Skip to main content
. 2021 Feb 28;49(10):e60. doi: 10.1093/nar/gkab122

Table 3.

The feature analysis approaches provided in iLearnPlus

Method Algorithm (abbreviation) Reference
Clustering k-means (kmeans) (85,86)
Mini-Batch K-means (MiniBatchKMeans) (85,86)
Gaussian mixture (GM) (85,86)
Agglomerative (Agglomerative) (88)
Spectral (Spectral) (89)
Markov clustering (MCL) (87)
Hierarchical clustering (hcluster) (85,90)
Affinity propagation clustering (APC) (91)
Mean shift (meanshift) (92)
DBSCAN (dbscan) (93)
Feature selection Chi-square test (CHI2) (38)
Information gain (IG) (38,39)
F-score value (FScore) (94)
Mutual information (MIC) (95)
Pearson's correlation coefficient (Pearson) (96)
Dimensionality reduction Principal component analysis (PCA) (97)
Latent dirichlet allocation (LDA) (98)
t-distributed stochastic neighbor embedding (t_SNE) (99)
Feature normalization Z-Score (ZScore) (15)
MinMax (MinMax) (15)