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Abstract

Objective: Optical coherence tomography (OCT) and its angiography (OCTA) have several 

advantages for the early detection and diagnosis of diabetic retinopathy (DR). However, 

automated, complete DR classification frameworks based on both OCT and OCTA data have not 

been proposed. In this study, a convolutional neural network (CNN) based method is proposed to 

fulfill a DR classification framework using en face OCT and OCTA.

Methods: A densely and continuously connected neural network with adaptive rate dropout 

(DcardNet) is designed for the DR classification. In addition, adaptive label smoothing was 
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proposed and used to suppress overfitting. Three separate classification levels are generated for 

each case based on the International Clinical Diabetic Retinopathy scale. At the highest level the 

network classifies scans as referable or non-referable for DR. The second level classifies the eye as 

non-DR, non-proliferative DR (NPDR), or proliferative DR (PDR). The last level classifies the 

case as no DR, mild and moderate NPDR, severe NPDR, and PDR.

Results: We used 10-fold cross-validation with 10% of the data to assess the network’s 

performance. The overall classification accuracies of the three levels were 95.7%, 85.0%, and 

71.0% respectively.

Conclusion/Significance: A reliable, sensitive and specific automated classification 

framework for referral to an ophthalmologist can be a key technology for reducing vision loss 

related to DR.

Index Terms—

Eye; Image classification; Neural networks; Optical coherence tomography

Introduction

Optical coherence tomography (OCT) can generate depth-resolved, micrometer-scale-

resolution images of ocular fundus tissue based on reflectance signals obtained using 

interferometric analysis of low coherence light [1]. By scanning multiple B-frames at the 

same position, change in the OCT reflectance properties can be measured as, e.g., 

decorrelation values to differentiate vasculature from static tissues. This technique is called 

OCT angiography (OCTA), and it can provide high-resolution images of the 

microvasculature of retina [2, 3]. Numerous investigators explored OCTA in the detection 

and diagnosis of various ocular diseases, and demonstrated many advantages when 

compared to traditional imaging modalities such as fundus photography or fluorescein 

angiography [3]. Among these is diabetic retinopathy (DR), which affects the retinal 

capillaries and is a leading cause of preventable blindness globally [4]. OCT-based 

biomarkers such as central macular thickness and OCTA-based biomarkers such as avascular 

areas have demonstrated superior potential for diagnosing and classifying DR compared to 

traditional imaging modalities [5–8]. However, recently emerged automated deep-leaming 

classification methods were largely based on color fundus photography (CFP) [9–12]. 

Therefore, taking advantages of both powerful deep learning tools and innovative structural 

and angiographic information, we developed an automated framework that can perform a 

full DR classification (across datasets including all DR grades) based on en face OCT and 

OCTA projected from the same volumetric scans.

In order to improve classification accuracy and reliability, a new convolutional neural 

network architecture was designed based on dense and continuous connection with adaptive 

rate dropout (DcardNet). The system produces three classification levels to fulfill requests in 

clinical diagnosis. Non-referable and referable DR (nrDR and rDR) are classified in the first 

level. No DR, non-proliferative DR (NPDR), and proliferative DR (PDR) are in the second 

classification level. No DR, mild and moderate NPDR, severe NPDR, and PDR are in the 

third level. While training DcardNet, adaptive label smoothing was used to reduce 
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overfitting. To improve interpretability and help understand which regions contribute to the 

diagnosis, class activation maps (CAM) were also generated for each DR class [13].

II. Related Works

Several methods for the automated classification of DR severity have been proposed since 

the convolutional neural network (CNN) became the most widely used solution for image 

classification problems [9–12, 14–17]. Most of these methods are based on CFP, which is a 

traditional and commonly used technique capable of DR diagnosis. R. Gargeya et al. 
proposed a machine learning based method to classify CFP images as healthy (no 

retinopathy) or having DR [9]. They used a customized ResNet architecture [18] to extract 

features from the input CFPs. The final classification was performed on a decision tree 

classification model by using the combination of extracted features and three metadata 

variables. They achieved a 0.97 area under receiver operating curve (AUC) after 5-fold 

stratified cross-validation. In addition, a visualization heatmap was generated for each input 

CFP based on visualization layer in the end of their network [13]. V. Gulshan et al. used 

Inception-v3-based transfer learning to classify the CFP mainly as rDR and nrDR [11]. In 

the validation tests on two publicly available datasets (eyePACS-1 and Messidor-2), they 

achieved an AUC of 0.991 and 0.990, respectively. M. D. Abramoff et al. also proposed a 

CNN-based method to classify CFP images as rDR and nrDR and achieved an AUC of 0.980 

during validation [10]. For more detailed DR classification, R. Ghosh et al. proposed a 

CNN-based method to classify the CFP images into both two-class (no DR vs DR) and five 

severities: no DR, mild NPDR, moderate NPDR, severe-NPDR, and PDR [12]. They 

achieved an overall accuracy of 85% for the classification into five severities.

However, all of the above methods were based on the CFP. Compared to CFP, OCT and 

OCTA can provide more detailed information (i.e. 3D, high-resolution, vascular and 

structural imaging). An automated DR classification framework based on OCT/OCTA could 

reduce the number of procedures that must be performed in the clinic if OCT/OCTA can 

deliver the same diagnostic value as other modalities, which will ultimately reduce clinical 

burden and healthcare costs. Therefore, an automated framework for DR classification based 

on OCT and OCTA data is desirable.

H. S. Sandhu et al. proposed a computer-assisted diagnostic (CAD) system based on 

quantifying three OCT features: retinal reflectivity, curvature, and thickness [14]. A deep 

neural network was used to classify each case as no DR or NPDR based on those three 

retinal features and achieved an overall accuracy of 93.8%. The same group also proposed a 

CAD system for DR classification based on quantified features from OCTA [15]: blood 

vessel density, foveal avascular zone (FAZ) area, and blood vessel caliber and trained a 

support vector machine (SVM) with a radial basis function (RBF) kernel. They achieved an 

overall accuracy of 94.3%. However, these systems examined and classified only no DR and 

NPDR cases. M. Alam et al. proposed a support vector machine-based DR classification 

CAD system using six quantitative features generated from OCTA: blood vessel tortuosity, 

blood vascular caliber, vessel perimeter index, blood vessel density, foveal avascular zone 

area, and foveal avascular zone contour irregularity [16]. They achieved 94.41% and 92.96% 

accuracies for control versus disease (NPDR) and control versus mild NPDR. In addition, 
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they achieved 83.94% accuracy for multiclass classification (control, mild NPDR, moderate 

NPDR, and severe NPDR). However, as only pre-determined features were incorporated into 

this model, it could not learn from the much richer feature space latent in the entire OCTA 

data. In addition, CAD systems based on only empirically selected biomarkers have limited 

potential for further improvements even as the number of available datasets grows. M. 

Heisler et al. proposed a DR classification method based on en face OCT and OCTA images 

using ensemble networks [17]. Each case was classified as nrDR or rDR and they achieved 

an overall accuracy of 92.0%. In addition, the CAM of each en face image was generated. 

However, only 2-class classification was performed in this study. Therefore, an OCT and 

OCTA based DR classification framework capable of fulfilling different clinical requests and 

generating CAMs is needed.

There are two major challenges for OCT and OCTA-based DR classification. First, OCTA 

generates a much greater detailed image of the vasculature than traditional CFP. Extracting 

classification related features from such detailed information is much more challenging 

compared with the CFP-based classification. The second challenge is the relatively small 

size of the available OCT and OCTA dataset, compared to the very large CFP dataset used in 

the previous CFP-based networks. This challenge can lead to a severe overfitting problem 

during the training of the network. Addressing these challenges requires a network 

architecture with not only efficient convergence but also low overfitting. We designed a 

densely and continuously connected neural network with adaptive rate dropout and used it to 

perform a DR classification in three levels. We also produced corresponding CAMs in this 

study. In addition, adaptive label smoothing was proposed to further reduce overfitting. The 

main contributions of the present work are as follows:

• We present an automated framework for the DR classification and CAM 

generation based on both OCT and OCTA data. In this framework, three DR 

classification levels are performed for the first time.

• We propose a new network architecture based on dense and continuous 

connections with adaptive rate dropout.

• We propose an adaptive label smoothing to suppress overfitting and improve the 

performance generalization of the trained network.

III. Materials

In this study, 303 eyes from 250 participants, including healthy volunteers and patients with 

diabetes (with or without DR) were recruited and examined at the Casey Eye Institute, 

Oregon Health & Science University. Masked trained retina specialists graded the disease 

severity based on Early Treatment of Diabetic Retinopathy Study (ETDRS) scale [19] using 

corresponding 7-field fundus photography. Based on the recent studies on referable 

retinopathy level shown in the International Clinical Diabetic Retinopathy scale [20], we 

defined referable retinopathy as the equivalent ETDRS grade, which is grade 35 or worse. 

The participants were enrolled after informed consent in accordance with an Institutional 

Review Board (IRB # 16932) approved protocol. The study was conducted in compliance 

with the Declaration of Helsinki and Health Insurance Portability and Accountability Act.
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The macular region of each eye was scanned once or twice (after a one-year gap) using a 

commercial 70-kHz spectral-domain OCT (SD-OCT) system (Avanti RTVue-XR, Optovue 

Inc) with 840-nm central wavelength. The scan regions were 3.0 × 3.0 mm and 1.6 mm in 

depth (304 × 304 × 640 pixels) centered on the fovea. Two repeated B-frames were captured 

at each line-scan location to calculate the OCTA decorrelation values. The blood flow of 

each line-scan location was detected using the split-spectrum amplitude-decorrelation 

angiography (SSADA) algorithm based on the speckle variation between two repeated B-

frames [2, 21]. The OCT structural images were obtained by averaging two repeated B-

frames. For each data set, two volumetric raster scans (one x-fast scan and one y-fast scan) 

were registered and merged through an orthogonal registration algorithm to reduce motion 

artifacts [22].

For each pair of OCT and OCTA data, the following retinal layers were automatically 

segmented (Fig. 1) based on the commercial software in the SD-OCT system (Avanti 

RTVue-XR, Optovue Inc): inner limiting membrane (ILM), nerve fiber layer (NFL), 

ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer 

plexiform layer (OPL), outer nuclear layer (ONL), ellipsoid zone (EZ), retinal pigment 

epithelium (RPE), and Bruch’s membrane (BM). In addition, for the cases with severe 

pathologies, the automated layer segmentation was manually corrected by graders using the 

customized COOL-ART software [23].

Based on the segmented boundaries, six en face projections from OCT reflectance signals 

and OCTA decorrelation values were obtained and used to build a six-channel input data 

(Fig. 2). The first three channels were the inner retinal thickness map (z-axis distance 

between the Vitreous/ILM and OPL/ONL), inner retinal en face average projection 

(Vitreous/ILM to OPL/ONL) and EZ en face average projection (ONL/EZ to EZ/RPE) based 

on the volumetric OCT (Fig. 2A–C). The last three channels were the en face maximum 

projections of the superficial vascular complex (SVC), intermediate capillary plexus (ICP), 

and deep capillary plexus (DCP) based on the volumetric OCTA. (Fig. 2D–F) [24], The SVC 

was defined as the inner 80% of the ganglion cell complex (GCC), which included all 

structures between the ILM and IPL/INL border. The ICP was defined as the outer 20% of 

the GCC and the inner 50% of the INL. The DCP was defined as the remaining slab internal 

to the outer boundary of the OPL [6, 25]. In addition, the projection-resolved (PR) OCTA 

algorithm was applied to all OCTA scans to remove flow projection artifacts in the deeper 

plexuses [26, 27].

Three classification levels of each input data were built based on the ETDRS grades as 

scored by three ophthalmologists (Fig. 3). The first label was for 2 classes: nrDR and rDR. 

The second label was for 3 classes: no DR, NPDR and PDR. The last label was for 4 classes: 

no DR, mild and moderate NPDR, severe NPDR and PDR. Mild and moderate NPDR were 

not separated due to a lack of measurements on eyes with NPDR from which to procure 

make a balanced dataset. For each level, follow up scans (scanned after a one-year gap) that 

did not have a class change were removed from the dataset for corresponding level to avoid 

correlation. Therefore, number of scans for each classification level was different (Table I).
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IV. Methods

The architecture of the DcardNet is shown in Fig. 4. The main feature of this architecture is 

that the input tensor for each bottleneck block was the concatenation of the output tensors 

from at most the C previous bottleneck blocks with adaptive dropout rates. The dropout rate 

[28] of each bottleneck was adaptively adjusted based on the distance between the depths of 

this block and the block to be calculated next. In addition, the size (height and width) of the 

output tensor was halved M times through transfer blocks to perform down-sampling. 

Detailed information for this method is described below.

A. Bottleneck block

A 1×1 convolution is widely used as a bottleneck layer before 3×3 convolutions to improve 

the computational efficiency by reducing the number of input features [29]. Our network 

uses two convolutional layers in the bottleneck block. A 1×1 convolution layer with f×4 
output features and 0.2 dropout rate [28] was used as the first convolutional layer. The 

second convolutional layer in the bottleneck block is a 3×3 convolution with f output 

features. In addition, a batch normalization [30] and Relu activation function [31, 32] were 

used before each convolutional layer.

B. Transfer block

Before the concatenation of the output tensors from at most the last C bottleneck blocks, a 

transfer block was used to perform the adaptive rate dropout. The dropout rate (dpr) of the 

output tensor from each bottleneck block was calculated as

dpr = dprint  + 0.1 × Nin − Nout − 1 (1)

where dprint is the initial dropout rate, Nout is the depth of each bottleneck block which is to 

be concatenated, and Nin is the depth of the bottleneck block that will use the concatenated 

tensor as input. In order to fulfill the down-sampling, the size of the tensor is halved before 

dropout using 2×2 average pooling if the integer part of the quotients between Nout / C and 

Nin / C were not equal.

C. Dense and continuous connection with adaptive dropout

Dense connectivity has been proposed by G. Huang et al. [29] and used in DenseNet to 

improve information flow. However, the dense connection was only used within each dense 

block, not the whole network. In the DcardNet, the dense connection was continuously used 

in the whole network to further improve the information flow. In addition, the size and 

weight of each concatenated bottleneck block was adaptively adjusted using the transfer 

block to fulfill down-sampling and differentiate the importance of the information in 

different bottleneck blocks. The input tensor to each bottleneck block was

xnin = concat T xn − 1
out , T xn − 2

out , …, T xmax(0,  n − C)
out (2)

where xnin and xnout  are the input and output tensors of the nth bottleneck block, concat [•] is 

the concatenation operation, and T (•) is the transfer block.
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D. Adaptive label smoothing and data augmentation

The goal of training the network is high overall classification accuracy, defined as

Acc = 1
Num × ∑

i = 1

Num
ai

ai =
1 arg max  gi = arg max  pi
0 otherwise

(3)

where gi and pi are the ith ground truth and predicted labels at a given classification level, 

respectively, and Num is the number of scans in the dataset. However, network parameters 

were optimized by minimizing the negative cross entropy loss

loss (g, p) = − ∑
i = 1

K
pi × log gi (4)

where K was the number of classes. According to (3), the prediction will always be right as 

long as the location of the largest value in the predicted label is the same as the ground truth 

label. Once this has been achieved, continuing to reduce the negative cross entropy loss only 

marginally improves the overall classification accuracy, and may lead to overfitting [33, 34]. 

Therefore, in this study, each ground truth label was gradually smoothed by an amount s 
based on the class differences between the true class and false classes. Since class labels 

were sorted along a scale of DR severity, the smoothed class labels respect the decreasing 

likelihood that the label was misidentified. The labels at all three levels were smoothed 

according to

gi =

1.0 − si true class 

si ×
1

tj − ti
∑j = 1

K − 1 1
tj − ti

other classes 
(5)

where si is the reduction in the value of true class, and tj and ti respectively were the indexes 

of each incorrect class and the true class in ith label.

Variation between different OCTA data sets is intrinsically high. Some inputs converge well 

in a short time, but the convergence of other inputs might change significantly and 

repeatedly. According to the gradient of the weight variables in the network (6), the weights 

w will converge to an input faster when the difference between the predication and 

corresponding ground truth label gets larger, and slower when the difference is smaller:

∂loss
∂w = 1

Num ∑
i = 1

Num
xi pi − gi (6)

where xi, is the ith input, pi and gi, are the corresponding prediction and ground truth. In 

order to further increase the rate of convergence on the mispredicted inputs and decrease the 

rate of convergence on the correctly predicted inputs, the label smoothing value s for each 
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label was adaptively adjusted based on the prediction results during each training step 

according to

si =
min  si + d, smax arg max  gi = arg max  pi
max si − d, 0.0 otherwise  (7)

where si is the smoothing value for the ith label, and d is an adjustment for each sj and Smax 

was the upper limit of the smoothing value. Based on (7), the convergence rate of the inputs 

which were correctly predicted during each training iteration would be much lower than the 

other inputs.

In addition, no class weight balancing was used in training because adaptive label smoothing 

can achieve the same effect. Class weight balancing can tell the model to pay more attention 

to samples from an under-represented class by appropriately weighting the loss function to 

compensate for data deficiencies during training. Alternatively, the same effect could be 

achieved by smoothing the ground truth labels while maintaining the loss function (since 

classes with small label differences will contribute less to the loss). This is the approach 

taken in adaptive label smoothing, which has the additional advantage of allowing the 

smoothing function to updated during training to expedite balanced convergence.

Data augmentation is another method used for improving the performance generalization of 

a trained network. In this study, the number of training datasets was increased by a factor of 

8 by including combinations of 90° rotations and horizontal and vertical flips (there is a 

grand total of 7 unique combinations of these transformations available). In order to make 

sure the selected inputs in each training batch were based on different cases, only one of the 

data augmented patterns (including the original inputs) was randomly chosen for each input 

during each training batch selection.

E. Implementation details

The maximum number of the concatenated bottleneck blocks C was set to 4. The number of 

output features f after each bottleneck block was set to 24. M was set to 3 which meant 

overall 16 bottleneck blocks were used in this architecture. This specific architecture is 

called DcardNet-36 which means overall 35 convolutional layers and 1 fully connected layer 

were used in the whole network, which yields 9264960 trainable parameters (Table II). In 

addition, for the 2-class, 3-class and 4-class DR classifications, the initial label smoothing 

value sj were set to 0.05, 0.005 and 0.005, adjusting steps d were empirically chosen as 

0.001, 0.0001 and 0.0001, and upper limits smax were set to 0.1, 0.01 and 0.01, respectively.

In order to ensure the credibility of the overall accuracy, 10-fold cross-validation was used 

on the DR classification at each level. In each fold, 10% of the data (with the same class 

distribution as the overall data set) was split on a patient-wise basis (scans from same patient 

only included in one set) and used exclusively for testing. The parameters were optimized by 

a stochastic gradient descent optimizer with Nesterov momentum (momentum = 0.9). 

During the training process, a batch size of 10 was empirically chosen and the total training 

steps for the three-level DR classification were set to 8000. In addition, an initial learning 

rate lrinit = 0.01 with cosine decay was used in this study [35]:
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lrcurr = lrinit × (0.97 × d + 0.03)
d = 1

2 1 + cos π × stepcurr/stepstop
(8)

where lrcurr was the current learning rate, stepcurr was the current training step and stepstop 

was the step at which the learning rate ceased to decline. In this study, the stepstop was 

empirically chosen as 6000.

Both training and testing were implemented in Tensorflow version 1.13 on Windows 10 (64 

Bit) platform. The workstation used in this study has an Intel (R) Core (TM) i7–8700K CPU 

@ 3.70GHz, 64.0 GB RAM and NVIDIA RTX 2080 GPU. The training time was 7 minutes 

for each training process (70 minutes for 10-fold cross-validation) and the inference time for 

a new case was 8 seconds.

V. Experiments

The overall prediction accuracy (the number of correctly predicted case divided by the 

number of whole data set) and corresponding 95% confidence interval (95% Cl) varied 

across the three classification levels (Table III). In addition, the 10 models trained during the 

10-fold cross validation were also used to predict on a balanced external dataset with 30 

scans to further demonstrate the generalization of our DR classification framework. The 

overall accuracies of 2-class, 3-class, and 4-calss DR classification on the external dataset 

are 93.3% ± 2.4%, 82.7% ± 2.8%, and 68.7% ± 3.8%, respectively. Though the accuracies 

on the external dataset are about 2% – 3% lower than the accuracies on our local testing 

dataset, the results still show that our DR classification framework has a strong 

generalization on external dataset.

The sensitivity and specificity for each severity class in all three DR classification levels also 

varied and is shown in Table IV. The classification sensitivity of the severe NPDR was much 

lower than other classes. This is because the differences between adjacent levels of severity 

are much smaller than the variations between no DR, NPDR and PDR. In addition, the 

number of severe NPDR cases was also much smaller than other classes.

We also produced CAMs of inputs with different DR classes (Fig. 5), indicating the 

network’s attention within the different DR classes. The macular regions with high positive 

values in the CAMs indicate they have high positive influences on the classification for the 

true class. On the contrary, the regions with nearly zero values in the CAMs have no or 

negative influence on the classification. In CAMs of cases without DR and cases with PDR 

regions close to the fovea had the highest positive influences on the classification. However, 

the vasculature around the fovea had the highest positive influences on the classification of 

NPDR cases. This difference may be caused by the appearance of features like fluids or non-

perfusion areas. Overall, the areas with higher values (yellow to red) in the CAM were the 

regions the network used for decision making. By considering the CAMs, a doctor could 

judge the reasonableness of the automated DR classification and pay more attention on the 

high-value-areas during the diagnosis.
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To further quantitatively analyze the proposed method, we performed five comparisons on 

our local dataset to investigate the accuracy and stability of the proposed DR classification 

framework. First, we compared the performance of the network trained on combined OCTA 

and OCT structural data inputs to the network trained on either structural OCT or OCTA 

data separately. Second, we compared the performances of our network with no dropout, 

standard dropout (0.2 dropout rate), and proposed adaptive dropout. Third, we compared the 

performances of our network with traditional class weight balancing and proposed adaptive 

label smoothing. Fourth, we compared the performances of different network architectures 

(ResNet [18], DenseNet [29], EfficientNet [36], VGG16 [37], VGG19 [37], ResNet-v2 [38], 

Inception-v4 [39] and the proposed DcardNet) with or without the adaptive label smoothing. 

Finally, we compared the performances of our method with a previously proposed ensemble 

network [17] on the 2-class DR classification. In addition, all the results (including ours) in 

the comparisons below (sections A, B, C, D and E) were based on 5-fold cross-validation 

with 20% exclusively reserved for testing.

A. Comparison between the three input patterns

The inputs had six channels obtained from both OCT and OCTA data. In order to verify the 

necessity of this input design, comparison of classification accuracies between the OCT-

based inputs, OCTA-based inputs, and OCT+OCTA-based inputs were performed. The 

network used a set of 6 enface images as input. From structural OCT-based we included an 

inner retina thickness map, an inner retina average projection, and an EZ average projection. 

The OCTA-based inputs are enface maximum projection of the SVC, ICP, and DCP. Table V 

shows the overall accuracies of the three levels of DR classification based on three different 

input patterns. Compared to the OCT-based input, the proposed input design greatly 

increased (≈ 10%) the overall accuracies of 3 and 4-class DR classification. Compared to the 

OCTA-based input, the overall accuracies also increased for 3-class DR classification. For 

the 4-class DR classification, though the overall accuracy of OCT+OCTA-based was the 

same as only OCTA-based, the sensitivities of OCT+OCTA-based shown in Table VI were 

more balanced than only OCTA-based. For the 2-class DR classification, which has the same 

accuracy based on three different input patterns, the CAMs only based on OCT and OCTA 

were both calculated to study the different influences from OCT and OCTA (Fig. 6). 

Through first row, we can see the CAMs only based on OCT were both convex polygons 

centered on the fovea of nrDR and rDR eyes. On the contrary, the two CAMs only based on 

OCTA were quite different and have more complicated shapes. This comparison shows that 

more detailed information was used in the DR classification only based on OCTA.

Table VI summarizes the comparison of the sensitivities and specificities between the three 

input patterns and 4 different DR classes. The combined input design improved the 

sensitivities of two intermediate severity classes. While the overall accuracies of OCTA-

based input and OCT+OCTA-based input were the same, using OCT+OCTA based input 

reduced the variation of sensitivities between different DR severities.

B. Comparison between different dropout strategies

The performances comparison between our network with three different dropout strategies 

were shown in Table VII. Proposed network with adaptive dropout shown the highest 

Zang et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accuracies in all three DR classification levels. The accuracy increasing based on adaptive 

dropout was most obvious in the 3-class DR classification.

C. Comparison between class weight balancing and adaptive label smoothing

To gauge the ability of adaptive label smoothing to compensate for the unbalanced classes in 

our data set, we compared the performance of our network with class weight balancing, 

adaptive label smoothing, or both (Table VIII). At each classification level, the network 

trained with adaptive label smoothing outperformed both class weight balancing and the 

network using both class weight and adaptive label smoothing.

D. Comparison between different network architectures

We also compared the performances of ResNet-18, EfficientNet-B0, and DenseNet-53, 

VGG16, VGG19, ResNet-v2-50, Inception-v4 and proposed DcardNet-36 with or without 

adaptive label smoothing for the DR classification at multiple levels on the same dataset. 

Among them, DenseNet-53 is a modified DenseNet architecture with 53 layers (52 

convolution and 1 dense layers) which achieved the highest accuracy compared to other 

DenseNet architectures. In addition, no transfer learning was used in the training of all the 

networks above and all the final models were trained from scratch with empirically selected 

optimal hyper-parameters. Table IX shows the overall accuracies of the three levels of DR 

classification based on all eight network architectures. Our network architecture with or 

without adaptive label smoothing achieved the highest accuracies on both 2-class and 3-class 

DR classifications. Only the 4-class DR classification accuracies of VGG16 and ResNet-
v2-50 were about 1% higher than ours. In addition, the use of the proposed adaptive label 

smoothing improved the classification accuracies of all architectures.

To further analyze the improvement in generalization by the adaptive label smoothing, we 

measured the losses and accuracies based on the proposed DcardNet-36 and ResNet-18 with 

or without adaptive label smoothing on the 3-class dataset with 20% data exclusively used as 

testing dataset (Fig. 7). The testing losses and accuracies were obtained after each 10 

training steps and both smoothed by an average filter with length 50. The training accuracies 

were smoothed by an average filter with length 100. In Fig. 7A and 7C, we can see the 

testing losses with adaptive label smoothing were lower than the losses without adaptive 

label smoothing during the entire training process. Though the training accuracies with and 

without adaptive label smoothing were almost the same, the testing accuracies with adaptive 

label smoothing were always higher than the accuracies without adaptive label smoothing 

(Fig. 7B and 7D). In addition, the testing accuracy with adaptive label smoothing increased 

more smoothly and monotonically than the accuracy without adaptive label smoothing. By 

comparing two rows, we can also intuitively see that DcardNet-36 has better generalization 

performance and lower overfitting than the ResNet-18. And as noted, the adaptive label 

smoothing has higher improvement on ResNet-18 than DcardNet-36.

E. Comparison with ensemble networks based on enface OCT and OCTA

We also compared the performances on 2-class DR classification between our method and a 

previously proposed ensemble network [17] which also uses enface OCT and OCTA as 

inputs. The ensemble network consisted of four VGG19 [37] with pre-trained ImageNet 
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parameters. The inputs of the ensemble network were SVC and DCP enface images 

respectively generated from OCT and OCTA. Based on the same implementation details, the 

results of the ensemble network were shown in Table X. The overall accuracy, sensitivities 

and specificities of our method are all better than the ensemble network.

VI. Discussion

We proposed a new convolutional neural network architecture based on dense and 

continuous connection with adaptive rate dropout (DcardNet) for automated DR 

classification based on OCT and OCTA data. To our knowledge this is the first study to 

report DR classification across multiple levels based on OCT and OCTA data. A 

classification scheme like this is desirable for several reasons. OCT and OCTA are already 

an extremely common procedures in ophthalmology [40]. An automated DR classification 

framework could further extend the applications of these technologies. If OCT/OCTA can 

deliver the same diagnostic value as other modalities, the number of procedures an 

individual would require for accurate diagnosis would be reduced, which will ultimately 

lower clinical burden and healthcare costs. Furthermore, OCT/OCTA provide a unique set of 

features (three-dimensionality combined with high-resolutions) that may prove to have 

complimentary or superior diagnostic value for some diseases; however, the sheer size of 

OCT/OCTA data sets inhibits detailed analysis. By providing tools for automation, we can 

begin to acquire data that can help identify new biomarkers or other features useful for DR 

staging.

Our network design incorporated several ideas that enabled rapid training and accurate 

results. We found that, compared to the residual structure, the dense connected structure was 

much more resistant to overfitting. However, the dense connection also had a lower 

convergence rate than the residual structure (ResNet). In order to increase the convergence 

rate and keep overfitting low, the dense and continuous connection was proposed and used in 

this study. In the new architecture, a dense connection was continuously used within a 

sliding window from the first bottleneck block to the last one. Compared to use of dense 

connections within each block (DenseNet), the new structure was able to deliver useful 

features with lower losses. In addition, the use of dropout with adaptive rate kept overfitting 

low. Sixteen bottleneck blocks with 24 output features were finally chosen in this study 

based on the classification complexity and size of the dataset. For more classes and larger 

datasets (like those seen in ImageNet), more bottleneck blocks with more output features 

may be needed.

Adaptive label smoothing was proposed and used to reduce overfitting in this study. The 

labels of each of the training steps were adaptively smoothed based on their prediction 

histories. Because of the adaptively smoothed labels, the convergence of the network could 

be more focused on the mispredicted data, rather than the data that was already correctly 

predicted. The only concern for this technique is the inaccuracy introduced from data which 

have an ambiguous ground truth. Therefore, this technique is more suitable to well-labeled 

datasets. Another technique we used to reduce the overfitting was data augmentation, which 

has been widely used in medical image classification. In addition to improving data 
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diversity, the data augmentation we used in this study also fits with practical diagnosis, 

where the doctors’ diagnosis is not influenced by the angle of the en face vasculature.

For practical and historical reasons, layer segmentation has become a necessary step for 

most analytic pipelines using OCT and OCTA. The enface images based on segmented 

layers are not only used to automated DR classification but also necessary for OCT-based 

routine diagnosis. From a machine learning perspective, this is a mixed blessing. 

Dimensionality reduction enables swifter training (since 3D data sets are much sparser), but 

simultaneously suppresses otherwise leamable information. Our network was trained on 

datasets segmented using manually corrected software [23, 41–44], which introduces both a 

manual step into our data pipeline and some idiosyncrasy into ground truth. State of the art 

layer segmentation now requires less manual correction [45–48], and we believe will 

continue to do so. However, the accuracy of our results is, unfortunately, probably negatively 

impacted by these limitations in the ground truth used for training. OCTA networks are also 

unfortunately limited by a relative paucity of data compared to other medical imaging 

datasets. As more OCTA data is acquired, training on 3D data volumes may become 

practicable, mitigating this concern.

The overall accuracies based on OCT-based inputs, OCTA-based inputs, and OCT+OCTA-

based were the same of 2-class and 4-class DR classification. However, we still think the 

OCT+OCTA-based input is a better option. First, this input strategy still improved the 

overall accuracy of 3-class DR classification and also balanced the sensitivities of 4-class 

DR classification. Second, some DR or DME related biomarkers such as fluid could be 

easier detected in OCT. At last, the OCT enface generation is not time-consuming after the 

retinal layers are segmented, and this segmentation is also needed for OCTA enface 
generation. Therefore, the designed OCT+OCTA-based input pattern is still preferable for 

the DR classification.

The overall accuracy of the 4-class DR classification was much lower than other two 

classification levels. In addition, the sensitivity of severe NPDR classification was much 

lower than the other classes. These two issues are caused by the small differences between 

the two NPDR classes, which are much smaller than the differences between no DR, NPDR 

and PDR. Another reason for this relatively low performance is that the number of severe 

NPDR cases was much smaller than other classes. Therefore, the network could hardly 

identify the differences between two NPDR severities before overfitting sets in. In future 

work, we will focus on overcoming these problems by using a larger and more balanced 

dataset and adding some extra manually selected biomarkers to the inputs. In addition, 

according to the difference between accuracies based on 5-fold and 10-fold cross-

validations, using “leave-one-subject-out” experiments could also help increase the final 

accuracy and sensitivity.

Compared to CFP-based DR classifications [9–12], the overall accuracy of our 2-class DR 

classification was slightly lower. One reason was that the CFP-based DR classifications had 

about 100 times as much data as we did. Though we have stratified accuracies on 2-class and 

3-class DR classifications based on our relatively small dataset, a huge dataset like those 

available from CFP could further improve our DR classification to state-of-art performance. 
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Furthermore, the current classification used for training our algorithm, which is based on 

grading from color fundus photography, may not be optimal for OCTA classification. The 

current gold standard for DR diagnosis is based on color fundus photograph which is a 

considerably different modality from OCT/OCTA. Features used to distinguish some DR 

classifications using the ETDRS scheme may be missing from OCT/OCTA datasets, which 

could hurt the accuracy of our algorithm.

Furthermore, there are currently trade-offs between CFP and OCTA. CFP provides a larger 

field of view, but at lower resolution and the cost of a dimension of information when 

compared to OCTA. Both provide visualization of a unique set of pathological features. 

Currently, CFP can provide some information that is inaccessible to OCTA, though 

complimentary features of the same pathology may be visible to OCTA [49, 50]. However, 

we do not conceive of this work solely as a means to automatize through OCTA grading 

what can already also be automatized through CFP. Instead, we believe that this work 

demonstrates that the feature set that can be extracted through OCTA images of the macular 

region is sufficient to diagnose DR at a level similar to CFP, without relying on the specific 

features (microaneurysms, bleeding) provided by CFP. We think this this is innovative of its 

own accord because it adds value to an existing technology.

We note additionally that the amount of data procured from structural OCT in conjunction 

with OCTA is much larger than that from CFP, by virtue of being high-resolution and three-

dimensional. Features like microaneurysms that are currently used to stage DR may not end 

up being essential to DR staging, as our work shows. Close parity with ETDRS grading of 

CFP data indicates significant potential for OCTA staging as OCTA hardware continues to 

improve.

VII. Conclusion

In conclusion, we proposed a densely and continuously connected convolutional neural 

network with adaptive rate dropout to perform a DR classification based on OCT and OCTA 

data. Among our architecture designs, the dense and continuous connections improved the 

convergence speed and adaptive rate dropout reduced overfitting. Three classification levels 

were finally performed to fulfill requests from clinical diagnosis. In addition, adaptive label 

smoothing was proposed and used in this study. With the addition of adaptive label 

smoothing, the convergence of the network could be more focused on the mispredicted data, 

rather than the data that was already be correctly predicted. In the end, the trained model 

focused more on the common features of the whole dataset, which also reduced overfitting. 

Classifying DR at three levels and generating CAMs could both help clinicians improve 

diagnosis and treatment.

References

[1]. Huang D et al., “Optical coherence tomography,” Science, vol. 254, no. 5035,pp. 1178–1181, 
1991. [PubMed: 1957169] 

[2]. Jia Y et al., “Split-spectrnm amplitude-decorrelation angiography with optical coherence 
tomography,” Opt. Express, vol. 20, no. 4, pp. 4710–4725, 2012. [PubMed: 22418228] 

Zang et al. Page 14

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[3]. Jia Y et al., “Quantitative optical coherence tomography angiography of vascular abnormalities in 
the living human eye,” Proc. Natl. Acad. Sci, vol. 112, no. 18, pp. E2395–402, 2015. [PubMed: 
25897021] 

[4]. Wilkinson CP et al., “Proposed international clinical diabetic retinopathy and diabetic macular 
edema disease severity scales,” Ophthalmology, vol. 110, no. 9, pp. 1677–1682, 2003. [PubMed: 
13129861] 

[5]. Hwang TS et al., “Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical 
Coherence Tomography Angiography in Diabetic Retinopathy,” JAMA ophthalmol, vol. 134, no. 
12, pp. 1411–1419, 2016. [PubMed: 27812696] 

[6]. Zhang M et al., “Automated Quantification of Nonperfusion in Three Retinal Plexuses Using 
Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy,” 
Investig. Ophthalmol. Vis. Sci, vol. 57, no. 13, pp. 5101–5106, 2016. [PubMed: 27699408] 

[7]. Hwang TS et al., “Automated quantification of capillary nonperfusion using optical coherence 
tomography angiography in diabetic retinopathy,” JAMA ophthalmol,vol. 134, no. 4, pp. 367–
373, 2016. [PubMed: 26795548] 

[8]. Hwang TS et al., “Optical coherence tomography angiography features of diabetic retinopathy,” 
Retina, vol. 35, no. 11, pp. 2371, 2015. [PubMed: 26308529] 

[9]. Gargeya R and Leng T, “Automated identification of diabetic retinopathy using deep learning,” 
Ophthalmology, vol. 124, no. 7, pp. 962–969, 2017. [PubMed: 28359545] 

[10]. Abramoff MD et al., “Improved automated detection of diabetic retinopathy on a publicly 
available dataset through integration of deep learning,” Investig. Ophthalmol. Vis. Sci, vol. 57, 
no. 13, pp. 5200–5206, 2016. [PubMed: 27701631] 

[11]. Gulshan V et al., “Development and validation of a deep learning algorithm for detection of 
diabetic retinopathy in retinal fundus photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 
2016. [PubMed: 27898976] 

[12]. Ghosh R et al., “Automatic detection and classification of diabetic retinopathy stages using 
CNN,” in Proc. 4th SPIN, 2017, pp. 550–554.

[13]. Zhou B et al., “Learning deep features for discriminative localization,” in Proc. CVPR, 2016, pp. 
2921–2929.

[14]. Sandhu HS et al., “Automated diagnosis and grading of diabetic retinopathy using optical 
coherence tomography,” Investig. Ophthalmol. Vis. Sci, vol. 59, no. 7, pp. 3155–3160, 2018. 
[PubMed: 30029278] 

[15]. Sandhu HS et al., “Automated diabetic retinopathy detection using optical coherence tomography 
angiography: a pilot study,” Brit. J. Ophthalmol, vol. 102, no. 11, pp. 1564–1569, 2018. 
[PubMed: 29363532] 

[16]. Alam M et al., “Quantitative optical coherence tomography angiography features for objective 
classification and staging of diabetic retinopathy.” Retina, vol. 40, no. 2, pp. 322–332, 2020. 
[PubMed: 31972803] 

[17]. Heisler M et al., “Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical 
Coherence Tomography Angiography.” Transl. Vis. Sci. Technol, vol. 9, no. 2, pp. 20–20, 2020.

[18]. He K et al., “Deep residual learning for image recognition,” in Proc. CVPR, 2016, pp. 770–778.

[19]. Early Treatment Diabetic Retinopathy Study Research Group, “Fundus photographic risk factors 
for progression of diabetic retinopathy: ETDRS report number 12,” Ophthalmology, vol. 98, no. 
5, pp. 823–833, 1991. [PubMed: 2062515] 

[20]. Levels E, “International clinical diabetic retinopathy disease severity scale detailed table,” 2002.

[21]. Gao SS et al., “Optimization of the split-spectrum amplitude-decorrelation angiography 
algorithm on a spectral optical coherence tomography system,” Opt. Lett, pp. 40, no. 10, pp. 
2305–2308, 2015. [PubMed: 26393725] 

[22]. Kraus MF et al., “Quantitative 3D-OCT motion correction with tilt and illumination correction, 
robust similarity measure and regularization,” Biomed. Opt. Express, vol. 5, no. 8, pp. 2591–
2613, 2014. [PubMed: 25136488] 

[23]. Zhang M et al., “Advanced image processing for optical coherence tomographic angiography of 
macular diseases,” Biomed. Opt. Express vol. 6, no. 12, pp. 4661–4675, 2015. [PubMed: 
26713185] 

Zang et al. Page 15

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[24]. Hormel TT et al., “Maximum value projection produces better en face OCT angiograms than 
mean value projection,” Biomed. Opt. Express, vol. 9, no. 12, pp. 6412–6424, 2018. [PubMed: 
31065439] 

[25]. Campbell JP et al., “Detailed vascular anatomy of the human retina by projection-resolved optical 
coherence tomography angiography,” Sci. Rep, vol. 7, pp. 42201, 2017. [PubMed: 28186181] 

[26]. Zhang M et al., “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. 
Express, vol. 7, no. 3, pp. 816–828 2016. [PubMed: 27231591] 

[27]. Wang J et al., “Reflectance-based projection resolved optical coherence tomography,” Biomed. 
Opt. Express, vol. 8, no. 3, pp. 1536–1548 2017. [PubMed: 28663848] 

[28]. Srivastava N et al., “Dropout: a simple way to prevent neural networks from overfitting,” J. 
Mach. Learn. Res, vol. 15, no. 1, pp. 1929–1958, 2014.

[29]. Huang G et al., “Densely connected convolutional networks,” in Proc. CVPR, 2017, pp. 4700–
4708.

[30]. Ioffe S and Szegedy C, “Batch normalization: accelerating deep network training by reducing 
internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[31]. Nair V and Hinton GE, “Rectified linear units improve restricted boltzmann machines,” in Proc. 
27th ICML, 2010, pp. 807–814.

[32]. Glorot X et al., “Deep sparse rectifier neural networks,” in Proc. 14th AISTATS, 2011, pp. 315–
323.

[33]. Szegedy C et al., “Rethinking the inception architecture for computer vision,” in Proc. CVPR, 
2016, pp. 2818–2826.

[34]. Pereyra G et al., “Regularizing neural networks by penalizing confident output distributions,” 
arXiv preprint arXiv:1701.06548, 2017.

[35]. Loshchilov I and Hutter F, “SGDR: stochastic gradient descent with warm restarts,” arXiv 
preprint arXiv.l 608.03983, 2016.

[36]. Tan M and Le QV, “EfficientNet: Rethinking Model Scaling for Convolutional Neural 
Networks,” arXiv preprint arXiv:1905.11946, 2019.

[37]. Simonyan K, and Zisserman A. “Very deep convolutional networks for large-scale image 
recognition.” arXiv preprint arXiv:1409.1556, 2014.

[38]. He K et al., “Identity mappings in deep residual networks,” arXiv: 1603.05027, 2016.

[39]. Szegedy C et al., “Inception-v4, inception-resnet and the impact of residual connections on 
learning.” in AAAI, 2017, pp. 4278–4284.

[40]. Swanson E and Huang D. “Ophthalmic OCT reaches $1 billion per year.” Retin. Physician, vol. 
8, no. 4, pp. 58–59, 2011.

[41]. Ghorbel I et al., “Automated segmentation of macular layers in OCT images and quantitative 
evaluation of performances.” Pattern Recognit, vol. 44, no. 8, pp. 1590–1603,2011.

[42]. Srinivasan PP et al., “Automatic segmentation of up to ten layer boundaries in SD-OCT images 
of the mouse retina with and without missing layers due to pathology.” Biomed. Opt. Express, 
vol. 5, no. 2, pp. 348–365, 2014. [PubMed: 24575332] 

[43]. Gao Z et al., “Automated layer segmentation of macular OCT images via graph-based SLIC 
superpixels and manifold ranking approach.” Comput. Med. Imag. Grap, vol. 55, pp. 42–53, 
2017.

[44]. Chiu SJ et al., “Kernel regression based segmentation of optical coherence tomography images 
with diabetic macular edema.” Biomed. Opt. Express, vol. 6, no. 4, pp. 1172–1194, 2015. 
[PubMed: 25909003] 

[45]. Zang P et al., “Automated segmentation of peripapillary retinal boundaries in OCT combining a 
convolutional neural network and a multi-weights graph search.” Biomed. Opt. Express, vol. 10, 
no. 8, pp. 4340–4352, 2019. [PubMed: 31453015] 

[46]. Guo Y et al., “Automated segmentation of retinal layer boundaries and capillary plexuses in 
wide-field optical coherence tomographic angiography.” Biomed. Opt. Express, vol. 9, no. 9, pp. 
4429–4442, 2018. [PubMed: 30615747] 

Zang et al. Page 16

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[47]. Lee CS et al., “Deep-leaming based, automated segmentation of macular edema in optical 
coherence tomography.” Biomed. Opt. Express, vol. 8, no. 7, pp. 3440–3448, 2017. [PubMed: 
28717579] 

[48]. Kugelman J et al., “Automatic segmentation of OCT retinal boundaries using recurrent neural 
networks and graph search.” Biomed. Opt. Express, vol. 9, no. 11, pp. 5759–5777, 2018. 
[PubMed: 30460160] 

[49]. Onishi AC et al., “Importance of considering the middle capillary plexus on OCT angiography in 
diabetic retinopathy.” Investig. Ophthalmol. Vis. Sci, vol. 59, no. 5, pp. 2167–2176, 2018. 
[PubMed: 29801151] 

[50]. Borrelli E et al., “In vivo rotational three-dimensional OCTA analysis of microaneurysms in the 
human diabetic retina.” Sci. Rep, vol. 9, no. 1, pp. 1–8, 2019. [PubMed: 30626917] 

Zang et al. Page 17

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The automated retinal layer segmentation from OCT structural image scanned from a 

healthy participant. (A) The en face average projection of the whole OCT structure. (B) The 

B-frame corresponding to the position of red line in (A). The eight boundaries of the seven 

main retinal layers were segmented.
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Fig. 2. 
The six input channels based on the OCT and OCTA data scanned from a moderate NPDR 

participant. (A) Inner retinal thickness map. (B) Inner retinal en face average projection. (C) 

Ellipsoid zone (EZ) en face average projection. (D) Superficial vascular complex (SVC) en 
face maximum projection. (E) Intermediate capillary plexus (ICP) en face maximum 

projection. (F) Deep capillary plexus (DCP) enface maximum projection.
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Fig. 3. 
The relations between the ETDRS grades and three levels of DR classifications.
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Fig. 4. 
The network architecture of the proposed DcardNet.
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Fig. 5. 
The CAMs of three correctly predicted cases with different DR classes. In each row, the 

inner retina thickness map, inner retinal en face OCT, EZ enface OCT, SVC en face OCTA, 

ICP en face OCTA, and DCP en face OCTA were overlaid by the corresponding CAMs. In 

addition, the color bar of each CAM was on the right side of each row. (a) CAMs of case 

without DR. (b) CAMs of a case with NPDR. (c) CAMs of a case with PDR.
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Fig. 6. 
Comparison between CAMs generated from the two-class DR classification only based on 

OCT or OCTA. First row: CAMs from the OCT-only network overlaid on the three en face 
OCT layers scanned from nrDR and rDR eyes. Second row: CAMs from the OCTA-only 

network overlaid on the corresponding OCTA.
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Fig. 7. 
Comparisons of the losses and accuracies based on proposed DcardNet-36 and ResNet-18 

with or without adaptive label smoothing on the 3-class dataset with 20% of the data as the 

testing dataset. (A) Comparisons of the testing losses based on DcardNet-36. (B) 

Comparisons of the training (dotted lines) and testing (solid lines) accuracies based on 

DcardNet-36. (C) Comparisons of the testing losses based on ResNet-l8. (D) Comparisons 

of the training (dotted lines) and testing (solid lines) accuracies based on ResNet-l8.

Zang et al. Page 24

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zang et al. Page 25

Table I

Data Distributions of Three Classification Levels

Classifications Number of scans Whole data size

nrDR 95
294

rDR 199

no DR 85

298NPDR 128

PDR 85

no DR 85

302
mild and moderate NPDR 82

severe NPDR 50

PDR 85
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Table II

Architecture of the DcardNet-36

# Input Operator Output

1 2242 × 6 3 × 3 conv2d, stride 2 1122 × 48

2 1122 × 48 3 × 3 conv2d, stride 1 1122 × 48

3 1122 × 48 3 × 3 conv2d, stride 1 1122 × 48

4 1122 × 48 3 × 3 max pool, stride 2 562 × 48

b0 562 × 48 Bottleneck block 562 × 24

b1 t(b0), 562 × 24 Bottleneck block 562 × 24

b2 c[t(b0) – t(b1)], 562 × 48 Bottleneck block 562 × 24

b3 c[t(b0) – t(b2)], 562 × 72 Bottleneck block 562 × 24

b4 c[t(b0) – t(b3)], 282 × 96 Bottleneck block 282 × 24

b5 c[t(b1) – t(b4)], 282 × 96 Bottleneck block 282 × 24

b6 c[t(b2) – t(b5)], 282 × 96 Bottleneck block 282 × 24

b7 c[t(b3) – t(b6)], 282 × 96 Bottleneck block 282 × 24

b8 c[t(b4) – t(b7)], 142 × 96 Bottleneck block 142 × 24

b9 c[t(b5) – t(b8)], 142 × 96 Bottleneck block 142 × 24

b10 c[t(b6) – t(b9)], 142 × 96 Bottleneck block 142 × 24

b11 c[t(b7) – t(b10)], 142 × 96 Bottleneck block 142 × 24

b12 c[t(b8) – t(b11)], 72 × 96 Bottleneck block 72 × 24

b13 c[t(b9) – t(b12)], 72 × 96 Bottleneck block 72 × 24

b14 c[t(b10) – t(b13)], 72 × 96 Bottleneck block 72 × 24

b15 c[t(b11) – t(b14)], 72 × 96 Bottleneck block 72 × 24

21 c[b12 – b15], 72 × 96 Global average pool 96

22 96 Fully connected layer 2/3/4

c[t(b0) – t(b3)] means concatenate c[] each output of bottleneck blocks b0 to b3 after transfer block t().
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Table III

DR Classification Accuracy at Multiple Levels

2-class 3-class 4-class

10-fold Accuracy (mean ± std) 95.7% ± 3.9% 85.0% ± 3.6% 71.0% ± 4.8%

95% CI 93.3% – 98.1% 82.8% – 87.2% 68.0% – 74.0%
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Table IV

Sensitivity and Specificity of Each Class in Three DR Classification Levels

Classification levels DR severities Sensitivities (mean, 95% CI) Specificities (mean, 95% CI)

2-class
nrDR 91.0%, 86.4% – 95.6% 98.0%, 96.4% – 99.6%

rDR 98.0%, 96.4% – 99.6% 91.0%, 86.4% – 95.6%

3-class

no DR 86.7%, 81.3% – 92.1% 93.3%, 91.8% – 94.8%

NPDR 85.4%, 83.9% – 86.9% 89.4%, 87.1% – 91.7%

PDR 82.5%, 78.5% – 86.5% 93.7%, 91.7% – 95.7%

4-class

no DR 86.3%, 83.9% – 88.7% 87.8%, 85.9% – 89.7%

mild and moderate NPDR 81.3%, 77.2% – 85.4% 84.6%, 82.6% – 86.6%

severe NPDR 12.0%, 2.0% – 22.0% 100.0%, 100.0% – 100.0%

PDR 87.8%, 85.6% – 90.0% 87.1%, 85.1% – 89.1%
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Table V

Comparison of the DR classification accuracies at multiple levels between three different input patterns

Inputs patterns 2-class (mean, 95% CI) 3-class (mean, 95% CI) 4-class (mean, 95% CI)

OCT-based 94.2%, 91.1% – 97.3% 63.7%, 60.4% – 67.0% 54.7%, 52.1% – 57.3%

OCTA-based 94.2%. 90.5% – 97.9% 74.0%. 69.7% – 78.3% 64.7%, 61.5% – 67.9%

OCT+OCTA-based 94.2%. 91.9% – 96.5% 76.7%, 73.4% – 80.0% 64.7%, 61.5% – 67.9%
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Table VII

Comparison of the Overall Accuracy between Three Different Dropout Strategies

Dropout strategies 2-class (mean, 95% CI) 3-class (mean, 95% CI) 4-class (mean, 95% CI)

no dropout 93.6%, 91.7% – 95.5% 73.3%, 71.9% – 74.7% 64.3%, 62.6% – 66.0%

Standard dropout (0.2) 94.2%, 90.5% – 97.9% 75.3%, 73.4% – 77.2% 64.3%, 62.6% – 66.0%

Adaptive dropout 94.2%, 91.9% – 96.5% 76.7%, 73.4% – 80.0% 64.7%, 61.5% – 67.9%
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Table VIII

Comparison of the Overall Accuracy between Three Different Weight Balancing Strategies

Weight balancing strategies 2-class (mean, 95% CI) 3-class (mean, 95% CI) 4-class (mean, 95% CI)

Class weight balancing 93.6%, 91.7% – 95.5% 75.3%, 72.7% – 77.9% 64.3%, 61.7% – 66.9%

Adaptive label smoothing 94.2%, 91.9% – 96.5% 76.7%, 73.4% – 80.0% 64.7%, 61.5% – 67.9%

Both strategies 94.2%, 1.9% – 96.5% 76.0%, 74.2% – 77.8% 63.9%, 61.3% – 66.5%
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Table X

Comparison OF THE 2-class DR classification performance between our method and the ensemble network

Methods Accuracy (mean, 95% CI) Sensitivity of rDR (mean, 95% CI) Specificity of rDR (mean, 95% CI)

Ensemble network 86.8%, 85.3% – 88.2% 90.5%, 84.8% – 92.6% 78.9%, 73.1% – 88.4%

Our method 94.2%, 91.9% – 96.5% 96.0%, 94.2% – 97.8% 90.5%, 87.1% – 94.0%
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