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Abstract

In magnetometry using optically detected magnetic resonance of nitrogen vacancy (NV−) centers, 

we demonstrate more than one order-of-magnitude speed up with sequential Bayesian experiment 

design as compared with conventional frequency-swept measurements. The NV− center is an 

excellent platform for magnetometry with potential spatial resolution down to few nanometers and 

demonstrated single-defect sensitivity down to nT/Hz1/2. The NV− center is a quantum defect with 

spin S = 1 and coherence time up to several milliseconds at room temperature. Zeeman splitting of 

the NV− energy levels allows detection of the magnetic field via photoluminescence. We compare 

conventional NV− center photoluminescence measurements that use pre-determined sweeps of the 

microwave frequency with measurements using a Bayesian inference methodology. In sequential 

Bayesian experiment design, the settings with maximum utility are chosen for each measurement 

in real time based on the accumulated experimental data. Using this method, we observe an order 

of magnitude decrease in the NV− magnetometry measurement time necessary to achieve a set 

precision.

INTRODUCTION

This study focuses on magnetometry using optically detected magnetic resonance of NV− 

centers. The ability to optically prepare and manipulate spin states, along with a long spin 

lifetime and robustness to the environment made NV− centers a promising platform for 

application in various areas. A few prominent examples include quantum computing [1], 

cryptography [2] and memory [3,4]; bio-compatible markers [5] and drug delivery [6]; 

mechanical [7], temperature [8,9], electric [10] and magnetic sensors [11–13]. The concept 

of NV− center magnetometry [14] was experimentally demonstrated in 2008 in two 

independent studies by Balasubramanian et al. [11] and Maze et al. [12], followed by 

hundreds of other studies [15].

Magnetometry-based imaging using NV− centers promises several advantages over the 

existing magnetic imaging and scanning techniques. The NV− center does not carry a 

significant magnetic moment, making it a non-invasive technique, unlike magnetic force 

microscopy (MFM) which can suffer from the interaction between sample and the magnetic 
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tip. Magneto-optic Kerr effect (MOKE) microscopy is limited by optical resolution and is 

mostly suitable only for studying materials with a strong Kerr effect. In contrast, NV− center 

magnetometry spatial resolution is ultimately only limited by the distance between NV− 

center and the sample, which can be less than ten nanometers [16]. Superconducting 

quantum interference device (SQUID) magnetometry provides unrivaled sensitivity but 

requires cryogenic temperatures, and has low spatial resolution, though attempts at 

miniaturizing the technology are in progress [17]. NV− center magnetometry can operate in 

a broad range of temperatures, including room temperature and above. These advantages 

make NV− center an excellent platform for magnetometry [15,18,19] with potential spatial 

resolution down to few nanometers and demonstrated sensitivity down to nT/Hz1/2 [20,21].

Recent research efforts have been directed at increasing the speed and precision of NV− 

center magnetometry measurements. Some of these research efforts summon help from 

additional hardware to achieve the goal. By modulating the microwave frequency that drives 

spin-state transitions of the NV− center and by demodulating the photoluminescence signal 

using lock-in amplifiers, significant gains in signal-to-noise ratio and measurement speed 

have been achieved [20,22–24]. However, such an approach generally requires a high 

photoluminescence signal by simultaneous measurement of multiple NV− centers, which 

sacrifices the spatial resolution. Another approach that uses specialized hardware is using 

the differential photon rate meter that can track photoluminescence signal even at low 

photon count rate, though it does not significantly improve signal-to-noise ratio [25]. In 

addition to “hardware” approaches, sophisticated algorithms—“software” approaches—have 

also shown promise. Simulations have showed that neural networks improve NV− center 

readout fidelity [26]. Sequential Bayesian experiment design [27] is another promising 

machine learning “software” approach. Theoretical studies have discussed how Bayesian 

methodology [28–31] can be used in determining the unknown parameters of a quantum 

system [32–36], and magnetometry in particular [37–40]. Encouragingly, in recent 

experimental studies Bayesian methodology has proven to be advantageous in quantum 

Hamiltonian learning [41] and measurements of pulsed Ramsey magnetometry using NV− 

centers [42,43]. In this study, we show how combining sequential Bayesian experiment 

design with conventional optically detected magnetic resonance NV− center magnetometry 

leads to better measurement strategies. In particular, we carry out experiments that compare 

using a conventional—swept-frequency NV− center magnetometry protocol—with the 

measurements that incorporate sequential Bayesian experiment design.

BACKGROUND

Many of the useful properties of NV− centers hinge on the fact that their photoluminescence 

depends on their spin state. The NV− center is created when two adjacent carbon atoms in a 

diamond lattice are substituted with a vacancy and a negatively charged nitrogen atom, 

forming a spin S = 1 quantum defect (Fig. 1(a), see Supplemental Material [44] section S.1 

for more details). Photon absorption moves the NV− center from the ground state to the 

excited state, while preserving its spin projection mS (Fig. 1(b)) [45,46]. Eventually, the 

center relaxes back to the ground state, but the relaxation process is spin dependent. An 

excited state with mS = 0 mostly relaxes back to the ground state with mS = 0 by emitting a 

red photon. In contrast, the excited state with mS = ±1, can relax by two mechanisms: either 
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back to the ground state with mS = ±1 by emitting a red photon, or to any mS through a dark 

state, without emitting a visible photon (detailed energy level structure of NV− center can be 

found in Supplemental Material S.1). Hence, photoluminescence of NV− centers under laser 

excitation is brighter if the center is initially in mS = 0 and dimmer if it is in mS = ±1 states. 

This phenomenon allows optical read-out of the spin state by monitoring the 

photoluminescence rate. Additionally, the ground state with mS = 0 of the NV− center can be 

prepared by continuous illumination that cycles NV− centers through ground state—excited 

state—ground state transitions. Since the mS = ±1 state can transition to the mS = 0, but no 

reverse transition is available, eventually, the center ends up in mS = 0 with high probability. 

In all, the spin-dependent optical relaxation allows the spin state to be both initialized and 

read out.

The spin state of the NV− center can also be controlled with microwaves. When the 

microwave photon energy matches the energy difference between the ground levels with 

spin projection mS = 0 and the mS = ±1 spin state, transitions occur. The microwave energies 

at this resonance conditions are given by

EMW = ℎfMW = ℎDGS + gμBΔmSB + mIAGS
HF, (1)

where h ≈ 6.62×10−34 J/Hz is the Planck constant, fMW is the microwave frequency, DGS ≈ 
2.87 GHz is the zero-field splitting, g ≈ 2 is the electron g-factor inside the diamond lattice, 

μB ≈ 9.27 J·T−1 is the Bohr magneton, ΔmS is the spin projection difference between the 

final and initial ground states, B is the applied magnetic field, mI is the nuclear spin 

projection (preserved in the transition), and AGS
HF is the energy correction due to the hyperfine 

interaction of the ground state levels with 14N nucleus (spin I = 1). Note that strain-induced 

splitting of the energy levels in diamond should also be considered when measuring small 

magnetic fields below 1 mT.

Optically detected magnetic resonance [47,48] is observed as a reduction in 

photoluminescence. Constant illumination populates the mS = 0 state, and dips in the photon 

count are observed when microwaves induce transitions to the mS = ±1 states. One can 

extract value of the external magnetic field B from the frequencies of the dips in the 

photoluminescence spectrum that correspond to the frequencies when NV− center transitions 

to mS = +1 and mS = +1 states (Fig. 1(c)). This technique is a basis of NV− magnetometry.

The resonance frequencies described in (1) yield a model for the normalized photon count 

signal (y = {μ}) that is a combination of three Lorentzian curves, one for each of the 14N 

nuclear Iz states in the hyperfine interaction-split spectrum of the NV− center:

μ = 1 − a · kNP
(f − fB − ΔfHF)2 + Ω2 − a

(f − fB)2 + Ω2 − a/kNP
(f − fB + ΔfHF)2 + Ω2 . (2)

Here fB is the center resonance frequency that corresponds to the NV− center transition from 

{mS = 0, mI = 0} to {mS = +1, mI = 0} state, ΔfHF = AGS
HF/ℎ is the hyperfine splitting, a is an 

overall contrast factor, Ω is a linewidth, and kNP characterizes the nuclear polarization. The 

coupling between NV− center electrons and the nitrogen nucleus spin (naturally abundant 
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14N, I = 1) leads to the weak spin transfer of constant polarization of the electron spin to 

nucleus. However, the nitrogen nucleus is not fully polarized in the presence of slight 

misalignment of the external magnetic field with the axis of the NV− center [49,50]. This 

leads to the splitting of the NV− center transitions into three photoluminescence dips of 

different amplitudes corresponding to mI = −1, 0 and +1, which are separated in frequency 

by the hyperfine splitting ΔfHF (Fig. 1(c)). For every measurement with microwave 

excitation, a reference photon count with microwaves switched off is used as a normalizing 

factor. Throughout this paper, we treat the excitation frequency f as the lone experimental 

setting design d = {f} and the five parameters θ = {fB, ΔfHF, a, Ω, kNP} as unknowns.

We use the triple-resonance spectrum described by (2) to compare the effectiveness of 

measurement protocols. The goal of the experiment is to determine the center resonance 

frequency fB. The external magnetic field in NV− magnetometry is given by the equation |B| 

= (h/gμB)·(fB − DGS), where gμB/h ≈ 28 MHz/mT is the combination of the physical 

constants. The search range for the signal frequency was from 3040 MHz to 3200 MHz, 

which corresponds the magnetic field in the range from 6 mT to 12 mT. The generated 

electromagnet field was set to B ≈ 8.32 mT (picked by a random number generator) for the 

results shown in this paper, corresponding to the NV− resonance frequency fB ≈ 3103 MHz. 

The field was treated as an unknown in the measurements and data analysis.

In the conventional NV− magnetometry measurements the photoluminescence of the sample 

was monitored while scanning the microwave frequency from 3040 MHz to 3200 MHz with 

20 kHz step. Hence, each frequency scan consisted of 8000 normalized photoluminescence 

measurements.

The sequential Bayesian experiment design measurements iterated over a three-step cycle 

comprising a setting choice (design) from the allowed microwave frequencies, measurement, 

and data analysis via Bayesian inference. Here, we provide an overview of the process, and 

direct the interested reader to the Supplemental Material [44] (sections S.2 and S.3) and the 

references [27,34,51,52] for more detailed descriptions.

Bayesian methods treat the unknown parameters θ as random variables with a probability 

distribution p(θ). In this application, θ = {fB, ΔfHF, a, Ω, kNP} are the parameters of the 

model function given in Eq. (2). After n iterations, the parameters are described by a 

conditional distribution p(θ|yn, dn) given accumulated measurement results yn = (y1, y2, …, 

yn} obtained at frequency settings (designs) dn = {d1, d2, …, dn}.

In the n + 1th iteration, the experiment design step uses the parameter distribution p(θ|yn, 

dn), to inform the choice of a setting design dn+1 for the next measurement. The algorithm 

models a distribution of measurement predictions for each possible design and then predicts 

the average improvement in the parameter distribution that would result from the predicted 

data. “Improvement” is quantified as a predicted change in the information entropy of the 

parameter distribution and it is expressed as a utility function U(d) [53,54]. The derivation of 

U(d) produces a qualitatively intuitive result: it does the most good to “pin down” the 

measurement results where they are sensitive to parameter variations. The new setting dn+1 

is selected to maximize U(d).
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After the setting dn+1 is used to obtain the measurement result yn+1 these values are used to 

refine the parameter distribution. Using Bayesian inference,

p(θ yn + 1, dn + 1)∝p(yn + 1 θ, dn + 1)p(θ yn, dn) (3)

Where p(yn+1|θ, dn+1) is the likelihood, the probability of observing the measured value yn+1 

calculated for arbitrary parameter values θ given the frequency setting dn+1. With increasing 

iteration number, the parameter distribution typically narrows, reflecting increasingly precise 

estimates of the parameter values.

In each iteration, the sequential Bayesian experiment design algorithm makes an informed 

setting decision and incorporates new data to inform the next decision. On a qualitative 

level, the Bayesian method formalizes an intuitive approach of making rough initial 

measurements to guide later runs, but the Bayesian method offers additional advantages. 

Bayesian inference incorporates new data, allowing for semicontinuous monitoring of 

“fitting“ statistics, and result-based stopping criteria. The utility function provides a non-

heuristic, flexible, data-based method for setting decisions. These advantages are especially 

important for situations where automation is required, speed is essential, or measurement 

data is expensive.

Software and documentation for sequential Bayesian experiment design is provided online 

[55].

EXPERIMENTAL DETAILS

In this study, we used a commercially available single crystal diamond grown by chemical 

vapor deposition (CVD). Sample size was 3.0 mm × 3.0 mm × 0.3 mm, with {100} top 

surface orientation and surface roughness below 30 nm. The diamond (type IIa) had nitrogen 

concentration below 1 ppm and boron concentration below 0.05 ppm according to the 

manufacturer. The sample was mounted on top of the 50 mm long microstrip line, which 

was used to supply microwaves to manipulate spin state of the NV− center. The microstrip 

line with the sample was placed in an electromagnet between pincer-shaped poles that were 

oriented to align with the [111] direction of the diamond lattice (arcsin 2/3 ≈ 54.7° from the 

vertical). In this arrangement, the magnetic field is pointing along one of the four possible 

orientations of NV− center axes (vector connecting nitrogen atom to the vacancy site).

A green laser with 520 nm wavelength was used to optically excite NV− center. The 0.7 

numerical aperture (NA) objective of a custom-built confocal microscope was located above 

the sample to focus laser excitation inside the diamond and to collect fluorescence from the 

NV− center. A dichroic beamsplitter with the edge at 650 nm was used to separate excitation 

laser light from the collected fluorescence. After further wavelength selection with 647 nm 

long-pass filters, the collected fluorescence was coupled into a multimode fiber and directed 

to the photon detector. For each data point, a 50 ms photon count with the microwaves on 

was divided by a subsequent 50 ms reference count with microwaves off. The excitation 

using green laser light was on continuously. Only 10 mW of microwave power (at the 

source) and 225 μW of laser power (before the objective) were sent to the sample. The laser 

power was set using the linear polarizer and the half-wave plate. The combination of laser 
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power, microwave power and counting time produced measurements with a signal-to-noise 

ratio on the order of 1. Such experimental setup showcases ability of sequential Bayesian 

experiment design to locate and measure complex multiple-peak signal even in extremely 

noisy data, and shows its broad dynamical range for sensitivity.

RESULTS AND DISCUSSION

First, we report the results of the conventional NV− magnetometry measurements. Figure 

1(d) shows the photoluminescence data measured in one frequency scan. Dips in the 

photoluminescence spectrum corresponding to optically detected magnetic resonance are 

visible with a signal-to-noise ratio on the order of one. We follow the conventional approach 

to improve the signal-to-noise, which is to remeasure the same scanning range and average 

the data in the scans. Figures 1(e) – 1(g) show averaged data for increasing numbers of 

scans. The signal-to-noise ratio improves as the inverse square root of the number of the 

averaged scans.

To gauge the evolution of parameter uncertainty as a function of scan number, we “fit” the 

averaged data using Bayesian inference to determine mean values and standard deviations 

from the parameter distribution. To allow direct comparison, we used the same algorithm for 

Bayesian inference as in the sequential design data below. Like the overall signal-to-noise 

ratio, the standard deviation of the resonance frequency also follows an inverse square root 

dependence on the total number of the scans (Fig. 1(h)).

Photoluminescence data of the NV− magnetometry measurements using sequential Bayesian 

experiment design are shown in Figs. 1(i) – 1(l). Here the data are plotted without averaging. 

While initial frequency sampling roams across the whole allowed frequency range (Figs. 1(i) 

and 1(j)), the later measurements almost exclusively focus on the signal location near the 

resonance dips where the photoluminescence value is lower (Figs. 1(k) and 1(l)). The 

standard deviation σf of the center resonance frequency fB is plotted as a function of the 

number of measurements in Fig. 1(m). The standard deviation drops by three orders of 

magnitude within the first two hundred measurements.

We plot evolution of the probability distribution p(θ) of the signal frequency fB and 

hyperfine splitting ΔfHF parameters in Figure 2. The probability distribution is implemented 

using sequential Monte Carlo where the probability density in parameter space is 

represented by the density of points and by a weight factor attached to each point. After each 

measurement, the weights are recalculated using Bayesian inference. Fig. 2(a) shows the 

initial, prior distribution, which consists of 10 000 points distributed through the parameter 

space with equal weights of 10−4 (Fig. 2(a)). The sum of all weights is normalized to 1.

Fig. 2(b) plots the probability distribution after the first measurement, which yielded μ1 = 

1.014 forthe normalized photon count at f1 = 3154.26 MHz. Since the resonances are dips in 

the photon count, values of μ > 1 reduce the likelihood that the resonances are located near 

the measurement frequency f1. To highlight this effect, distribution points with weights w < 

10−4 are colored cyan and weights w ≥ 10−4 are red. After several cycles of measurements 

and updating the weights, a resampling algorithm redistributes points, allowing high-weight 
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points to survive, multiply, and diffuse slightly while low-weight points face a greater 

probability of elimination (see section S.4 of Supplemental Material). Resampling allows the 

computational resources to be focused on high-probability regions of parameter space 

without completely abandoning low-probability regions. The effects of resampling are 

visible in Fig. 2(d) and later panels with the higher concentration of points near 3090 MHz. 

After the first two hundred measurements, the p(fB) distribution has effectively contracted 

from spanning over the range of 150 MHz to less than 1 MHz (Figs. 2(k) and 2(l)). 

Interestingly, redistribution of the weights also allows probability distribution to diffuse 

beyond the initial boundary conditions. For example, initial weights occupy ΔfHF parameter 

space from 1 MHz to 3 MHz (Figs. 2(a) – 2(c)), but after 100 measurements, resampling 

steps have allowed the probability distribution to span ΔfHF parameter space from 0.5 MHz 

to 4 MHz. This diffusion allows slow convergence to values outside the prior distribution—

i.e., in the areas where the experimenter does not expect to find final parameters’ values—

which is helpful in cases when experimenter does not have an accurate initial estimate for 

parameter.

The evolution of the NV− magnetometry measurements using sequential Bayesian 

experiment design is in sharp contrast with the evolution of the conventional NV− 

magnetometry measurements. The standard deviation of the signal frequency using 

sequential Bayesian experiment design follows a typical pattern displayed in Figure 1(m). 

After an initial period of broad sampling of parameter space, the algorithm focuses 

measurements near the resonance frequencies (Fig. 3(a)) and the probability distribution 

p(fB) contracts rapidly. After this contraction, the standard deviation of fB decreases as the 

inverse square root of the total number of the measurements n (Fig. 1(m)). In contrast, the 

standard deviation of the signal frequency in the swept-frequency measurements does not go 

through such rapid contraction phase and follows an inverse square root of n scaling from 

the beginning (Fig. 1(h)).

The difference in the measurement strategies can be clearly seen in the photoluminescence 

data for the first thousand measurements. Sequential Bayesian experiment design has 

already narrowed down the probability distribution p(fB) for the signal frequency, and most 

of the measurements are taken at the signal position—the location of the three hyperfine-

split dips (Figs. 3(a) orange solid circles, 3(c) and 3(d)). In contrast, the frequency sweep in 

the conventional measurements has not even reached the frequency where the signal is 

located, and all 1000 data points were spent on measuring the background (Figs. 3(a) purple 

solid circles and 3(b)). After 24000 measurements (3 full range conventional sweep scans), 

only 3 measurements were performed at each frequency at the signal location by the 

conventional NV− magnetometry (Fig. 3(g)), compared with peak of 214 measurements per 

frequency for sequential Bayesian experiment design measurements (Fig. 3(j)). This 

concentration of measurements results in a standard deviation of the averaged Bayesian 

measurement (Fig 3(i) that is an order of magnitude smaller than in the conventional 

measurement (Fig. 3(f)).

An interesting behavior of the utility function U(d={f}) can be seen in Fig. 3(j). In the 

central, mI = 0 photoluminescence dip area most of the measurements are concentrated near 

its center (frequency fB) while at the outer dips located at fB − ΔfHF and fB + ΔfHD, 
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measurements are concentrated on the sides of the dips, producing double-peak structures in 

the distribution of the measurements (Fig. 3(j)). In simulations and measurements on single-

dip resonances, similar focus on the sides of dips is typical behavior, and it is consistent with 

the high sensitivity of the sides of the dip model to the resonance frequency parameter. On 

the other hand, the central concentration of measurements that we observe at the central dip 

in Fig. 3(j) would be atypical behavior for single resonances. We speculate that this behavior 

stems from the triple-resonance model’s (2) implicit assumption that the center resonance 

lies at the midpoint between the outer resonances.

The “smart” measurement strategy of taking data into account on the fly—instead of waiting 

until the end of the experiment—allows the NV− magnetometry based on sequential 

Bayesian experiment design to dramatically outperform conventional NV− magnetometry. 

For example, to achieve the precision of σf = 5.5 10−3 MHz standard deviation of the signal 

frequency, the conventional sweep-based NV− magnetometry requires 106 measurements, 

while the NV− magnetometry based on sequential Bayesian experiment design requires only 

24 350 measurements to achieve the same precision. Using the ratio between 1/ n scaling of 

the standard deviations of the signal frequencies for two methods (Fig. 4), sequential 

Bayesian experiment design magnetometry was determined to be 45 times faster than the 

conventional measurement approach.

Up to this point, we have compared measurement protocols on the basis of the number of 

measurements, but “wall-clock” time may be a more relevant basis for comparison, since 

sequential Bayesian experiment design comes with an added cost of computational time. 

Photons from NV− centers are counted for 100 ms at each data point (50 ms with 

microwaves on, followed by 50 ms with microwaves off). In the conventional protocol, the 

average time spent on measuring one data point is 150 ms. The additional 50 ms time is 

spent on communication between the devices, saving data etc. Using sequential Bayesian 

experiment design, the average time spent on measuring one data point is 204 ms, a 36 % 

(54 ms) increase in measurement time compared with the conventional setup. The additional 

time represents the added computational cost of Bayesian inference and utility calculations 

for each measurement. The computation time depends on computer hardware and 

programming methods. Here we report results using a single processor core of an ordinary 

PC programmed in Python using the Numpy package (see S.4 of Supplemental Material). 

Compiled code and parallel computation offer avenues for significant reductions in 

computation time [56,57]. The cost of an additional processor (several hundred dollars) is 

also negligible compared with the cost of the other hardware typically used in the NV− 

magnetometry experiments. However, in the light of the 4400 % speedup, the associated 

additional Bayesian computation time (36 % longer measurement time) is negligible, even 

when performed on the ordinary processor and without using parallel threads.

In the NV− measurements that we have carried out using sequential Bayesian experiment 

design, we always observe more than one order of magnitude speedup. The amount of 

speedup depends on experimental setup, signal, set of parameters and settings, and reaches 

close to two orders of magnitude for some of the experiments that we have carried out. A big 

factor that influences the speedup is the fraction of settings space occupied by the signal, 

compared to the whole space spanned by the settings d (scanning or sensing range). In the 

Dushenko et al. Page 8

Phys Rev Appl. Author manuscript; available in PMC 2021 June 10.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



experiment described in this paper, signal occupies roughly 10 % of the whole scanning 

range (16 MHz out of the 160 MHz frequency range: 8 MHz is occupied by the dips and 4 

MHz on each side by their shoulders). This value can be much smaller in magnetometers/

sensors with broad sensing range, which will lead to even larger speedups. However, a focus 

on the measurements with maximum utility function allows sequential Bayesian experiment 

design to be beneficial even for measurements where signal is present throughout the whole 

settings space d (see section S.5 of the Supplemental Material for more details). As a rule of 

thumb, the more time an experimental procedure spends on measuring data with low utility 

function values (for example, areas away from the signal or areas with small signal-to-noise 

ratio), the more beneficial will be implementation of the measurements using sequential 

Bayesian experiment design. Sequential Bayesian experiment design can be particularly 

useful for maturing NV− center magnetometry technology and moving it into the market. 

Scanning magnetometers or compact in-the-field sensors need to obtain data as fast as 

possible. Sequential Bayesian experiment design can be used as a much faster alternative to 

the numerous averaging scans. It can also be combined with other approaches that improve 

sensitivity, such as magnetometry using complicated pulse sequences. While the current 

study focused on NV− center magnetometry using sequential Bayesian experiment design, 

the reported methods—and corresponding speedups—are directly transferable into other 

areas beyond NV− centers magnetometry.

CONCLUSION

In this study, we report more than order-of-magnitude speedup of NV− magnetometry using 

sequential Bayesian experimental design, compared with the conventional NV− 

magnetometry. The large gain in the speed/precision of the NV− center magnetometry using 

sequential Bayesian experiment design demonstrated in this study is readily translatable to 

other applications beyond magnetometry and experiments with the NV− centers. The 

developed optbayesexpt software that was used to carry out sequential Bayesian experiment 

design measurements is available online for public use free of charge.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
(a) Crystal structure of the NV− center inside diamond lattice. Green spheres denote carbon 

atoms, yellow sphere is a nitrogen atom, purple sphere is a vacancy. Each white line 

corresponds to an sp3 bond created by a pair of electrons. (b) Schematic structure of the 

transitions between energy levels of the NV− center. NV− center in the ground state can be 

excited by the laser light (green arrows—transitions due to the absorbed photons); the 

process preserves spin projection mS. From the excited state NV− center can relax back to 

the ground state by emitting red photon (mS = ±1 or mS = 0 excited states; red arrow—

transitions due to the emitted photons), or non-radiatively relax through the dark state (only 

mS = ±1 excited states; dashed gray arrow). Transition between the states with mS = ±1 and 

mS = 0 can be induced by microwaves (blue arrow). (c) Schematics of the 

photoluminescence spectrum of the NV− center under application of microwave irradiation 

and the external magnetic field B. The six dips are present due to the Zeeman splitting and 

hyperfine interaction, (d) – (g) panels show the averaged data from (d) 1 scan, (e) 5 scans, (f) 

30 scans, (g) 140 scans (inset shows enlarged signal area) of the conventional NV− 

magnetometry using photoluminescence detection under sweeping of the microwave 

frequency. Magnetic field is calculated using the position of the signal (central dip) in the 

photoluminescence spectrum. (h) Dependence of the standard deviation of the signal 

frequency fB on the number of photoluminescence measurements. Each solid purple circle 

corresponds to a unique number of averaged frequency sweep scans; each scan consists of 

8000 measured data points. Black symbols correspond to the data from panels (d) – (g). 

Black solid line shows inverse square root scaling. Note the logarithmic scale. (i) – (l) panels 
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show the data from (i) 10, (j) 50, (k) 200, (I) 1000 photoluminescence measurements of the 

NV− magnetometry using sequential Bayesian experiment design. (m) Dependence of the 

standard deviation of the signal frequency on the number of photoluminescence 

measurements. Each solid orange circle corresponds to a unique number of 

photoluminescence measurements. Black symbols correspond to the data from panels (i) – 

(l). Black solid line shows inverse square root scaling. Note the logarithmic scale.
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FIG. 2. 
Dependence of the probability distributions for signal frequency and hyperfine splitting 

parameters on the number of the measurements in NV− magnetometry using sequential 

Bayesian experiment design. Panels shows probability distributions after (a) 0, (b) 1, (c) 10, 

(d) 20, (e) 30, (f) 40, (g) 100, (h) 120, (i) 140, (j) 160, (k) 200, (l) 1000 measurements. Each 

probability distribution consists of 10 000 points in parameter space with weights adding up 

to 1. Color represents weight: < 10−4—cyan, ≥ 10−4—red. Insets show zoomed-in area of 

Dushenko et al. Page 15

Phys Rev Appl. Author manuscript; available in PMC 2021 June 10.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



the probability distributions. All insets have the same size (1 MHz × 1 MHz), and span the 

same parameter space [(3102.5 MHz, 3103.5 MHz); (1.7 MHz, 2.7 MHz)].
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FIG. 3. 
(a) Dependence of the measurement frequency on the measurement number for the 

conventional NV− magnetometry microwave frequency sweep scan (purple solid circles) and 

the NV− magnetometry using sequential Bayesian experiment design (orange solid circles). 

Inset shows zoomed-in view of the area enclosed by the dashed rectangle. 

Photoluminescence data for the first 1000 measurements of (b) the conventional NV− 

magnetometry microwave frequency sweep scan, and (c) NV− magnetometry using 

sequential Bayesian experiment design. (d) Distribution of the measurement frequency for 

the first 1000 measurements of the NV− magnetometry using sequential Bayesian 

experiment design, (e, h) Average normalized photon count μ, (f, i) standard deviation of the 

normalized photon count σμ and (g, j) number of measurements ν(f) dependence on the 

measurement frequency for the first 24 000 measurements. (e, f, g) correspond to data from 

the conventional NV− magnetometry scan (purple); (h, i, j) correspond to data from the NV− 

magnetometry using sequential Bayesian experiment design (orange). Black solid line 

(panels (e, h)) shows fitting using function μ of all the measured data: 140 scans (1 120 000 

measurements) of the conventional NV− magnetometry and 330 000 measurements of the 

NV− magnetometry using sequential Bayesian experiment design. Inset in panel (g) provides 

a zoomed-in view of the data.
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FIG. 4. 
Dependence of the standard deviation of the signal frequency on the number of 

photoluminescence measurements. Each orange filled circle corresponds to a unique number 

of photoluminescence measurements using sequential Bayesian experiment design. Each 

purple filled circle corresponds to a unique number of averaged frequency sweep scans; each 

scan consists of 8000 measured photoluminescence data points. Black symbols correspond 

to equal standard deviation of the signal frequency for sequential Bayesian experiment 

design (black circle) and conventional sweep measurement (black triangle). Black solid lines 

show inverse square root scaling. Note the logarithmic scale.
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