Table 3.
The feature analysis approaches provided in iLearnPlus
Method | Algorithm (abbreviation) | Reference |
---|---|---|
Clustering | k-means (kmeans) | (85,86) |
Mini-Batch K-means (MiniBatchKMeans) | (85,86) | |
Gaussian mixture (GM) | (85,86) | |
Agglomerative (Agglomerative) | (88) | |
Spectral (Spectral) | (89) | |
Markov clustering (MCL) | (87) | |
Hierarchical clustering (hcluster) | (85,90) | |
Affinity propagation clustering (APC) | (91) | |
Mean shift (meanshift) | (92) | |
DBSCAN (dbscan) | (93) | |
Feature selection | Chi-square test (CHI2) | (38) |
Information gain (IG) | (38,39) | |
F-score value (FScore) | (94) | |
Mutual information (MIC) | (95) | |
Pearson's correlation coefficient (Pearson) | (96) | |
Dimensionality reduction | Principal component analysis (PCA) | (97) |
Latent dirichlet allocation (LDA) | (98) | |
t-distributed stochastic neighbor embedding (t_SNE) | (99) | |
Feature normalization | Z-Score (ZScore) | (15) |
MinMax (MinMax) | (15) |