
Finding key players in complex networks through deep
reinforcement learning

Changjun Fan1,2, Li Zeng1, Yizhou Sun2, Yang-Yu Liu3,4

1College of Systems Engineering, National University of Defense Technology, Changsha, 410073,
China

2Department of Computer Science, University of California, Los Angeles, CA, 90024, USA

3Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical
School, Boston, MA, 02115, USA

4Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA

Abstract

Finding an optimal set of nodes, called key players, whose activation (or removal) would

maximally enhance (or degrade) certain network functionality, is a fundamental class of problems

in network science1,2. Potential applications include network immunization3, epidemic control4,

drug design5, and viral marketing6. Due to their general NP-hard nature, those problems typically

cannot be solved by exact algorithms with polynomial time complexity7. Many approximate and

heuristic strategies have been proposed to deal with specific application scenarios1,2,8–12. Yet, we

still lack a unified framework to efficiently solve this class of problems. Here we introduce a deep

reinforcement learning framework FINDER, which can be trained purely on small synthetic

networks generated by toy models and then applied to a wide spectrum of influencer finding

problems. Extensive experiments under various problem settings demonstrate that FINDER

significantly outperforms existing methods in terms of solution quality. Moreover, it is several

orders of magnitude faster than existing methods for large networks. The presented framework

opens up a new direction of using deep learning techniques to understand the organizing principle

of complex networks, which enables us to design more robust networks against both attacks and

failures.

Network, or graph in discrete mathematics, is a common data structure to describe numerous

types of interactive systems13,14, e.g., the Internet, social media, transportation networks,

power grids, food webs, and biomolecular networks. Such systems are greatly affected by a

small fraction of important nodes, whose activation/removal would significantly improve/

degrade certain network functionality. Such important nodes have been named differently

depending on their roles in different application scenarios, e.g., influential nodes1,15, vital

Correspondence Correspondence and requests for materials should be addressed to Y.S.(yzsun@cs.ucla.edu) and Y.-Y.L.
(yyl@channing.harvard.edu).
Author contributions Y.S. and Y.-Y.L. designed and managed the project. Y.S. and C.F. developed the FINDER algorithm. C.F. and
L.Z. performed all the calculations. All authors analyzed the results. C.F., Y.-Y.L. and Y.S. wrote the manuscript. All authors edited the
manuscript.

Competing interests The authors declare that they have no competing interests.

HHS Public Access
Author manuscript
Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

Published in final edited form as:
Nat Mach Intell. 2020 June ; 2(6): 317–324. doi:10.1038/s42256-020-0177-2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

nodes16, key player nodes17, or critical nodes7. Hereafter we will simply call them key

players.

Finding an optimal set of key players in complex networks has been a longstanding problem

in network science with many real-world applications. Representative ones include: (i)

destroy the communications in a criminal or terrorist network by arresting critical suspects8;

(ii) destroy some critical proteins and neutralize the corresponding harmful protein

complexes for rational drug design5; (iii) plan the resource allocation during the evacuation

or reestablish critical traffic routers after a disaster in transportation networks18; (iv) handle

various diffusion phenomenon on networks, including both the optimal spreading problem,

i.e., maximizing the diffusion for influence spreading or viral marketing19, and the optimal

immunization problem, i.e., minimizing the diffusion via epidemic control4, rumor

control19, and network immunization20.

Depending on the specific application scenario, we need to define the corresponding

measure to quantify the network functionality appropriately. Without loss of generality,

hereafter we consider network connectivity as a key proxy for network functionality. After

all, almost all network applications are typically designed to be run in a connected

environment7. Commonly used network connectivity measures include the number of

connected components, pairwise connectivity, the size of the giant connected component

(GCC), the length of the shortest paths between two certain nodes, etc. In particular, the size

of the GCC is a heavily studied connectivity measure1,2, since it is relevant to both the

optimal attack problem and optimal spreading problem (Fig. S14). In fact, the optimal attack

problem with the objective of minimizing the GCC size is exactly dual to the optimal

spreading problem with the linear threshold spreading dynamics1. (Note that in general the

optimal attack and spreading problems are not dual to each other.)

Finding an optimal set of key players in general graphs that optimizes nontrivial and

hereditary connectivity measures are typically NP-complete7. This prohibits exact and

scalable solutions of such problems for large-scale networks. Traditional heuristic or

approximate algorithms1,2,8–12 either require substantial problem-specific search or suffer

from deteriorated performances. They are often hard to offer a satisfying balance between

effectiveness and efficiency. Moreover, most existing methods are ad hoc for specific

application scenarios. Those designed for one particular application often fail on many other

applications.

Inspired by the recent advances of deep learning techniques in solving combinatorial

optimization problems21–26, here we introduce FINDER (FInding key players in Networks

through DEep Reinforcement learning), a generic and scalable deep reinforcement learning

framework to find key players in complex networks (see Fig. 1 for the demonstration of its

superior performance over existing methods). In particular, FINDER incorporates inductive

graph representation learning27 to represent graph states and actions, and employs a deep Q-

network that combines reinforcement learning and deep neural networks28–30 to

automatically learn the strategy that optimizes the objective. Extensive experiments on

various problem settings demonstrate that FINDER significantly outperforms handcrafted

heuristics or approximate methods in terms of both solution quality and time complexity.

Fan et al. Page 2

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Since FINDER is trained purely on synthetic graphs generated by toy network models, the

learned superior ability in solving complicated real-world problems suggests a new

promising perspective to understand the organizing principles of complex networked

systems.

Problem Formalization

Formally, given a network G = (V, ℰ), with a node set V and an edge set ℰ, and a predefined

connectivity measure σ, our learning objective is to design a node removal strategy, i.e., a

sequence of nodes (v1, v2, ⋯ , vN) to be removed, which minimizes the following

accumulated normalized connectivity (ANC)31:

R v1, v2, ⋯, vN = 1
N ∑

k = 1

N σ G\ v1, v2, ⋯, vk
σ(G) (1)

Here, N is the total number of nodes in G, vi ∈ V denotes the i-th node to be removed,

σ G\ v1, v2, ⋯, vk is the connectivity of the residual graph after removing nodes in the set

K = v1, v2, ⋯, vk sequentially from G, and σ(G) is the initial connectivity of G before any

node removal. The value of R can be viewed as an estimation of the area under the ANC

curve, which is plotted with the horizontal axis being k/N and the vertical axis being

σ G\ v1, v2, ⋯, vk /σ(G). In Fig. 2, we show examples associated with two different

connectivity measures, where we apply FINDER to a small real network and plot the ANC

curves with three network snapshots highlighted during the node removal procedures.

In certain application scenarios, different nodes are associated with different “weights”, i.e.,

removal costs. We can define a weighted ANC as follows:

Rcost v1, v2, ⋯, vN = ∑
k = 1

N σ G\ v1, v2, ⋯, vk
σ(G) c vk (2)

Here, c(vk) denotes the normalized removal cost associated with node vk, and

∑k = 1
N c vk = 1. Note that Eq. 1 is a special case of Eq. 2, where c(vk) = 1/N. The range of

both R and Rcost lies between 0 and 1 (SI Sec.IV.B).

In principle, our framework can deal with any well-defined connectivity measure

σ: G ℝ+, which maps a graph into a non-negative real number. To demonstrate the

power of our framework, here we consider two most commonly used measures: (i) pairwise

connectivity σpair (G) = ∑Ci ∈ G
δi δi − 1

2 , where Ci is the i-th connected component in

current graph G, and δi is the size of Ci, which corresponds to the critical node (CN)

problem8; and (ii) size of the GCC σgcc(G) = max δi; Ci ∈ G , corresponding to the network

dismantling (ND) problem2, which is also equivalent to the optimal immunization/spreading

problem1.

Fan et al. Page 3

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Model

Framework

Fundamentally different from traditional methods, FINDER takes a purely data-driven

approach without using any domain-specific heuristic. As illustrated in Fig. 3(top), FINDER

is offline trained on small synthetic random graphs generated from classic network models.

For each graph, FINDER considers the finding of key players as a Markov Decision Process:

interacting with the environment through a sequence of states, actions and rewards. Here, the

environment is the network being analyzed, the state is defined as the residual network, the

action is to remove or activate the identified key player, and the reward is the decrease of the

ANC (Eq. 1 or Eq. 2) after taking the action. During this process, FINDER collects the trial-

and-error samples to update its parameters (Eq. S27), and becomes increasingly intelligent

to solve the task (see Fig. 3 (top)). When this offline training phase is over, the well-trained

FINDER is able to learn a long-term policy that can select an action to accumulate the

maximum rewards from the current state. When applied to a real-world network, FINDER

will simply repeat a greedy procedure (SI Sec.II.D.1) to return the optimal sequence of key

players (see Fig. 3 (bottom)).

To ensure the success, we still face several challenges. First, how can we represent the states
and actions in our setting? Second, how can we leverage these representations to form a
score function that tells us the right action for a state? We refer to these two questions as an

encoding problem and a decoding problem respectively.

Enocoding

For the encoding, traditional methods often use handcrafted features to represent nodes and

graphs32, such as global or local degree distribution, motif counts, etc. However, these

features are usually ad hoc and may lead to unsatisfactory performance. Here we leveraged

graph representation learning (a.k.a. graph embedding) based on graph neural

networks21,27,33 to characterize the network structural information into a low dimensional

embedding space. In particular, we employed an inductive graph representation learning

technique similar to GraphSAGE27 to iteratively aggregates node embedding vectors, which

are initialized as node features, e.g., node degree or node removal cost, from the

neighborhood, and followed by a non-linear transformation operator with learnable

parameters. After several rounds of recursion, each node obtains an embedding vector,

which captures both the node’s structural location on the graph and the long-range

interactions between node features. To capture more complex graph information, we

introduced a virtual node that considers all real nodes as neighbors to represent the entire

graph34, and repeated the same embedding propagation process to obtain its representation

(see SI Sec.II.D.1 and Algorithm S2 for more details on encoding).

Decoding

For the decoding, we designed a deep parameterization for the score function, i.e., the Q
function. The Q function leverages the embeddings of states and actions from the encoder to

calculate a score that evaluates the quality of potential actions. Specifically, we applied the

outer product operation on embeddings of state and action to model finer state-action

Fan et al. Page 4

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dependencies. Then a multi-layer perceptron with rectified linear unit (ReLU) activation was

utilized to map the outer product to a scalar value (see SI Sec.II.D.1 for more decoding

details).

Offline Training

FINDER was trained over 200,000 randomly generated small synthetic graphs of 30–50

nodes. In order to perform the end-to-end learning of the parameters in the encoder and

decoder, we combined the n-step Q-learning loss21 and the graph reconstruction loss35 (Eq.

S27), and used Adam gradient descent updates on mini-batch samples, drawn uniformly at

random from the pool of stored experiences. The n-step Q-learning loss minimizes the gap

between predicted Q values and target Q values, and the graph reconstruction loss preserves

the original network structure in the embedding space. Algorithm S2 describes the complete

training procedure.

Online Application

We evaluated FINDER on both synthetic graphs and various real-world networks. During

the application phase, we removed a finite fraction of nodes at each adaptive step, instead of

the oneby-one removal in the training phase. We found the performance was practically

unaffected by the removal of up to 1% fraction (Fig. S2–S3, Table S6–S7). This batch nodes
selection strategy enables FINDER scale as ~ O(E + N + NlogN)) time complexity (SI

Sec.II.D.3, Fig. S4, Table S5), which is very efficient to handle large-scale real-world

problems.

Flexibility

We created four FINDER agents to handle two connectivity measures σpair(·) and σgcc(·)
(corresponding to CN and ND problems, respectively), under two scenarios: node-

unweighted and node-weighted. All the agents share the same architecture (SI Sec.II.D.1,

Fig. 3), and the training procedure (Algorithm S3), except for the reward function, which is

determined by the respective ANC. Extensive experiments demonstrate that our framework

is universally effective on these application scenarios, and all FINDER variants that are

designed for different problems under different scenarios, can converge very well on the

validation data (Fig. S11). Thanks to its flexible architecture, we anticipate this framework

can be applied to even more complex scenarios as well (see SI Sec.IV.F and Fig. S13, Table

S18 for FINDER’s adaptation to the minimal percolation threshold problem).

Results

Results on Synthetic Graphs

In Fig. 4, we show the FINDER’s performances on synthetic graphs that are significantly

larger than what they were trained on. We first explored the effects of different training

graph types. Three classic network models, Erdős-Rényi (ER) model36, Watts-Strogatz

(WS)37 model and Barabási-Albert (BA) model38, were used to generate both training and

test graphs. As shown in Table S20, FINDER performs the best when test and training

graphs are generated from the same model. Note that most of the real networks analyzed in

this work exhibit power-law or fat-tailed degree distributions (Fig. S1). Such a high degree

Fan et al. Page 5

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

heterogeneity is also a key feature of random graphs generated by the BA model. Hence, the

agents trained on BA graphs perform consistently better than those trained on ER or WS

graphs, when tested on various real-world networks (Table S21). To empower better

generalizations, the agents that were later utilized for different application scenarios were all

trained on BA graphs. As shown in Fig. 4, comparing with the state-of-theart baselines (see

SI Sec.I for details), FINDER trained on small BA graphs have consistently achieved better

results for both CN and ND problems under different node weights scenarios in synthetic

graphs of much larger sizes.

Results on Real-world Networks

We then evaluated FINDER on various real-world networks from diverse domains (See SI

Sec.III and Table S3 for descriptions). As shown in Fig. 5, FINDER consistently

outperforms other methods on most networks in different application scenarios. Especially

for node-weighted scenarios, which are more practical and challenging, FINDER excels to a

large extent. Take the ND-node-degree-weighted scenario (Fig. 5k) as an example, if we are

asked to dismantle Gnutella31 such that the remaining GCC is half of the original size, the

current best method (HDA) requires about 40.3% total cost, while our model only needs

14.1%, reducing near 26.2% cost. If given the same dismantling cost 0.2, the best available

method (GND) fragments the network to 80.8% GCC size, while FINDER can be up to

35.3%, which is 45.5% better. In addition to the effectiveness advantage, FINDER is also

remarkably efficient (Table S10–S17), especially on large networks. For example, on Flickr

network with millions of nodes and tens of millions of edges, FINDER is over 20 times

faster than the best performing baseline (GND) for the ND node-degree-weighted scenario

(7,734s vs 174,363s), and about 890 times faster than the best performing baseline

(RatioCut) for the CN node-unweighted scenario (915s vs 815,411s). Note that most

existing baseline methods do not have GPU implementations, while FINDER can be easily

GPU-accelerated. To have a fair comparison with baseline methods, here we did not deploy

GPU-acceleration for FINDER in the application phase. (We only utilized GPU to speed up

the offline training phase.) Hence, the scalability or efficiency of FINDER presented here is

rather conservative.

To further understand the effectiveness of FINDER under node-weighted scenarios, we

calculated the cost distributions of the key players identified by different strategies, on the

Crime network with randomly assigned node weights (removal costs). As shown in Fig. 6,

FINDER tends to avoid choosing those “expensive” key players, which naturally leads to a

more cost-effective strategy.

Conclusion

In summary, FINDER achieves superior performances in terms of both effectiveness and

efficiency in finding key players in complex networks. It represents a paradigm shift in

solving challenging optimization problems on complex networks. Requiring no domain-

specific knowledge but just the degree heterogeneity of real networks, FINDER achieves this

goal by offline self-training on small synthetic graphs only once for a particular application

scenario, and then generalizes surprisingly well across diverse domains of real-world

Fan et al. Page 6

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

networks with much larger sizes. Thanks to the highly flexible framework of FINDER, for

different application scenarios one just needs to replace the rewards with the respective

connectivity measures. And one can further improve FINDER’s performance by tailoring

the training data towards the target network with the configuration model (CM)39 (Table

S19, Table S22), or by employing the reinsertion technique40 (Fig. S12, Table S9) (see SI

Sec.IV.D for more details about different ways to refine FINDER). Finally, FINDER opens

up a new direction of using deep learning techniques to understand the organizing principle

of complex networked systems, which enables us to design more robust networks against

both attacks and failures. The presented results also highlight the importance of classic

network models, such as the BA model. Though extremely simple, it captures the key

feature, i.e., degree heterogeneity, of many real-world networks, which tends out to be

extremely useful in solving very challenging optimization problems on complex networks.

Data availability

All the data, including synthetic graphs and real-world networks, analyzed in this paper can

be accessed through our Code Ocean compute capsule (10.24433/CO.3005605.v1).

Code availability

All source codes and models (including those that can reproduce all figures and tables

analyzed in this work) are publicly available through our Code Ocean compute capsule

(10.24433/CO.3005605.v1) or on Github https://github.com/FFrankyy/FINDER.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We are grateful to Muhao Chen and Zhong Liu for the feedback and assistance they provided during the
development and preparation of this research.

References

1. Morone F & Makse HA Influence maximization in complex networks through optimal percolation.
Nature 524, 65 (2015). [PubMed: 26131931]

2. Braunstein A, Dall’Asta L, Semerjian G & Zdeborová L Network dismantling. Proceedings of the
National Academy of Sciences 113, 12368–12373 (2016).

3. Chen Y, Paul G, Havlin S, Liljeros F & Stanley HE Finding a better immunization strategy. Physical
Review Letters 101, 058701 (2008). [PubMed: 18764435]

4. Pastor-Satorras R & Vespignani A Epidemic spreading in scale-free networks. Physical Review
Letters 86, 3200 (2001). [PubMed: 11290142]

5. Kuntz ID Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992).
[PubMed: 1509259]

6. Richardson M & Domingos P Mining knowledge-sharing sites for viral marketing. In Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 61–
70 (ACM, 2002).

7. Lalou M, Tahraoui MA & Kheddouci H The critical node detection problem in networks: a survey.
Computer Science Review 28, 92–117 (2018).

Fan et al. Page 7

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/FFrankyy/FINDER

8. Arulselvan A, Commander CW, Elefteriadou L & Pardalos PM Detecting critical nodes in sparse
graphs. Computers & Operations Research 36, 2193–2200 (2009).

9. Shen Y, Nguyen NP, Xuan Y & Thai MT On the discovery of critical links and nodes for assessing
network vulnerability. IEEE/ACM Transactions on Networking 21, 963–973 (2013).

10. Mugisha S & Zhou H-J Identifying optimal targets of network attack by belief propagation.
Physical Review E 94, 012305 (2016). [PubMed: 27575146]

11. Zdeborová L, Zhang P & Zhou H-J Fast and simple decycling and dismantling of networks.
Scientific Reports 6, 37954 (2016). [PubMed: 27897223]

12. Ren X-L, Gleinig N, Helbing D & Antulov-Fantulin N Generalized network dismantling.
Proceedings of the National Academy of Sciences 116, 6554–6559 (2019).

13. Albert R & Barabási A-L Statistical mechanics of complex networks. Reviews of Modern Physics
74, 47 (2002).

14. Newman ME The structure and function of complex networks. SIAM Review 45, 167–256 (2003).

15. Kempe D, Kleinberg J & Tardos É Influential nodes in a diffusion model for social networks. In
International Colloquium on Automata, Languages, and Programming, 1127–1138 (Springer,
2005).

16. Corley H & David YS Most vital links and nodes in weighted networks. Operations Research
Letters 1, 157–160 (1982).

17. Borgatti SP Identifying sets of key players in a social network. Computational & Mathematical
Organization Theory 12, 21–34 (2006).

18. Vitoriano B, Ortuño MT, Tirado G & Montero J A multi-criteria optimization model for
humanitarian aid distribution. Journal of Global Optimization 51, 189–208 (2011).

19. Kempe D, Kleinberg J & Tardos É Maximizing the spread of influence through a social network. In
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 137–146 (ACM, 2003).

20. Cohen R, Erez K, Ben-Avraham D & Havlin S Breakdown of the internet under intentional attack.
Physical Review Letters 86, 3682 (2001). [PubMed: 11328053]

21. Khalil E, Dai H, Zhang Y, Dilkina B & Song L Learning combinatorial optimization algorithms
over graphs. In Advances in Neural Information Processing Systems 30, 6348–6358 (2017).

22. Nazari M, Oroojlooy A, Snyder L & Takác M Reinforcement learning for solving the vehicle
routing problem. In Advances in Neural Information Processing Systems, 9839–9849 (2018).

23. Bello I, Pham H, Le QV, Norouzi M & Bengio S Neural combinatorial optimization with
reinforcement learning. Preprint at https://arxiv.org/abs/1611.09940 (2016).

24. Bengio Y, Lodi A & Prouvost A Machine learning for combinatorial optimization: a
methodological tour d’horizon. Preprint at https://arxiv.org/abs/1811.06128 (2018).

25. James J, Yu W & Gu J Online vehicle routing with neural combinatorial optimization and deep
reinforcement learning. IEEE Transactions on Intelligent Transportation Systems (2019).

26. Li Z, Chen Q & Koltun V Combinatorial optimization with graph convolutional networks and
guided tree search. In Advances in Neural Information Processing Systems, 539–548 (2018).

27. Hamilton W, Ying Z & Leskovec J Inductive representation learning on large graphs. In Advances
in Neural Information Processing Systems, 1024–1034 (2017).

28. Brown N & Sandholm T Superhuman ai for heads-up no-limit poker: Libratus beats top
professionals. Science 359, 418–424 (2018). [PubMed: 29249696]

29. Silver D et al. Mastering the game of go without human knowledge. Nature 550, 354 (2017).
[PubMed: 29052630]

30. Moravčík M et al. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker.
Science 356, 508–513 (2017). [PubMed: 28254783]

31. Schneider CM, Moreira AA, Andrade JS, Havlin S & Herrmann HJ Mitigation of malicious attacks
on networks. Proceedings of the National Academy of Sciences 108, 3838–3841 (2011).

32. Henderson K et al. Rolx: structural role extraction & mining in large graphs. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1231–
1239 (ACM, 2012).

Fan et al. Page 8

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1811.06128

33. Kipf TN & Welling M Semi-supervised classification with graph convolutional networks. In Int.
Conf. on Learn. Represent.(ICLR) (2017).

34. Lü L, Zhang Y-C, Yeung CH & Zhou T Leaders in social networks, the delicious case. PLOS One
6, e21202 (2011). [PubMed: 21738620]

35. Wang D, Cui P & Zhu W Structural deep network embedding. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 1225–1234 (ACM,
2016).

36. Erdős P & Rényi A On random graphs i. Publ. Math. Debrecen 6, 290–297 (1959).

37. Watts DJ & Strogatz SH Collective dynamics of ‘small-world’networks. Nature 393, 440 (1998).
[PubMed: 9623998]

38. Barabási A-L & Albert R Emergence of scaling in random networks. Science 286, 509–512 (1999).
[PubMed: 10521342]

39. Barabási A-L Network science (Cambridge university press, 2016).

40. Clusella P, Grassberger P, Pérez-Reche FJ & Politi A Immunization and targeted destruction of
networks using explosive percolation. Physical Review Letters 117, 208301 (2016). [PubMed:
27886508]

41. Rossi RA & Ahmed NK The network data repository with interactive graph analytics and
visualization. In Twenty-Ninth AAAI Conference on Artificial Intelligence (2015). URL http://
networkrepository.com.

Fan et al. Page 9

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://networkrepository.com
http://networkrepository.com

Figure 1. Finding key players in a network.
(a) The 9/11 terrorist network8, which contains 62 nodes and 159 edges. Nodes represent

terrorists involved in the 9/11 attack, and edges represent their social communications. Node

size is proportional to its degree. (b) Removing 16 nodes (cyan) with the highest degree

(HD) causes the considerable damage, rendering a remaining GCC (purple) of 14 nodes. (c)

Removing 16 nodes (cyan) with the highest collective-influence (CI) results in a

fragmentation and the remaining GCC (purple) contains 18 nodes. (d) FINDER removes

only 14 nodes (cyan), but leads to a more fragmented network and the remaining GCC

(purple) contains only 9 nodes. Note that in the application of maximizing spreading (under

linear threshold spreading dynamics with each node’s threshold being di −1, and di is its

degree), those key players are not removed but are activated, and the remaining GCC

represents inactivated nodes. By minimizing this inactivated GCC in spreading we are

effectively maximizing the spreading of information1.

Fan et al. Page 10

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2. The process of finding key players in a network using FINDER.
FINDER seeks to prioritize the key players, or design a node removal sequence, to minimize

the ANC (Eq. 1 or Eq. 2), or equivalently, minimize the area under the ANC curve, which is

generated by sequentially removing the key players identified by FINDER, with the

horizontal axis being the fraction of key players, and the vertical axis being the network

connectivity of the residual graph after removing these key players. Here we consider two

connectivity measures for the 9/11 terrorist network (Fig. 1), i.e., (a) pairwise connectivity

for the CN problem and, (e) GCC size for the ND problem. (b-d) or (f-h) The residual

graphs after removing the key players (cyan) determined by FINDER at different time points

marked in the ANC curve in (a) or (e), respectively.

Fan et al. Page 11

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3. Overview of the FINDER framework.
The whole framework consists of two phases: Phase-1: Offline training, during which the

agent FINDER is trained to perform well on synthetic graphs; Phase-2: Real-world

application, during which the well-trained agent is applied to a real-world network to find

the key players. (top) Offline Training. We first generate a batch of synthetic graphs. Then

we randomly sample one (or mini-batch) of them, and let the FINDER agent ‘play the game’

on the graph, i.e., complete a whole influencer finding process (denoted as an episode) as

illustrated in Fig. 2. Specifically, the agent interacts with the graph through a sequence of

states, actions, and rewards. Here, the state is defined as the residual network, the action is to

remove (or activate) the identified influencer (node), and the reward is the decrease of ANC

after taking the action. To determine the right action for a state, we first encode the current

graph and obtain each node’s embedding vector (shown as a color bar), which captures its

structure information and long-range interactions between node features (e.g., removal cost).

Then we decode these embedding vectors to scalar Q values (shown as green bars, with

heights proportional to Q values) for all the nodes to predict the long-term gains if taking

this action. Based on the calculated Q values, we adopt an ϵ-greedy action strategy, i.e., we

select the highest-Q node with probability (1-ϵ) and take a random action otherwise. To

balance between exploration and exploitation, ϵ is linearly annealed from 1.0 to 0.05 over

10,000 episodes. When a game (or an episode) is over (e.g., the residual graph becomes

completely disconnected), we collect the n-step transitions, i.e., 4-tuples in the form of (Si,

Ai, R(i,i+n), S(i+n)), where R(i, i + n) = ∑k = i
i + n Rk, from the above sequence, and store them.

into the experience replay buffer —- a queue that maintains the most recent M 4-tuples. In

our calculations, we choose M=50,000. Meanwhile, the agent gets updated (i.e., the

Fan et al. Page 12

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

parameters ΘE and ΘD for its encoder and decoder are updated) by performing the mini-

batch gradient descents over the loss (Eq. S27). As the episodes and updates repeat, the

agent gets increasingly intelligent and powerful in finding key players on complex networks.

(bottom) Real-world Application. Once the offline training phase finishes, we can apply the

well-trained agent to a real-world network. Here we use the mammalia-raccoon network41 as

an example, and we test on its largest connected component, which contains 14 nodes and

20 edges. Similar to the offline training phase, in the application phase the agent first

encodes the current network into low-dimensional embedding vectors, and then leverages

these embedding vectors to decode Q values for each node. Unlike the ϵ-greedy action

strategy during training, here we exploit the batch nodes selection strategy, which picks a

finite fraction (e.g., 1%) of highest-Q nodes at each adaptive step, and avoids the one-by-one

iterative select-and-recompute of the embedding vectors and Q values. This strategy does

not affect the final result, but it renders several orders of magnitude reduction in the time

complexity (Fig. S2–S3, Table S6–S7). Repeating this process until the network reaches the

user-defined terminal state (e.g., maximum budget nodes or minimum connectivity

threshold), the sequentially removed nodes constitute the optimal set of key players. See SI

Sec.II.D.1 for more details about the framework. Image credit: copyright, four robot images

(from left to right) in the offline training phase, are used under license from

Shutterstock.com.

Fan et al. Page 13

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Shutterstock.com

Figure 4. Performance of FINDER on synthetic graphs.
In all the cases, FINDER was trained on BA graphs of 30–50 nodes. We then evaluate the

well-trained FINDER on synthetic BA graphs of different scales: 30–50, 50–100, 100–200,

200–300, 300–400, and 400–500 nodes. For each scale, we randomly generate 100

instances, and report the average results over them. To obtain node-weighted graphs, we

assign each node a normalized weight, which is proportional to its degree (degree-weighted)

or a random non-negative number (random-weighted). (a-c) compare the results of HDA, CI,

RatioCut and FINDER on node-unweighted, degree-weighted, and random-weighted graphs,

respectively, for the CN problem. The results are the averaged ANC determined by the

pairwise connectivity, over 100 instances. We also compare with other heuristic methods,

including HBA, HCA and HPRA, see Table S7–S9 for details. (d-f) illustrate the results of

competing methods and FINDER for the ND problem, on node-unweighted, degree-

weighted and random-weighted graphs, respectively. The results are the averaged ANC

determined by the GCC size, over 100 random instances. The comparisons with other

baselines, including HBA, HCA, HPRA, BPD, and CoreHD, see Table S13–S15. It is

obvious that FINDER consistently outperforms other methods in different node weight

scenarios for both CN and ND problems.

Fan et al. Page 14

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5. Performance of FINDER on real-world networks.
We evaluate FINDER on nine real-world networks of five different types: criminal network,

biological network, communication network, infrastructure network, and social network,

representing different applications of influencer finding in these domains. These networks

cover a wide range of scales, with node set size ranging from hundreds to millions. The

original networks are all node-unweighted. To obtain node-weighted networks, we assign

each node a normalized weight, which is proportional to its degree (degree-weighted) or a

random non-negative number (random-weighted).We evaluate FINDER for both CN and ND

problems on these networks. (a-c) show the ANC results specified by the pairwise

connectivity, for HDA, CI, RatioCut and FINDER in solving CN problems on node

unweighted, degree-weighted, and random-weighted networks, respectively. (d-f) illustrate

the ANC curves of these methods on the Crime network with different node weights. ANC

curves for the remaining networks see Fig. S5–S7. (g-i) compare the ANC results

determined by the GCC size, for competing methods with FINDER on the ND problem. (j-l)

Fan et al. Page 15

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

illustrate the ANC curves of these methods on the Gnutella31 network with node-

unweighted, degree-weighted and random-weighted, respectively. See Fig. S8–S10 for ANC

curves of other real networks on the ND problem. Note that the FINDER utilized here is the

same as in Fig. 4, i.e., trained with synthetic BA graphs of 30–50 nodes. All ANC numerical

values shown in heatmaps are multiplied by 100 for visualization purpose. We can clearly

see that FINDER always produces the best results on these real networks for both CN and

ND problems with different node weight scenarios. Especially for the node-weighted

scenario, FINDER shows significant superiority over conventional methods. Running time

comparisons on these networks are shown in Table S13 and S17, where we demonstrate

remarkable efficiency advantage of FINDER, especially for large networks.

Fan et al. Page 16

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6. Cost distributions of key players identified by FINDER.
To further explain the superiority of FINDER over other methods in the node-weighted

scenario, we illustrate the cost distributions of the key players. (a) CN problem on the Crime

network with random node weights. The ANC is measured by the residual pairwise

connectivity with respect to the fraction of removal costs for three methods: HAD, RatioCut,

and FINDER. (b-d) The distributions of the influencer removal costs and the network with

highlighted key players identified by HDA (purple nodes), RatioCut (blue nodes) and

FINDER (red nodes), respectively. The target residual pairwise connectivity is set to be 0.5.

(e) ND problem on the Crime network with random node weights. The ANC is measured by

the residual GCC size with respect to the fraction of removed costs for three methods:

MinSum, GND and FINDER. (f-h) The distributions of the influencer removal costs and the

network with highlighted key players identified by MinSum (green nodes), GND (blue

nodes) and FINDER (red nodes), respectively. The target relative residual GCC size is set to

be 0.5, i.e., 50% of the original network size. For both CN and ND problems, larger nodes

denote larger node weights. Conventional methods take higher total costs since they tend to

target nodes with higher weights (removal costs), as shown in the histograms. By contrast,

FINDER produces a much more cost-effective strategy by avoiding those “expensive”

nodes.

Fan et al. Page 17

Nat Mach Intell. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Problem Formalization
	Model
	Framework
	Enocoding
	Decoding
	Offline Training
	Online Application
	Flexibility

	Results
	Results on Synthetic Graphs
	Results on Real-world Networks

	Conclusion
	Data availability
	Code availability
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

