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Abstract

Finding an optimal set of nodes, called key players, whose activation (or removal) would 

maximally enhance (or degrade) certain network functionality, is a fundamental class of problems 

in network science1,2. Potential applications include network immunization3, epidemic control4, 

drug design5, and viral marketing6. Due to their general NP-hard nature, those problems typically 

cannot be solved by exact algorithms with polynomial time complexity7. Many approximate and 

heuristic strategies have been proposed to deal with specific application scenarios1,2,8–12. Yet, we 

still lack a unified framework to efficiently solve this class of problems. Here we introduce a deep 

reinforcement learning framework FINDER, which can be trained purely on small synthetic 

networks generated by toy models and then applied to a wide spectrum of influencer finding 

problems. Extensive experiments under various problem settings demonstrate that FINDER 

significantly outperforms existing methods in terms of solution quality. Moreover, it is several 

orders of magnitude faster than existing methods for large networks. The presented framework 

opens up a new direction of using deep learning techniques to understand the organizing principle 

of complex networks, which enables us to design more robust networks against both attacks and 

failures.

Network, or graph in discrete mathematics, is a common data structure to describe numerous 

types of interactive systems13,14, e.g., the Internet, social media, transportation networks, 

power grids, food webs, and biomolecular networks. Such systems are greatly affected by a 

small fraction of important nodes, whose activation/removal would significantly improve/

degrade certain network functionality. Such important nodes have been named differently 

depending on their roles in different application scenarios, e.g., influential nodes1,15, vital 
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nodes16, key player nodes17, or critical nodes7. Hereafter we will simply call them key 

players.

Finding an optimal set of key players in complex networks has been a longstanding problem 

in network science with many real-world applications. Representative ones include: (i) 

destroy the communications in a criminal or terrorist network by arresting critical suspects8; 

(ii) destroy some critical proteins and neutralize the corresponding harmful protein 

complexes for rational drug design5; (iii) plan the resource allocation during the evacuation 

or reestablish critical traffic routers after a disaster in transportation networks18; (iv) handle 

various diffusion phenomenon on networks, including both the optimal spreading problem, 

i.e., maximizing the diffusion for influence spreading or viral marketing19, and the optimal 

immunization problem, i.e., minimizing the diffusion via epidemic control4, rumor 

control19, and network immunization20.

Depending on the specific application scenario, we need to define the corresponding 

measure to quantify the network functionality appropriately. Without loss of generality, 

hereafter we consider network connectivity as a key proxy for network functionality. After 

all, almost all network applications are typically designed to be run in a connected 

environment7. Commonly used network connectivity measures include the number of 

connected components, pairwise connectivity, the size of the giant connected component 

(GCC), the length of the shortest paths between two certain nodes, etc. In particular, the size 

of the GCC is a heavily studied connectivity measure1,2, since it is relevant to both the 

optimal attack problem and optimal spreading problem (Fig. S14). In fact, the optimal attack 

problem with the objective of minimizing the GCC size is exactly dual to the optimal 

spreading problem with the linear threshold spreading dynamics1. (Note that in general the 

optimal attack and spreading problems are not dual to each other.)

Finding an optimal set of key players in general graphs that optimizes nontrivial and 

hereditary connectivity measures are typically NP-complete7. This prohibits exact and 

scalable solutions of such problems for large-scale networks. Traditional heuristic or 

approximate algorithms1,2,8–12 either require substantial problem-specific search or suffer 

from deteriorated performances. They are often hard to offer a satisfying balance between 

effectiveness and efficiency. Moreover, most existing methods are ad hoc for specific 

application scenarios. Those designed for one particular application often fail on many other 

applications.

Inspired by the recent advances of deep learning techniques in solving combinatorial 

optimization problems21–26, here we introduce FINDER (FInding key players in Networks 

through DEep Reinforcement learning), a generic and scalable deep reinforcement learning 

framework to find key players in complex networks (see Fig. 1 for the demonstration of its 

superior performance over existing methods). In particular, FINDER incorporates inductive 

graph representation learning27 to represent graph states and actions, and employs a deep Q-

network that combines reinforcement learning and deep neural networks28–30 to 

automatically learn the strategy that optimizes the objective. Extensive experiments on 

various problem settings demonstrate that FINDER significantly outperforms handcrafted 

heuristics or approximate methods in terms of both solution quality and time complexity. 
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Since FINDER is trained purely on synthetic graphs generated by toy network models, the 

learned superior ability in solving complicated real-world problems suggests a new 

promising perspective to understand the organizing principles of complex networked 

systems.

Problem Formalization

Formally, given a network G = (V, ℰ), with a node set V and an edge set ℰ, and a predefined 

connectivity measure σ, our learning objective is to design a node removal strategy, i.e., a 

sequence of nodes (v1, v2, ⋯ , vN) to be removed, which minimizes the following 

accumulated normalized connectivity (ANC)31:

R v1, v2, ⋯, vN = 1
N ∑

k = 1

N σ G\ v1, v2, ⋯, vk
σ(G) (1)

Here, N is the total number of nodes in G, vi ∈ V denotes the i-th node to be removed, 

σ G\ v1, v2, ⋯, vk  is the connectivity of the residual graph after removing nodes in the set 

K = v1, v2, ⋯, vk  sequentially from G, and σ(G) is the initial connectivity of G before any 

node removal. The value of R can be viewed as an estimation of the area under the ANC 

curve, which is plotted with the horizontal axis being k/N and the vertical axis being 

σ G\ v1, v2, ⋯, vk /σ(G). In Fig. 2, we show examples associated with two different 

connectivity measures, where we apply FINDER to a small real network and plot the ANC 

curves with three network snapshots highlighted during the node removal procedures.

In certain application scenarios, different nodes are associated with different “weights”, i.e., 

removal costs. We can define a weighted ANC as follows:

Rcost v1, v2, ⋯, vN = ∑
k = 1

N σ G\ v1, v2, ⋯, vk
σ(G) c vk (2)

Here, c(vk) denotes the normalized removal cost associated with node vk, and 

∑k = 1
N c vk = 1. Note that Eq. 1 is a special case of Eq. 2, where c(vk) = 1/N. The range of 

both R and Rcost lies between 0 and 1 (SI Sec.IV.B).

In principle, our framework can deal with any well-defined connectivity measure 

σ: G ℝ+, which maps a graph into a non-negative real number. To demonstrate the 

power of our framework, here we consider two most commonly used measures: (i) pairwise 

connectivity σpair (G) = ∑Ci ∈ G
δi δi − 1

2 , where Ci is the i-th connected component in 

current graph G, and δi is the size of Ci, which corresponds to the critical node (CN) 

problem8; and (ii) size of the GCC σgcc(G) = max δi; Ci ∈ G , corresponding to the network 

dismantling (ND) problem2, which is also equivalent to the optimal immunization/spreading 

problem1.
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Model

Framework

Fundamentally different from traditional methods, FINDER takes a purely data-driven 

approach without using any domain-specific heuristic. As illustrated in Fig. 3(top), FINDER 

is offline trained on small synthetic random graphs generated from classic network models. 

For each graph, FINDER considers the finding of key players as a Markov Decision Process: 

interacting with the environment through a sequence of states, actions and rewards. Here, the 

environment is the network being analyzed, the state is defined as the residual network, the 

action is to remove or activate the identified key player, and the reward is the decrease of the 

ANC (Eq. 1 or Eq. 2) after taking the action. During this process, FINDER collects the trial-

and-error samples to update its parameters (Eq. S27), and becomes increasingly intelligent 

to solve the task (see Fig. 3 (top)). When this offline training phase is over, the well-trained 

FINDER is able to learn a long-term policy that can select an action to accumulate the 

maximum rewards from the current state. When applied to a real-world network, FINDER 

will simply repeat a greedy procedure (SI Sec.II.D.1) to return the optimal sequence of key 

players (see Fig. 3 (bottom)).

To ensure the success, we still face several challenges. First, how can we represent the states 
and actions in our setting? Second, how can we leverage these representations to form a 
score function that tells us the right action for a state? We refer to these two questions as an 

encoding problem and a decoding problem respectively.

Enocoding

For the encoding, traditional methods often use handcrafted features to represent nodes and 

graphs32, such as global or local degree distribution, motif counts, etc. However, these 

features are usually ad hoc and may lead to unsatisfactory performance. Here we leveraged 

graph representation learning (a.k.a. graph embedding) based on graph neural 

networks21,27,33 to characterize the network structural information into a low dimensional 

embedding space. In particular, we employed an inductive graph representation learning 

technique similar to GraphSAGE27 to iteratively aggregates node embedding vectors, which 

are initialized as node features, e.g., node degree or node removal cost, from the 

neighborhood, and followed by a non-linear transformation operator with learnable 

parameters. After several rounds of recursion, each node obtains an embedding vector, 

which captures both the node’s structural location on the graph and the long-range 

interactions between node features. To capture more complex graph information, we 

introduced a virtual node that considers all real nodes as neighbors to represent the entire 

graph34, and repeated the same embedding propagation process to obtain its representation 

(see SI Sec.II.D.1 and Algorithm S2 for more details on encoding).

Decoding

For the decoding, we designed a deep parameterization for the score function, i.e., the Q 
function. The Q function leverages the embeddings of states and actions from the encoder to 

calculate a score that evaluates the quality of potential actions. Specifically, we applied the 

outer product operation on embeddings of state and action to model finer state-action 
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dependencies. Then a multi-layer perceptron with rectified linear unit (ReLU) activation was 

utilized to map the outer product to a scalar value (see SI Sec.II.D.1 for more decoding 

details).

Offline Training

FINDER was trained over 200,000 randomly generated small synthetic graphs of 30–50 

nodes. In order to perform the end-to-end learning of the parameters in the encoder and 

decoder, we combined the n-step Q-learning loss21 and the graph reconstruction loss35 (Eq. 

S27), and used Adam gradient descent updates on mini-batch samples, drawn uniformly at 

random from the pool of stored experiences. The n-step Q-learning loss minimizes the gap 

between predicted Q values and target Q values, and the graph reconstruction loss preserves 

the original network structure in the embedding space. Algorithm S2 describes the complete 

training procedure.

Online Application

We evaluated FINDER on both synthetic graphs and various real-world networks. During 

the application phase, we removed a finite fraction of nodes at each adaptive step, instead of 

the oneby-one removal in the training phase. We found the performance was practically 

unaffected by the removal of up to 1% fraction (Fig. S2–S3, Table S6–S7). This batch nodes 
selection strategy enables FINDER scale as ~ O(E + N + NlogN)) time complexity (SI 

Sec.II.D.3, Fig. S4, Table S5), which is very efficient to handle large-scale real-world 

problems.

Flexibility

We created four FINDER agents to handle two connectivity measures σpair(·) and σgcc(·) 
(corresponding to CN and ND problems, respectively), under two scenarios: node-

unweighted and node-weighted. All the agents share the same architecture (SI Sec.II.D.1, 

Fig. 3), and the training procedure (Algorithm S3), except for the reward function, which is 

determined by the respective ANC. Extensive experiments demonstrate that our framework 

is universally effective on these application scenarios, and all FINDER variants that are 

designed for different problems under different scenarios, can converge very well on the 

validation data (Fig. S11). Thanks to its flexible architecture, we anticipate this framework 

can be applied to even more complex scenarios as well (see SI Sec.IV.F and Fig. S13, Table 

S18 for FINDER’s adaptation to the minimal percolation threshold problem).

Results

Results on Synthetic Graphs

In Fig. 4, we show the FINDER’s performances on synthetic graphs that are significantly 

larger than what they were trained on. We first explored the effects of different training 

graph types. Three classic network models, Erdős-Rényi (ER) model36, Watts-Strogatz 

(WS)37 model and Barabási-Albert (BA) model38, were used to generate both training and 

test graphs. As shown in Table S20, FINDER performs the best when test and training 

graphs are generated from the same model. Note that most of the real networks analyzed in 

this work exhibit power-law or fat-tailed degree distributions (Fig. S1). Such a high degree 
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heterogeneity is also a key feature of random graphs generated by the BA model. Hence, the 

agents trained on BA graphs perform consistently better than those trained on ER or WS 

graphs, when tested on various real-world networks (Table S21). To empower better 

generalizations, the agents that were later utilized for different application scenarios were all 

trained on BA graphs. As shown in Fig. 4, comparing with the state-of-theart baselines (see 

SI Sec.I for details), FINDER trained on small BA graphs have consistently achieved better 

results for both CN and ND problems under different node weights scenarios in synthetic 

graphs of much larger sizes.

Results on Real-world Networks

We then evaluated FINDER on various real-world networks from diverse domains (See SI 

Sec.III and Table S3 for descriptions). As shown in Fig. 5, FINDER consistently 

outperforms other methods on most networks in different application scenarios. Especially 

for node-weighted scenarios, which are more practical and challenging, FINDER excels to a 

large extent. Take the ND-node-degree-weighted scenario (Fig. 5k) as an example, if we are 

asked to dismantle Gnutella31 such that the remaining GCC is half of the original size, the 

current best method (HDA) requires about 40.3% total cost, while our model only needs 

14.1%, reducing near 26.2% cost. If given the same dismantling cost 0.2, the best available 

method (GND) fragments the network to 80.8% GCC size, while FINDER can be up to 

35.3%, which is 45.5% better. In addition to the effectiveness advantage, FINDER is also 

remarkably efficient (Table S10–S17), especially on large networks. For example, on Flickr 

network with millions of nodes and tens of millions of edges, FINDER is over 20 times 

faster than the best performing baseline (GND) for the ND node-degree-weighted scenario 

(7,734s vs 174,363s), and about 890 times faster than the best performing baseline 

(RatioCut) for the CN node-unweighted scenario (915s vs 815,411s). Note that most 

existing baseline methods do not have GPU implementations, while FINDER can be easily 

GPU-accelerated. To have a fair comparison with baseline methods, here we did not deploy 

GPU-acceleration for FINDER in the application phase. (We only utilized GPU to speed up 

the offline training phase.) Hence, the scalability or efficiency of FINDER presented here is 

rather conservative.

To further understand the effectiveness of FINDER under node-weighted scenarios, we 

calculated the cost distributions of the key players identified by different strategies, on the 

Crime network with randomly assigned node weights (removal costs). As shown in Fig. 6, 

FINDER tends to avoid choosing those “expensive” key players, which naturally leads to a 

more cost-effective strategy.

Conclusion

In summary, FINDER achieves superior performances in terms of both effectiveness and 

efficiency in finding key players in complex networks. It represents a paradigm shift in 

solving challenging optimization problems on complex networks. Requiring no domain-

specific knowledge but just the degree heterogeneity of real networks, FINDER achieves this 

goal by offline self-training on small synthetic graphs only once for a particular application 

scenario, and then generalizes surprisingly well across diverse domains of real-world 
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networks with much larger sizes. Thanks to the highly flexible framework of FINDER, for 

different application scenarios one just needs to replace the rewards with the respective 

connectivity measures. And one can further improve FINDER’s performance by tailoring 

the training data towards the target network with the configuration model (CM)39 (Table 

S19, Table S22), or by employing the reinsertion technique40 (Fig. S12, Table S9) (see SI 

Sec.IV.D for more details about different ways to refine FINDER). Finally, FINDER opens 

up a new direction of using deep learning techniques to understand the organizing principle 

of complex networked systems, which enables us to design more robust networks against 

both attacks and failures. The presented results also highlight the importance of classic 

network models, such as the BA model. Though extremely simple, it captures the key 

feature, i.e., degree heterogeneity, of many real-world networks, which tends out to be 

extremely useful in solving very challenging optimization problems on complex networks.

Data availability

All the data, including synthetic graphs and real-world networks, analyzed in this paper can 

be accessed through our Code Ocean compute capsule (10.24433/CO.3005605.v1).

Code availability

All source codes and models (including those that can reproduce all figures and tables 

analyzed in this work) are publicly available through our Code Ocean compute capsule 

(10.24433/CO.3005605.v1) or on Github https://github.com/FFrankyy/FINDER.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Finding key players in a network.
(a) The 9/11 terrorist network8, which contains 62 nodes and 159 edges. Nodes represent 

terrorists involved in the 9/11 attack, and edges represent their social communications. Node 

size is proportional to its degree. (b) Removing 16 nodes (cyan) with the highest degree 

(HD) causes the considerable damage, rendering a remaining GCC (purple) of 14 nodes. (c) 

Removing 16 nodes (cyan) with the highest collective-influence (CI) results in a 

fragmentation and the remaining GCC (purple) contains 18 nodes. (d) FINDER removes 

only 14 nodes (cyan), but leads to a more fragmented network and the remaining GCC 

(purple) contains only 9 nodes. Note that in the application of maximizing spreading (under 

linear threshold spreading dynamics with each node’s threshold being di −1, and di is its 

degree), those key players are not removed but are activated, and the remaining GCC 

represents inactivated nodes. By minimizing this inactivated GCC in spreading we are 

effectively maximizing the spreading of information1.
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Figure 2. The process of finding key players in a network using FINDER.
FINDER seeks to prioritize the key players, or design a node removal sequence, to minimize 

the ANC (Eq. 1 or Eq. 2), or equivalently, minimize the area under the ANC curve, which is 

generated by sequentially removing the key players identified by FINDER, with the 

horizontal axis being the fraction of key players, and the vertical axis being the network 

connectivity of the residual graph after removing these key players. Here we consider two 

connectivity measures for the 9/11 terrorist network (Fig. 1), i.e., (a) pairwise connectivity 

for the CN problem and, (e) GCC size for the ND problem. (b-d) or (f-h) The residual 

graphs after removing the key players (cyan) determined by FINDER at different time points 

marked in the ANC curve in (a) or (e), respectively.
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Figure 3. Overview of the FINDER framework.
The whole framework consists of two phases: Phase-1: Offline training, during which the 

agent FINDER is trained to perform well on synthetic graphs; Phase-2: Real-world 

application, during which the well-trained agent is applied to a real-world network to find 

the key players. (top) Offline Training. We first generate a batch of synthetic graphs. Then 

we randomly sample one (or mini-batch) of them, and let the FINDER agent ‘play the game’ 

on the graph, i.e., complete a whole influencer finding process (denoted as an episode) as 

illustrated in Fig. 2. Specifically, the agent interacts with the graph through a sequence of 

states, actions, and rewards. Here, the state is defined as the residual network, the action is to 

remove (or activate) the identified influencer (node), and the reward is the decrease of ANC 

after taking the action. To determine the right action for a state, we first encode the current 

graph and obtain each node’s embedding vector (shown as a color bar), which captures its 

structure information and long-range interactions between node features (e.g., removal cost). 

Then we decode these embedding vectors to scalar Q values (shown as green bars, with 

heights proportional to Q values) for all the nodes to predict the long-term gains if taking 

this action. Based on the calculated Q values, we adopt an ϵ-greedy action strategy, i.e., we 

select the highest-Q node with probability (1-ϵ) and take a random action otherwise. To 

balance between exploration and exploitation, ϵ is linearly annealed from 1.0 to 0.05 over 

10,000 episodes. When a game (or an episode) is over (e.g., the residual graph becomes 

completely disconnected), we collect the n-step transitions, i.e., 4-tuples in the form of (Si, 

Ai, R(i,i+n), S(i+n)), where R(i, i + n) = ∑k = i
i + n Rk, from the above sequence, and store them. 

into the experience replay buffer —- a queue that maintains the most recent M 4-tuples. In 

our calculations, we choose M=50,000. Meanwhile, the agent gets updated (i.e., the 
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parameters ΘE and ΘD for its encoder and decoder are updated) by performing the mini-

batch gradient descents over the loss (Eq. S27). As the episodes and updates repeat, the 

agent gets increasingly intelligent and powerful in finding key players on complex networks. 

(bottom) Real-world Application. Once the offline training phase finishes, we can apply the 

well-trained agent to a real-world network. Here we use the mammalia-raccoon network41 as 

an example, and we test on its largest connected component, which contains 14 nodes and 

20 edges. Similar to the offline training phase, in the application phase the agent first 

encodes the current network into low-dimensional embedding vectors, and then leverages 

these embedding vectors to decode Q values for each node. Unlike the ϵ-greedy action 

strategy during training, here we exploit the batch nodes selection strategy, which picks a 

finite fraction (e.g., 1%) of highest-Q nodes at each adaptive step, and avoids the one-by-one 

iterative select-and-recompute of the embedding vectors and Q values. This strategy does 

not affect the final result, but it renders several orders of magnitude reduction in the time 

complexity (Fig. S2–S3, Table S6–S7). Repeating this process until the network reaches the 

user-defined terminal state (e.g., maximum budget nodes or minimum connectivity 

threshold), the sequentially removed nodes constitute the optimal set of key players. See SI 

Sec.II.D.1 for more details about the framework. Image credit: copyright, four robot images 

(from left to right) in the offline training phase, are used under license from 

Shutterstock.com.
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Figure 4. Performance of FINDER on synthetic graphs.
In all the cases, FINDER was trained on BA graphs of 30–50 nodes. We then evaluate the 

well-trained FINDER on synthetic BA graphs of different scales: 30–50, 50–100, 100–200, 

200–300, 300–400, and 400–500 nodes. For each scale, we randomly generate 100 

instances, and report the average results over them. To obtain node-weighted graphs, we 

assign each node a normalized weight, which is proportional to its degree (degree-weighted) 

or a random non-negative number (random-weighted). (a-c) compare the results of HDA, CI, 

RatioCut and FINDER on node-unweighted, degree-weighted, and random-weighted graphs, 

respectively, for the CN problem. The results are the averaged ANC determined by the 

pairwise connectivity, over 100 instances. We also compare with other heuristic methods, 

including HBA, HCA and HPRA, see Table S7–S9 for details. (d-f) illustrate the results of 

competing methods and FINDER for the ND problem, on node-unweighted, degree-

weighted and random-weighted graphs, respectively. The results are the averaged ANC 

determined by the GCC size, over 100 random instances. The comparisons with other 

baselines, including HBA, HCA, HPRA, BPD, and CoreHD, see Table S13–S15. It is 

obvious that FINDER consistently outperforms other methods in different node weight 

scenarios for both CN and ND problems.
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Figure 5. Performance of FINDER on real-world networks.
We evaluate FINDER on nine real-world networks of five different types: criminal network, 

biological network, communication network, infrastructure network, and social network, 

representing different applications of influencer finding in these domains. These networks 

cover a wide range of scales, with node set size ranging from hundreds to millions. The 

original networks are all node-unweighted. To obtain node-weighted networks, we assign 

each node a normalized weight, which is proportional to its degree (degree-weighted) or a 

random non-negative number (random-weighted).We evaluate FINDER for both CN and ND 

problems on these networks. (a-c) show the ANC results specified by the pairwise 

connectivity, for HDA, CI, RatioCut and FINDER in solving CN problems on node 

unweighted, degree-weighted, and random-weighted networks, respectively. (d-f) illustrate 

the ANC curves of these methods on the Crime network with different node weights. ANC 

curves for the remaining networks see Fig. S5–S7. (g-i) compare the ANC results 

determined by the GCC size, for competing methods with FINDER on the ND problem. (j-l) 
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illustrate the ANC curves of these methods on the Gnutella31 network with node-

unweighted, degree-weighted and random-weighted, respectively. See Fig. S8–S10 for ANC 

curves of other real networks on the ND problem. Note that the FINDER utilized here is the 

same as in Fig. 4, i.e., trained with synthetic BA graphs of 30–50 nodes. All ANC numerical 

values shown in heatmaps are multiplied by 100 for visualization purpose. We can clearly 

see that FINDER always produces the best results on these real networks for both CN and 

ND problems with different node weight scenarios. Especially for the node-weighted 

scenario, FINDER shows significant superiority over conventional methods. Running time 

comparisons on these networks are shown in Table S13 and S17, where we demonstrate 

remarkable efficiency advantage of FINDER, especially for large networks.
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Figure 6. Cost distributions of key players identified by FINDER.
To further explain the superiority of FINDER over other methods in the node-weighted 

scenario, we illustrate the cost distributions of the key players. (a) CN problem on the Crime 

network with random node weights. The ANC is measured by the residual pairwise 

connectivity with respect to the fraction of removal costs for three methods: HAD, RatioCut, 

and FINDER. (b-d) The distributions of the influencer removal costs and the network with 

highlighted key players identified by HDA (purple nodes), RatioCut (blue nodes) and 

FINDER (red nodes), respectively. The target residual pairwise connectivity is set to be 0.5. 

(e) ND problem on the Crime network with random node weights. The ANC is measured by 

the residual GCC size with respect to the fraction of removed costs for three methods: 

MinSum, GND and FINDER. (f-h) The distributions of the influencer removal costs and the 

network with highlighted key players identified by MinSum (green nodes), GND (blue 

nodes) and FINDER (red nodes), respectively. The target relative residual GCC size is set to 

be 0.5, i.e., 50% of the original network size. For both CN and ND problems, larger nodes 

denote larger node weights. Conventional methods take higher total costs since they tend to 

target nodes with higher weights (removal costs), as shown in the histograms. By contrast, 

FINDER produces a much more cost-effective strategy by avoiding those “expensive” 

nodes.
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