixed, and most were short-term observational studies that failed to show reasonable improvement in telomerase activity. One study in hypertensive individuals did suggest that a combination of lifestyle modification techniques improves telomere maintenance.[36] Nonetheless, many more randomized trials are required to have a clearer understanding of yoga's role in this regard.
Yoga has been credited with dampening the activation of conserved transcriptional response to adversity (CTRA),[13] the primary characteristic of which is the upregulation of proinflammatory genes that produce major inflammation at the cellular level. Whereas acute inflammation is a short-lived, adaptive response that increases the activity of the immune system to fight injury or infection, chronic inflammation is maladaptive because it persists when no actual threat to the body exists.[14] Chronic inflammation is associated with increased risk for certain cancers, degenerative diseases, neurodegenerative diseases, cardiovascular diseases, and psychiatric illness. The secondary characteristic of CTRA is the downregulation of antiviral and antibody-related genes, which is associated with susceptibility to viral infections. As a result, CTRA is considered a molecular signature of chronic stress. Yoga has been conclusively documented to lessen chronic stress, thus preventing the widespread activation of a pathophysiological state that garners chronic inflammation perpetuated by CTRA activation. Blocking activation of the CTRA genes has been suggested as a prime mechanism of yoga's anti-inflammatory effects.
Conclusions
Yoga is associated with numerous beneficial effects. It reduces inflammation by inhibiting the NF-κB pathway, moderating epigenetic alteration, and preserving telomerase length, which in turn reduces GCS level and increases glucocorticoid receptor sensitivity. Yoga augments neuroplasticity by promoting the mTOR pathway and enhancing gene expressions for BDNF, leading to increased cortical thickness in parts of the brain related to mood, awareness, and cognition. Yoga also depresses SNS activity and improves PNS activity, which is relevant to battling stress and maintaining a healthy cardiovascular profile. This appropriately may attenuate the initiation and perpetuation of multiple cardiovascular pathologies. Yoga has been found to reduce oxidative stress and prevent endothelial dysfunction, thus preventing premature atherosclerosis and coronary artery disease.
Yoga's role in reducing arrhythmia burden in atrial fibrillation by inducing PNS activity and reversing atrial remodeling has been described in multiple studies. Newer studies in yoga practitioners that explore proteomic and genomic sequencing, along with advanced neural imaging, will lead us further toward deciphering the yet-unretrieved mechanism of brain-heart axis that mediates aberrant cardiovascular pathophysiology.
Even more important, during the current pandemic and time of social isolation, yoga fills the need of the hour as a low-investment, readily available, and effective therapeutic alternative, from both the individual and public health perspectives.
Financial support and sponsorship
Nil.
Conflicts of interest
There are no conflicts of interest.
References
- 1.Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, et al. Meditation experience is associated with increased cortical thickness. Neuroreport. 2005;16:1893–7. doi: 10.1097/01.wnr.0000186598.66243.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Patel NJ, Atti V, Mitrani RD, Viles-Gonzalez JF, Goldberger JJ. Global rising trends of atrial fibrillation: A major public health concern. Heart. 2018;104:1989–90. doi: 10.1136/heartjnl-2018-313350. [DOI] [PubMed] [Google Scholar]
- 3.Hölzel BK, Carmody J, Vangel M, Congleton C, Yerramsetti SM, Gard T, et al. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 2011;191:36–43. doi: 10.1016/j.pscychresns.2010.08.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Vestergaard-Poulsen P, van Beek M, Skewes J, Bjarkam CR, Stubberup M, Bertelsen J, et al. Long-term meditation is associated with increased gray matter density in the brain stem. Neuroreport. 2009;20:170–4. doi: 10.1097/WNR.0b013e328320012a. [DOI] [PubMed] [Google Scholar]
- 5.Gianaros PJ, Jennings JR, Sheu LK, Greer PJ, Kuller LH, Matthews KA. Prospective reports of chronic life stress predict decreased grey matter volume in the hippocampus. Neuroimage. 2007;35:795–803. doi: 10.1016/j.neuroimage.2006.10.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Liang JJ, Cha YM, Oh JK, Prasad A. Sudden cardiac death: An increasingly recognized presentation of apical ballooning syndrome (Takotsubo cardiomyopathy) Heart Lung. 2013;42:270–2. doi: 10.1016/j.hrtlng.2013.04.003. [DOI] [PubMed] [Google Scholar]
- 7.Kraynak TE, Marsland AL, Gianaros PJ. Neural mechanisms linking emotion with cardiovascular disease. Curr Cardiol Rep. 2018;20:128. doi: 10.1007/s11886-018-1071-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Wei J, Rooks C, Ramadan R, Shah AJ, Bremner JD, Quyyumi AA, et al. Meta-analysis of mental stress-induced myocardial ischemia and subsequent cardiac events in patients with coronary artery disease. Am J Cardiol. 2014;114:187–92. doi: 10.1016/j.amjcard.2014.04.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Brandmeyer T, Delorme A, Wahbeh H. The neuroscience of meditation: Classification, phenomenology, correlates, and mechanisms. Prog Brain Res. 2019;244:1–29. doi: 10.1016/bs.pbr.2018.10.020. [DOI] [PubMed] [Google Scholar]
- 10.Li AW, Goldsmith CA. The effects of yoga on anxiety and stress. Altern Med Rev. 2012;17:21–35. [PubMed] [Google Scholar]
- 11.Gaillard R, Dehaene S, Adam C, Clémenceau S, Hasboun D, Baulac M, et al. Converging intracranial markers of conscious access. PLoS Biol. 2009;7:e61. doi: 10.1371/journal.pbio.1000061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Tolahunase MR, Sagar R, Faiq M, Dada R. Yoga- and meditation-based lifestyle intervention increases neuroplasticity and reduces severity of major depressive disorder: A randomized controlled trial. Restor Neurol Neurosci. 2018;36:423–42. doi: 10.3233/RNN-170810. [DOI] [PubMed] [Google Scholar]
- 13.Buric I, Farias M, Jong J, Mee C, Brazil IA. What is the molecular signature of mind-body interventions.A systematic review of gene expression changes induced by meditation and related practices? Front Immunol. 2017;8:670. doi: 10.3389/fimmu.2017.00670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Ravnik-Glavač M, Hrašovec S, Bon J, Dreo J, Glavač D. Genome-wide expression changes in a higher state of consciousness. Conscious Cogn. 2012;21:1322–44. doi: 10.1016/j.concog.2012.06.003. [DOI] [PubMed] [Google Scholar]
- 15.Patterson E, Lazzara R, Szabo B, Liu H, Tang D, Li YH, et al. Sodium-calcium exchange initiated by the Ca2+ transient: An arrhythmia trigger within pulmonary veins. J Am Coll Cardiol. 2006;47:1196–206. doi: 10.1016/j.jacc.2005.12.023. [DOI] [PubMed] [Google Scholar]
- 16.Sharifov OF, Fedorov VV, Beloshapko GG, Glukhov AV, Yushmanova AV, Rosenshtraukh LV. Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol. 2004;43:483–90. doi: 10.1016/j.jacc.2003.09.030. [DOI] [PubMed] [Google Scholar]
- 17.Dunbar SB, Kimble LP, Jenkins LS, Hawthorne M, Dudley W, Slemmons M, et al. Association of mood disturbance and arrhythmia events in patients after cardioverter defibrillator implantation. Depress Anxiety. 1999;9:163–8. doi: 10.1002/(sici)1520-6394(1999)9:4<163::aid-da3>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
- 18.Khattab K, Khattab AA, Ortak J, Richardt G, Bonnemeier H. Iyengar yoga increases cardiac parasympathetic nervous modulation among healthy yoga practitioners. Evid Based Complement Alternat Med. 2007;4:511–7. doi: 10.1093/ecam/nem087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Murugesan M, Taylor AG. Effect of yoga on the autonomic nervous system: Clinical implications in the management of atrial fibrillation. J Yoga Physiother. 2017;3:555601. [Google Scholar]
- 20.Pramanik T, Sharma HO, Mishra S, Mishra A, Prajapati R, Singh S. Immediate effect of slow pace bhastrika pranayama on blood pressure and heart rate. J Altern Complement Med. 2009;15:293–5. doi: 10.1089/acm.2008.0440. [DOI] [PubMed] [Google Scholar]
- 21.Santaella DF, Devesa CR, Rojo MR, Amato MB, Drager LF, Casali KR, et al. Yoga respiratory training improves respiratory function and cardiac sympathovagal balance in elderly subjects: A randomised controlled trial. BMJ Open. 2011;1:e000085. doi: 10.1136/bmjopen-2011-000085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Lakkireddy D, Atkins D, Pillarisetti J, Ryschon K, Bommana S, Drisko J, et al. Effect of yoga on arrhythmia burden, anxiety, depression, and quality of life in paroxysmal atrial fibrillation: The YOGA My Heart Study. J Am Coll Cardiol. 2013;61:1177–82. doi: 10.1016/j.jacc.2012.11.060. [DOI] [PubMed] [Google Scholar]
- 23.Streeter CC, Gerbarg PL, Saper RB, Ciraulo DA, Brown RP. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder. Med Hypotheses. 2012;78:571–9. doi: 10.1016/j.mehy.2012.01.021. [DOI] [PubMed] [Google Scholar]
- 24.Vempati RP, Telles S. Yoga-based guided relaxation reduces sympathetic activity judged from baseline levels. Psychol Rep. 2002;90:487–94. doi: 10.2466/pr0.2002.90.2.487. [DOI] [PubMed] [Google Scholar]
- 25.Ransing R, da Costa MP, Adiukwu F, Grandinetti P, Teixeira ALS, Kilic O, et al. Yoga for COVID-19 and natural disaster related mental health issues: challenges and perspectives. Asian journal of psychiatry. 2020;53:102386. doi: 10.1016/j.ajp.2020.102386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Cook-Cottone CP. New York: Springer Publishing Company; 2015. Mindfulness and Yoga for Self-Regulation: A Primer for Mental Health Professionals. [Google Scholar]
- 27.Patil SG, Aithala MR, Naregal GV, Shanmukhe AG, Chopade SS. Effect of yoga on cardiac autonomic dysfunction and insulin resistance in non-diabetic offspring of type-2-diabetes parents: A randomized controlled study. Complement Ther Clin Pract. 2019;34:288–93. doi: 10.1016/j.ctcp.2019.01.003. [DOI] [PubMed] [Google Scholar]
- 28.Irwin MR, Cole SW. Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol. 2011;11:625–32. doi: 10.1038/nri3042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Thirthalli J, Naveen GH, Rao MG, Varambally S, Christopher R, Gangadhar BN. Cortisol and antidepressant effects of yoga. Indian J Psychiatry. 2013;55:S405–8. doi: 10.4103/0019-5545.116315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Chen PJ, Yang L, Chou CC, Li CC, Chang YC, Liaw JJ. Effects of prenatal yoga on women's stress and immune function across pregnancy: A randomized controlled trial. Complement Ther Med. 2017;31:109–17. doi: 10.1016/j.ctim.2017.03.003. [DOI] [PubMed] [Google Scholar]
- 31.Nagarathna R, Nagendra HR, Majumdar V. A perspective on yoga as a preventive strategy for coronavirus disease 2019. Int J Yoga. 2020;13:89–98. doi: 10.4103/ijoy.IJOY_22_20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Bower JE, Greendale G, Crosswell AD, Garet D, Sternlieb B, Ganz PA, et al. Yoga reduces inflammatory signaling in fatigued breast cancer survivors: A randomized controlled trial. Psychoneuroendocrinology. 2014;43:20–9. doi: 10.1016/j.psyneuen.2014.01.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Chatterjee S, Mondal S. Effect of regular yogic training on growth hormone and dehydroepiandrosterone sulfate as an endocrine marker of aging. Evid Based Complement Alternat Med. 2014;2014:240581. doi: 10.1155/2014/240581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Liang Y, Zhou Y, Shen P. NF-kappaB and its regulation on the immune system. Cell Mol Immunol. 2004;1:343–50. [PubMed] [Google Scholar]
- 35.Kaliman P, Alvarez-López MJ, Cosín-Tomás M, Rosenkranz MA, Lutz A, Davidson RJ. Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology. 2014;40:96–107. doi: 10.1016/j.psyneuen.2013.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Duraimani S, Schneider RH, Randall OS, Nidich SI, Xu S, Ketete M, et al. Effects of lifestyle modification on telomerase gene expression in hypertensive patients: A pilot trial of stress reduction and health education programs in African Americans. PLoS One. 2015;10:e0142689. doi: 10.1371/journal.pone.0142689. [DOI] [PMC free article] [PubMed] [Google Scholar]