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Abstract
The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer
vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing
universality of deep multimodal learning. This involves the development of models capable of processing and analyzing the
multimodal information uniformly. Unstructured real-world data can inherently take many forms, also known as modalities,
often including visual and textual content. Extracting relevant patterns from this kind of data is still a motivating goal for
researchers in deep learning. In this paper, we seek to improve the understanding of key concepts and algorithms of deep
multimodal learning for the computer vision community by exploring how to generate deepmodels that consider the integration
and combination of heterogeneous visual cues across sensory modalities. In particular, we summarize six perspectives from
the current literature on deep multimodal learning, namely: multimodal data representation, multimodal fusion (i.e., both
traditional and deep learning-based schemes), multitask learning, multimodal alignment, multimodal transfer learning, and
zero-shot learning. We also survey current multimodal applications and present a collection of benchmark datasets for solving
problems in various vision domains. Finally, we highlight the limitations and challenges of deep multimodal learning and
provide insights and directions for future research.
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1 Introduction

In recent years, much progress has been made in the field
of artificial intelligence thanks to the implementation of
machine learningmethods. In general, thesemethods involve
a variety of intelligent algorithms for pattern recognition and
data processing. Usually, several sensors with specific char-
acteristics are employed to obtain and analyze global and
local patterns in a uniform way. These sensors are generally
very versatile in terms of coverage, size, manufacturing cost,
and accuracy. Besides, the availability of vast amounts of data
(big data), coupled with significant technological advances
and substantial improvements in hardware implementation
techniques, has led the machine learning community to turn
to deep learning to find sustainable solutions to a given
problem. Deep learning, also known as representation-based
learning [2], is a particular approach to machine learning
that is gaining popularity due to its predictive power and
portability. The work presented in [3] showed a technical
transition from machine learning to deep learning by sys-
tematically highlighting the main concepts, algorithms, and
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trends in deep learning. In practice, the extraction and synthe-
sis of rich information from a multidimensional data space
require the use of an intermediate mechanism to facilitate
decision making in intelligent systems. Deep learning has
been used in many practices, and it has been shown that its
performance can be greatly improved in several disciplines,
including computer vision. This line of research is part of
the rich field of deep learning, which typically deals with
visual information of different types and scales to perform
complex tasks. Currently, the deep learning algorithms have
demonstrated their potential and applicability in other active
areas such as natural language processing, machine transla-
tion, and speech recognition, performing comparably or even
better than humans.

A large number of computer vision researchers focus each
year on developing vision systems that enable machines
to mimic human behavior. For example, some intelligent
machines can use computer vision technology to simulta-
neously map their behavior, detect potential obstacles, and
track their location. By applying computer vision to multi-
modal applications, complex operational processes can be
automated and made more efficient. Here, the key challenge
is to extract visual attributes from one or more data streams
(also calledmodalities) with different shapes and dimensions
by learning how to fuse the extracted heterogeneous features
and project them into a common representation space, which
is referred to as deep multimodal learning in this work.

In many cases, a set of heterogeneous cues from multiple
modalities and sensors can provide additional knowledge that
reflects the contextual nature of a given task. In the arena of
multimodality, a given modality depends on how specific
media and related features are structured within a conceptual
architecture. Suchmodalitiesmay include textual, visual, and
auditory modalities, involving specific ways or mechanisms
to encode heterogeneous information harmoniously.

In this study, we mainly focused on visual modalities,
such as images as a set of discrete signals from a variety
of image sensors. The environment in which we live gener-
ally includes many modalities in which we can see objects,
hear tones, feel textures, smell aromas, and so on. For exam-
ple, the audiovisual modalities are complementary to each
other, where the acoustic and visual attributes come from
two different physical entities. However, combining differ-
ent modalities or data sources to improve performance is still
often an attractive task from one standpoint, but in practice, it
makes little sense to distinguish between noise, concepts, and
conflicts between data sources. Moreover, the lack of labeled
multimodal data in the current literature can lead to reduced
flexibility and accuracy, often requiring cooperation between
different modalities. In this paper, we reviewed recent deep
multimodal learning techniques to put forward typical frame-
works and models to advance the field. These networks show
the utility of learning hierarchical representations directly

from raw data to achieve maximum performance on many
heterogeneous datasets. Thus, it will be possible to design
intelligent systems that can quickly answer questions, rea-
son, and discuss what is seen in different views in different
scenarios. Classically, there are three general approaches to
multimodal data fusion: early fusion, late fusion, and hybrid
fusion.

In addition to surveys of recent advances in deep multi-
modal learning itself, we also discussed the main methods of
multimodal fusion and reviewed the latest advanced applica-
tions andmultimodal datasets popular in the computer vision
community.

The remainder of this paper is organized as follows. In
Sect. 2, we discuss the differences between similar previ-
ous studies and our work. Section 3 reviews recent advances
in deep multimodal algorithms, the motivation behind them,
and commonly used fusion techniques, with a focus on deep
learning-based algorithms. In Sects. 4 and 5, we presentmore
advanced multimodal applications and benchmark datasets
that are very popular in the computer vision community.
In Sect. 6, we discuss the limitations and challenges of
vision-based deep multimodal learning. The final section
then summarizes the whole paper and points out a roadmap
for future research.

2 Comparison with previous surveys

In recent years, the computer vision community has paid
more attention to deep learning algorithms due to their
exceptional capabilities compared to traditional handcrafted
methods. A considerable amount ofwork has been conducted
under the general topic of deep learning in a variety of appli-
cation domains. In particular, these include several excellent
surveys of global deep learning models, techniques, trends,
and applications [4,180,182], a survey of deep learning algo-
rithms in the computer vision community [179], a survey
that focuses directly on the problem of deep object detection
and its recent advances [181], and a survey of deep learn-
ing models including the generative adversarial network and
its related challenges and applications [19]. Nonetheless, the
applications discussed in these surveys include only a single
modality as a data source for data-driven learning. How-
ever, most modern machine learning applications involve
more than one modality (e.g., visual and textual modalities),
such as embodied question answering, vision-and-language
navigation, etc. Therefore, it is of vital importance to learn
more complex and cross-modal information from different
sources, types, and data distributions. This is where deep
multimodal learning comes into play.

From the early works of speech recognition to recent
advances in language- and vision-based tasks, deep multi-
modal learning technologies have demonstrated significant
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progress in improving cognitive performance and interoper-
ability of predictionmodels in a variety ofways. Todate, deep
multimodal learning has been themost important evolution in
the field of multimodal machine learning using deep learning
paradigm and multimodal big data computing environments.
In recent years, many pieces of research based on multi-
modal machine learning have been proposed [37], but to the
best of our knowledge, there is no recent work that directly
addresses the latest advances in deep multimodal learning
particularly for the computer vision community. A thorough
review and synthesis of existing work in this domain, espe-
cially for researchers pursuing this topic, is essential for
further progress in the field of deep learning. However, there
is still relatively little recent work directly addressing this
research area [32–37]. Since multimodal learning is not a
new topic, there is considerable overlap between this work
and the surveys of [32–37], which needs to be highlighted
and discussed.

Recently, the valuableworks of [32,33] considered several
multimodal practices that apply only to specific multimodal
use cases and applications, such as emotion recognition [32],
human activity and context recognition [33]. More specif-
ically, they highlighted the impact of multimodal feature
representation and multilevel fusion on system performance
and the state-of-the-art in each of these application areas.

Furthermore, some cutting-edge works [34,36] have been
proposed in recent years that address the mechanism of inte-
grating and fusing multimodal representations inside deep
learning architectures by showing the reader the possibilities
this opens up for the artificial intelligence community. Like-
wise, Guo et al. [35] provided a comprehensive overview of
deep multimodal learning frameworks and models, focus-
ing on one of the main challenges of multimodal learning,
namely multimodal representation. They summarized the
main issues, advantages, and disadvantages for each frame-
work and typical model. Another excellent survey paper was
recently published by Baltrušaitis et al. [37], which reviews
recent developments in multimodal machine learning and
expresses them in a general taxonomicway. Here, the authors
identified five levels of multimodal data combination: rep-
resentation, translation, alignment, fusion, and co-learning.
It is important to note here that, unlike our survey, which
focused primarily on computer vision tasks, the study pub-
lished by Baltrušaitis et al. [37] was aimed mainly at both
the natural language processing and computer vision com-
munities. In this article, we reviewed recent advances in
deep multimodal learning and organized them into six top-
ics: multimodal data representation, multimodal fusion (i.e.,
both traditional and deep learning-based schemes), multi-
task learning, multimodal alignment, multimodal transfer
learning, and zero-shot learning. Beyond the above work,
we focused primarily on cutting-edge applications of deep
multimodal learning in the field of computer vision and

related popular datasets. Moreover, most of the papers
we reviewed are recent and have been published in high-
quality conferences and journals such as the visual computer,
ICCV, and CVPR. A comprehensive overview of multi-
modal technologies—their limitations, perspectives, trends,
and challenges—is also provided in this article to deepen and
improve the understanding of the main directions for future
progress in the field. In summary, our survey is similar to the
closest works [35,37], which discuss recent advances in deep
multimodal learning with a special focus on computer vision
applications. The surveys we discussed are summarized in
Table 1.

3 Deepmultimodal learning architectures

In this section, we discuss deep multimodal learning and
its main algorithms. To do so, we first briefly review the
history of deep learning and then focus on the main moti-
vations behind this research to answer the question of how
to reduce heterogeneity biases across different modalities.
We then outline the perspective of multimodal representa-
tion and what distinguishes it from the unimodal space. We
next introduce recent approaches for combining modalities.
Next, we highlight the difference between multimodal learn-
ing and multitask learning. Finally, we discuss multimodal
alignment,multimodal transfer learning, and zero-shot learn-
ing in detail in Sects. 3.6, 3.7, and 3.8, respectively.

3.1 Brief history of deep learning

Historically, artificial neural networks date back to the 1950s
and the efforts of psychologists to gain a better understand-
ing of how the human brain works, including the work of F.
Rosenblat [8]. In 1960, F. Rosenblat [8] proposed a percep-
tron as part of supervised learning algorithms that is used to
compute a set of activations, meaning that for a given neu-
ron and input vector, it performs the sum weighted by a set
of weights, adds a bias, and applies an activation function.
An activation function (e.g., sigmoid, tanH, etc.), also called
nonlinearity, uses the derived patterns to perform its nonlin-
ear transformation. As a deep variant of the perceptron, a
multilayer perceptron, originally designed by [9] in 1986, is
a special class of feed-forward neural networks. Structurally,
it is a stack of single-layer perceptrons. In other words, this
structure gives the meaning of “deep” that a network can be
defined by its depth (i.e., the number of hidden layers). Typ-
ically, a multilayer perceptron with one or two hidden layers
does not require much data to learn informative features due
to the reduced number of parameters to be trained. A multi-
layer perceptron can be considered as a deep neural network
if the number of hidden layers is greater than one, as con-
firmed by [10,11]. In this regard, many more advances in the
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Table 1 Summary of reviewed deep multimodal learning surveys

Refs. Year Publication Scope Multimodality?

[4] 2015 Nature A comprehensive overview of deep learning and related
applications

✗

[19] 2018 IEEE Signal Processing Magazine An overview of generative adversarial networks and related
challenges in their theory and application

✗

[179] 2016 Neurocomputing A review of deep learning algorithms in computer vision for
image classification, object detection, image retrieval,
semantic segmentation and human pose estimation

✗

[180] 2018 IEEE Access A survey of deep learning: platforms, applications and
trends

✗

[181] 2019 arXiv A survey of deep learning and its recent advances for object
detection

✗

[182] 2018 ACM Comput. Surv. A survey of deep learning: algorithms, techniques, and
applications

✗

[32] 2019 Book A survey on multimodal emotion detection and recognition �
[33] 2018 Proceedings of the ACM on

Interactive, Mobile, Wearable
and Ubiquitous Technologies

A survey on multimodal deep learning for activity and
context detection

�

[34] 2017 IEEE Signal Processing Magazine A survey of recent progress and trends in deep multimodal
learning

�

[35] 2019 IEEE Access A comprehensive survey of deep multimodal learning and
its frameworks

�

[36] 2015 Proceedings of the IEEE A comprehensive survey of methods, challenges, and
prospects for multimodal data fusion

�

[37] 2017 IEEE Transactions on Pattern
Analysis and Machine
Intelligence

A survey and taxonomy on multimodal machine learning
algorithms

�

field are likely to follow, such as the convolutional neural net-
works of LeCun et al. [21] in 1998 and the spectacular deep
network results of Krizhevsky et al. [7] in 2012, opening the
door to many real-world domains including computer vision.

3.2 Motivation

Recently, the amount of visual data has exploded due to
the widespread use of available low-cost sensors, leading to
superior performance in many computer vision tasks (see
Fig. 1). Such visual data can include still images, video
sequences, etc., which can be used as the basis for con-
structing multimodal models. Unlike the static image, the
video stream provides a large amount of meaningful infor-
mation that takes into account the spatiotemporal appearance
of successive frames, so it can be easily used and analyzed
for various real-world use cases, such as video synthesis
and description [68], and facial expression recognition [123].
The spatiotemporal concept refers to the temporal and spa-
tial processing of a series of video sequences with variable
duration. In multimodal learning analytics, the audio-visual-
textual features are extracted from a video sequence to learn
joint features covering the three modalities. Efficient learn-
ing of large datasets at multiple levels of representation leads

to faster content analysis and recognition of the millions of
videos produced daily. Themain reason for usingmultimodal
data sources is that it is possible to extract complemen-
tary and richer information coming from multiple sensors,
which can providemuchmore optimistic results than a single
input. Some monomodal learning systems have significantly
increased their robustness and accuracy, but in many use
cases, there are shortcomings in terms of the universality
of different feature levels and inaccuracies due to noise and
missing concepts. The success of deep multimodal learn-
ing techniques has been driven by many factors that have
led many researchers to adopt these methods to improve
model performance. These factors include large volumes of
widely usable multimodal datasets, more powerful comput-
ers with fast GPUs, and high-quality feature representation at
multiple scales.Here, a practical challenge for the deep learn-
ing community is to strengthen correlation and redundancy
between modalities through typical models and powerful
mechanisms.

3.3 Multimodal representation

Multi-sensory perception primarily encompasses a wide
range of interacting modalities, including audio and video.
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Fig. 1 An example of a
multimodal pipeline that
includes three different
modalities

Multimodal learning

Multimodal datasets

Deep learning
models
(DNNs)

Sensors

Computer vision applications

Fusion algorithms

Modality 2Modality 1 Modality 3

Data acquisition and sampling

For simplicity, we consider the following temporal mul-
timodal problem, where both audio and video modalities
are exploited in a video recognition task (emotion recog-
nition). First, let us consider two input streams of different
modalities: Xa = {

χn
1 , . . . , χn

T

}
and Xv = {

χm
1 , . . . , χm

T

}
,

where χn
t and χm

t refer to the n- and m-dimensional fea-
ture vectors of the Xa and Xv modalities occurring at time
t , respectively. Next, we combine the two modalities at time
t and consider the two unimodal output distributions at dif-
ferent levels of representations. Given ground truth labels
Z = {

Z1, . . . , ZT
}
, we aim here to train a multimodal

learning model M that maps both Xa and Xv into the same
categorical set of Z . Each parameter of the input audio stream
χT
a and video stream χT

v is synchronized differently in time
and space, where χT

a ∈ R
i and χT

v ∈ R
j , respectively.

Here, we can construct two separate unimodal networks from
Xa and Xv , denoted, respectively, by Na and Nv , where
Na : Xa → Y , Nv : Xv → Y , and M = Na

⊕
Nv .

Y denotes the predicted class label of the training samples
generated by the output of the constructed networks and

⊕

indicates the fusionoperation.Thegeneratedmultimodal net-
work M can then recognize the most discriminating patterns
in the streaming data by learning a common representation
that integrates relevant concepts from both modalities. Fig-
ure 2 shows a schematic diagram of the application of the
described multimodal problem to the video emotion recog-
nition task.

Therefore, it is necessary to consider the extent to which
any such dynamic entity will be able to take advantage of this

type of information from several redundant sources. Learn-
ing multimodal representation from heterogeneous signals
poses a real challenge for the deep learning community. Typ-
ically, inter- and intra-modal learning involves the ability to
represent an object of interest from different perspectives,
in a complementary and semantic context where multi-
modal information is fed into the network. Another crucial
advantage of inter- and intra-modal interaction is the dis-
criminating power of the perceptual model for multisensory
stimuli by exploiting the potential synergies between modal-
ities and their intrinsic representations [112]. Furthermore,
multimodal learning involves a significant improvement in
perceptual cognition, as many of our senses are involved in
the process of treatment information from several modalities.
Nevertheless, it is essential to learn how to interpret the input
signals and summarize their multimodal nature to construct
aggregate feature maps across multiple dimensions. In the
multimodality theory, obtaining contextual representation
from more than one modality has become a vital challenge,
which has been termed in this study as the multimodal rep-
resentation.

Typically, monomodal representation involves a linear or
nonlinearmapping of an individual input stream (e.g., image,
video, or sound, etc.) into a high-level semantic representa-
tion. Themultimodal representation leverages the correlation
power of each monomodal sensation by aggregating their
spatial outputs. Thus, the deep learning model must be
adapted to accurately represent the structure and represen-
tation space of the source and target modality. For example,
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Alignment detection

Audio description 

Face description

Multimodal fusion

Video

Audio

Final
prediction

t
Fusion

operation

Fig. 2 A schematic illustration of themethod used: The visualmodality
(video) involves the extraction of facial regions of interest followed by
a visual mapping representation scheme. The obtained representations
are then temporally fused into a common space. Additionally, the audio

descriptions are also generated. The two modalities are then combined
using a multimodal fusion operation to predict the target class label
(emotion) of the test sample

Image

This is the oldest and most important defensive work to
have been built along the North African coastline by the
Arab conquerors in the early days of Islam. Founded in
796, this building underwent several modifications during
the medieval period. Initially, it formed a quadrilateral
and then was composed of four buildings giving onto two
inner courtyards.

Text

Visual representations (Dense)

Textual representations (Sparse)
c c c c c

Fig. 3 Difference between visual and textual representation

a 2D image may be represented by its visual patterns, mak-
ing it difficult to characterize this data structure using natural
modality or other non-visual concepts. As shown in Fig. 3,
the textual representation (i.e., a word embedding) is very
sparse when compared to the image one, which makes it
very challenging to combine these two different representa-
tions into a unified model. As another example, when the
driver of a car is driving autonomously, he probably has
a LiDAR camera and other embedded sensors (e.g., depth
sensors, etc) [81] to perceive his surroundings. Here, poor
weather conditions can affect the visual perception of the
environment. Moreover, the high dimensionality of the state
space poses a major challenge, since the vehicle can mobi-
lize in both structured and unstructured locations. However,
an RGB image is encoded as a discrete space in the form of
grid pixels, making it difficult to combine visual and non-
visual cues. Therefore, learning a joint embedding is crucial
for exploiting the synergies of multimodal data to construct
shared representation spaces. This implies the emphasis on
multimodal fusion approaches, which will be discussed in
the next subsection.

3.4 Fusion algorithms

The most critical aspect of the combinatorial approach is the
flexibility to represent data at different levels of abstraction.
By using an intermediate formalism, the learned information
can be combined into two or more modalities for a particular
hypothesis. In this subsection, we describe commonmethods
for combining multiple modalities, ranging from the conven-
tional to the modern methods.

3.4.1 Conventional methods

3.4.1.1 Typical techniques based

To improve the generalization performance of complex
cognitive systems, it is necessary to capture and fuse an
appropriate set of informative features from multiple modal-
ities using typical techniques. Traditionally, they range from
early to hybrid fusion schemes (see Fig. 4):

– Early fusion: low-level features that are directly extracted
from each modality will be fused before being classified.

– Late fusion: also called “decision fusion”, which consists
of classifying features extracted from separatemodalities
before fusing them.

– Hybrid fusion: also known as “intermediate fusion”,
which consists of combiningmultimodal features of early
and late fusion before making a decision.

Feature-level fusion (i.e., early fusion) provides a richness of
information from heterogeneous data. The extracted features
often lack homogeneity due to the diversity of modalities and
disparities in their appearance. Also, this fusion process can
generate a single large representation that can lead to pre-
diction errors. In the case of a late fusion, such techniques
as majority vote [38] and low-rank multimodal fusion [39]
may be used to aggregate the final prediction scores of sev-
eral classifiers. Thus, each modality independently takes the
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Fig. 4 Conventional methods for multimodal data fusion: a Early
fusion, b Late fusion, c Hybrid fusion

decision, which can reduce the overall performance of the
integration process. In the case of intermediate fusion, the
spatial combination of intermediate representations of the
different data streams usually produced with varying scales
and dimensions, making them more challenging to merge.
To overcome this challenge, the authors of [124] designed
a simple fusion scheme, called multimodal transfer module
(MMTM), to transfer and hierarchically aggregate shared
knowledge from multiple modalities in CNN networks.

3.4.1.2 Kernel based

Since a long time ago, the support vector machine [40] clas-
sifier has been introduced as a learning algorithm for a wide
range of classification tasks. Indeed, SVM is one of the most
popular linear classifiers that are based on learning a single
kernel function through the handling of linear tasks, such as
discrimination and regression problems. The main idea of an
SVM is to separate the feature space into two classes of data
with a hard margin. Kernel-based methods are among the
most commonly used techniques for performing fusion due
to their proven robustness and reliability. Formore details,we
invite the reader to consult the work of Gönen et al. [41] that
focusedon the taxonomyofmulti-kernel learning algorithms.
These kernels are intended tomake use of the similarities and
discrepancies across training samples as well as a wide vari-
ety of data sources. In other words, these modular learning
methods are used for multimodal data analysis. Recently, a
growing number of studies have focused, in particular, on
the potential of these kernels for multi-source-based learn-
ing for improving performance. In this sense, a wide range
of kernel-based methods have been proposed to summarize
information from multiple sources using a variety of input
data. In this regard, Gönen et al. [41] pioneered multiple
kernel learning (MKL) algorithms that seek to combine mul-
timodal data that have distinct representations of similarity.
MKL is the process of learning a classifier through multiple
kernels and data sources. Also, it aims to extract the joint
correlation of several kernels in a linear or nonlinear manner.
Similarly, Aiolli et al. [42] proposed the MKL-based algo-
rithm, called EasyMKL, which combines a series of kernels
to maximize the segregation of representations and extract
the strong correlation between feature spaces to improve
the performance of the classification task. An alternative
model, called convolutional recurrent multiple kernel learn-
ing (CRMKL), based on the MKL framework for emotion
recognition and sentiment analysis is reported by Wen et al.
[43]. In [43], theMKL algorithm is used to combine multiple
features that are extracted from deep networks.

3.4.1.3 Graphical models based

One of the most common probabilistic graphical models
(PGMs) includes the hidden Markov model (HMM) [44].
It is an unsupervised and generative model. It has a series
of potential states and transition probabilities. In the Markov
chain, the transition from one state to another leads to the
generation of observed sequences in which the observations
are part of a state set. A transition formalizes how it is possi-
ble to move from one state to another and for each one there
is a probability distribution of being borrowed. The states
are hidden, but the first state generates a visible state from a
given one. The main property of Markov chains is that the
probabilities depend only on the previous state of the model.
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InHMM, a kind of generalization ofmixing densities defined
by each state is involved, as confirmed by Ghahramani et al.
[45]. Specifically, Ghahramani et al. [45] introduced the fac-
torial HMM (FHMM) which consists of combining the state
transition matrix of HMMs with the distributed representa-
tions of vector quantizer (VQ) [46]. According to [46], VQ
is a conventional technique for quantifying and generaliz-
ing dynamic mixing models. FHMM addresses the limited
representational power of the latent variables of HMM by
presenting the hidden state under a certain weighted appear-
ance. Likewise, Gael et al. [47] proposed the non-parametric
FHMM, called iFHMM, by introducing a new stochastic pro-
cess for latent feature representation of time series.

In summary, the PGM model can be considered a robust
tool for generating missing channels by learning the most
representative inter-modal features in an unsupervised man-
ner. One of the drawbacks of the graphical model is the high
cost of the training and inference process.

3.4.1.4 Canonical correlation analysis based

In general, a fusion scheme can construct a single mul-
timodal feature representation for each processing stage.
However, it is also straightforward to place constraints on
the extracted unimodal features [37]. Canonical correlation
analysis (CCA) [201] is a very popular statistical method that
attempts to maximize the semantic relationship between two
unimodal representations so that complex nonlinear trans-
formations of the two data perspectives can be effectively
learned. Formally, it can be formulated as follows:

(
v1∗, v2∗) = argmax

v1,v2
corr(v1T X1, v2T X2), (1)

where X1 and X2 stand for unimodal representations, v1 and
v2 for two vectors of a given length, and corr for the corre-
lation function. A deep variant of CCA can also be used to
maximize the correlation between unimodal representations,
as suggested by the authors of [202]. Similarly, Chandar et al.
[203] proposed a correlation neural network, called CorrNet,
which is based on a constrained encoder/decoder structure to
maximize the correlation of internal representations when
projected onto a common subspace. Engilberge et al. [204]
introduced a weaker constraint on the joint embedding space
using a cosine similarity measure. Besides, Shahroudy et al.
[205] constructed a unimodal representation using a hierar-
chical factorization scheme that is limited to representing
redundant feature parts and other completely orthogonal
parts.

3.4.2 Deep learningmethods

3.4.2.1 Deep belief networks based

Deepbelief network (DBN) is part of the graphical generative
deep model [15]. They form a deeper variant of the restricted

Boltzmann machine (RBM) by combining it together. In
other words, a DBN consists of stacking a series of RBM
where the hidden layer of the first RBM is the visible layer
of the higher hierarchies. Structurally, a DBN model has a
dense structure similar to that of a shallowmultilayer percep-
tron. The first RBM is designed to systematically reconstruct
its input signal in which its hidden layer will be handled as
the visible layer for the second one. However, all hidden rep-
resentations are learned globally at each level of DBN. Note
that DBN is one of the strongest alternatives to overcome the
vanishing gradient problem through a stack of RBM units.
Like a single RBM, DBN involves discovering latent fea-
tures in the raw data. It can be further trained in a supervised
fashion to perform the classification of the detected hidden
representations.

Compared to other supervised deepmodels, DBN requires
only a very small set of labeled data to perform weight
training, which leads to a high level of usefulness in many
multimodal tasks. For instance, Srivastava et al. [206] pro-
posed a multimodal generative model based on the concept
of deep Boltzmann machine (DBM) which learns a set of
multimodal features by filling in the conditional distribu-
tion of data on a space of multimodal inputs such as image,
text, and audio. Specifically, the purpose of training a multi-
modal DBN model is to improve the prediction accuracy of
both unimodal and multimodal systems by generating a set
of multimodal features that are semantically similar to the
original input data so that they can be easily derived even
if some modalities are missing. Figure 5 illustrates a mul-
timodal DBN architecture that takes as input two different
modalities (image and text) with different statistical distri-
butions to map the original data from a high-dimensional
space to a high-level abstract representation space. After
extracting the high-level representation from each modality,
an RBM network is then used to learn the joint distribution.
The image and text modalities aremodeled using twoDBMs,
each consisting of two hidden layers. Formally, the joint rep-
resentation can be expressed as follows:

P(vi |θ) =
∑

h1,h2

P(vi , h
1, h2|θ), (2)

where vi refers to the input visual and textual modalities, θ
to the network parameters, and h to the hidden layer of each
modality.

In a multimodal context, the advantage of using multi-
modal DBN models lies in their sensitivity and stability in
both supervised, semi-supervised and unsupervised learn-
ing protocols. These models allow for better modeling of
very complex anddiscriminatingpatterns frommultiple input
modalities. Despite these advantages, these models have a
few limitations. For instance, they largely ignore the spa-
tiotemporal cues of multimodal data streams, making the
inference process computationally intensive.
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Fig. 5 Structure of a bimodal DBN

3.4.2.2 Deep autoencoders based

Deep autoencoders (DAEs) [207] are a class of unsupervised
neural networks that are designed to learn a compressed rep-
resentation of input signals. Conceptually, they consist of
two coupled modules: the encoding module (encoder) and
the decoding module (decoder). On the one hand, the encod-
ing module consists of several processing layers to map
high-dimensional input data into a low-dimensional space
(i.e., latent space vectors). On the other hand, the decod-
ing module takes these latent representations as input and
decodes them in order to reconstruct the input data. These
models have recently drawn attention from the multimodal
learning community due to their great potential for reducing
data dimensionality and, thus, increasing the performance of
training algorithms. For instance, Bhatt et al. [208] proposed
a DAE-based multimodal data reconstruction scheme that
uses knowledge from different modalities to obtain robust
unimodal representations and projects them onto a com-
mon subspace. Similar to the work of Bhatt, Liu et al. [209]
proposed the integration of multimodal stacked contractive
AEs (SCAEs) to learn cross-modality features across multi-
ple modalities even when one of them is missing, intending
to minimize the reconstruction loss function and avoid the
overfitting problem. The loss function can be formulated as
follows:

Lossreconst =
M∑

i=1

(
∥∥xi − x̂i

∥∥2
2) + ∥∥yi − ŷi

∥∥2
2). (3)

Here, (xi , yi ) denotes a pair of two inputs, and (x̂i , ŷi ) rep-
resent their reconstructed outputs.

Several other typicalmodels based on stackedAEs (SAEs)
have been proposed to learn coherent joint representations

Audio Video

Audio reconstruction Video reconstruction

Shared representation

Fig. 6 Structure of a bimodal AE

across modalities. For example, the authors of [210–212]
designed multimodal systems based on SAEs, where the
encoder side of the architecture represents and compresses
each unimodal feature separately, and the decoder side
constructs the latent (shared) representation of the inputs
in a unsupervised manner. Figure 6 shows the coupling
mechanism of two separate AEs (bimodal AE) for both
modalities (audio and video) into a jointly shared represen-
tation hierarchy where the encoder and decoder components
are independent of each other. As a powerful tool for feature
extraction and dimensionality reduction, the DAE aims to
learn how to efficiently represent manifolds where the train-
ing data is unbalanced or lacking. One of themain drawbacks
of DAEs is that many hidden parameters have to be trained,
and the inference process is time-consuming.Moreover, they
also miss some spatiotemporal details in multimodal data.

3.4.2.3 Convolutional neural networks based

Convolutional neural networks (CNNs or ConvNets) are a
class of deep feed-forward neural networks whose main pur-
pose is to extract spatial patterns from visual input signals
[20,22].More specifically, suchmodels tend tomodel a series
of nonlinear transformations by generating very abstract and
informative features from highly complex datasets. Themain
properties that distinguish CNNs from other models include
their ability to capture local connectivity between units, to
shareweights across layers, and to block a sequence of hidden
layers [4]. The architecture is based on hierarchical filtering
operations, i.e., using convolution layers followed by activa-
tion functions, etc. Once the convolution layers are linearly
stacked, the growth of the receptive field size (i.e., kernel
size) of the neural layers can be simulated by a max-pooling
operation, which implies a reduction in the spatial size of
the feature map. After applying a series of convolution and
pooling operations, the hidden representation learned from
the model must be predicted. For this purpose, at least one
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fully connected layer (also called dense layer) is used that
concatenates all previous activation maps.

Since its introduction by Krizhevsky et al. [7] in 2012, the
CNNmodel has been successfully applied to a wide range of
multimodal applications, such as image dehazing [239,240]
and human activity recognition [241]. An adaptive multi-
modal mapping between two visual modalities (e.g., images
and sentences) typically requires strong representations of
the individual modalities [213]. In particular, CNNs have
demonstrated powerful generalization capabilities to learn
how to represent visual appearance features from static data.
Recently, with the advent of robust and low-cost RGB-D
sensors such as the Kinect, the computer vision community
has turned its attention to integrating RGB images and corre-
sponding depthmaps (2.5D) intomultimodal architectures as
shown in Fig. 7. For instance, Couprie et al. [214] proposed
a bimodal CNN architecture for multiscale feature extrac-
tion from RGB-D datasets, which are taken as four-channel
frames (blue, green, red, and depth). Similarly, Madhuranga
et al. [215] used CNNmodels for video recognition purposes
by extracting silhouettes from depth sequences and then fus-
ing the depth information with audio descriptions for activity
of daily living (ADL) recognition. Zhang et al. [217] pro-
posed to use multicolumn CNNs to extract visual features
from the face and eye images for the gaze point estimation
problem. Here, the regression depth of the facial landmarks
is estimated from the facial images and the relative depth of
facial keypoints is predicted by global optimization. To per-
form image classification directly, the authors of [217,218]
suggested the possibility of using multi-stream CNNs (i.e.,
two or more stream CNNs) to extract robust features from
a final hidden layer and then project them onto a common
representation space. However, the most commonly adopted
approaches involve concatenating a set of pre-trained fea-
tures derived from the huge ImageNet dataset to generate a
multimodal representation [216].

Formally, let f j
i be the feature map of j modalities and i

be the current spatial location, where j = {1, 2, . . . , N }. As
shown in Fig. 7, in our case N = 2, since the feature maps
FC2 (RGB) and FC2 (D) were taken separately from the
RGB and depth paths. The fused feature map F fusion

i , which
is a weighted sum of the unimodal representations, can be
calculated as follows:

F fusion
i =

N∑

j=1

w
j
i f

j
i . (4)

Here,w j
i denotes the weight vectors that can be computed

as follows:

w
j
i = exp( f j

i )
∑N

k=1 exp( f
k
i )

. (5)

In summary, a multimodal CNN serves as a powerful fea-
ture extractor that learns local cross-modal features from
visual modalities. It is also capable of modeling spatial cues
from multimodal data streams with an increased number of
parameters. However, it requires a large-scale multimodal
dataset to converge optimally during training, and the infer-
ence process is time-consuming.

3.4.2.4 Recurrent neural networks based

Recurrent neural networks (RNNs) [12] are a popular type of
deep neural network architectures for processing sequential
data of varying lengths. They learn to map input activa-
tions to the next hierarchy level and then transfer hidden
states to the outputs using the recurrent feedback, which
gives them the capacity to learn useful features from the pre-
vious states, unlike other deep feedforward networks such
as CNNs, DBNs, etc. It also can handle time series and
dynamic media such as text and video sequences. By using
the backpropagation algorithm, the RNN function takes an
input vector and a previous hidden state as input to capture
the temporal dependence between objects. After training, the
RNN function is fixed at a certain level of stability and can
then be used over time.

However, the vanilla RNN model is typically incapable
of capturing long-term dependencies in sequential data since
they have no internal memory. To this end, several popular
variants have been developed to efficiently handle this con-
straint and the gradient vanishing problem with impressive
results, including long short-term memory (LSTM) [13] and
gated recurrent linear units (GRU) [14]. In terms of compu-
tational efficiency, GRU is a lightweight variant of LSTM
since it can modulate the information flow without using its
internal memory units.

In addition to their use for unimodal tasks, RNNs have
proved useful in many multimodal problems that require
modeling long- and short-range dependencies across the
input sequence, such as semantic segmentation [219] and
image captioning [220]. For instance, Abdulnabi et al.
[219] proposed a multimodal RNN architecture designed for
semantic scene segmentation using RGB and depth chan-
nels. They integrated two parallel RNNs to efficiently extract
robust cross-modal features from each modality. Zhao et al.
[220] proposed an RNN-based multimodal fusion scheme
to generate captions by analyzing distributional correla-
tions between images and sentences. Recently, several new
multimodal approaches based on RNN variants have been
proposed and have achieved outstanding results in many
vision applications. For example, Li et al. [221] designed
a GRU-based embedding framework to describe the content
of an image. They usedGRU to generate a description of vari-
able length from a given image. Similarly, Sano et al. [222]
proposed a multimodal BiLSTM for ambulatory sleep detec-
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Fig. 7 Structure of a bimodal
CNN
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Fig. 8 A schematic illustration of bidirectional multimodal RNN (m-RNN) [223]

tion. In this case, BiLSTM was used to extract features from
the wearable device and synthesize temporal information.

Figure 8 illustrates a multimodal m-RNN architecture
that incorporates both word embeddings and visual features
using a bidirectional recurrent mechanism and a pre-trained
CNN. As can be seen, m-RNN consists of three components:
a language network component, a vision network compo-
nent, and a multimodal layer component. The multimodal
layer here maps semantic information across sub-networks
by temporally learningword embeddings and visual features.
Formally, it can be expressed as follows:

m(t) = f (vw.w(t), vr .r(t), vI .I ), (6)

where f (.) denotes the activation function, w and r consist
of the word embedding feature and the hidden states in both
directions of the recurrent layer and I represent the visual
features.

In summary, the multimodal RNN model is a robust tool
for analyzing both short- and long-termdependencies ofmul-
timodal data sequences using the backpropagation algorithm.
However, the model has a slow convergence rate due to the
high computational cost in the hidden state transfer function.

3.4.2.5 Generative adversarial networks based

Generative adversarial networks (GANs) are part of deep
generative architectures, designed to learn the data distri-
bution through the adversarial learning. Historically, they
were first developed by Goodfellow et al. [16], which
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demonstrated the ability to generate realistic and reason-
ably impractical representations from noisy data domains.
Structurally, GAN is a unified network consisting of two
sub-networks, a generator network (G) and a discriminator
network (D), which interact continuously during the learn-
ing process. The principle of its operation is as follows: The
generator network takes as input the latent distribution space
(i.e., a random noise (z)) and generates an artificial sample.
The discriminator takes the true sample and those generated
by the generator and tries to predict whether the input sam-
ple is true (false) or not. Hence, it is a binary classification
problem, where the output must be between 0 (generated)
and 1 (true). In other words, the generator’s main task is to
generate a realistic image, while the discriminator’s task is to
determine whether the generated image is true or false. Sub-
sequently, they should use an objective function to represent
the distance between the distribution of generated samples
(pz) and the distribution of real ones (pdata). The adversar-
ial training strategy consists of using a minimax objective
function V (G, D), which can be expressed as follows:

min
G

max
D

V (G, D) = Ex∼pdata |log(D(x))|
+Ez∼pz |log(1 − D(x))| (7)

Since their development in 2014, generative adversar-
ial training algorithms have been widely used in various
unimodal applications such as scene generation [17], image-
to-image translation [18], and image super-resolution [224,
225]. To obtain the latest advances in super-resolution algo-
rithms for a variety of remote sensing applications, we invite
the reader to refer to the excellent survey article by Rohith
et al. [226].

In addition to its use in unimodal applications, the gener-
ative adversarial learning paradigm has recently been widely
adopted in multimodal arenas, where two or more modali-
ties are involved, such as image captioning [227] and image
retrieval [228]. In recent years, GAN-based schemes have
been receiving a lot of attention and interest in the field of
multimodal vision. For example, Xu et al. [229] proposed
a fine-grained text-image generation framework using an
attentional GAN model to create high-quality images from
text. Similarly, Huang et al. [230] proposed an unsupervised
image-to-image translation architecture that is based on the
idea that the image style of one domain can be mapped
into the styles of many domains. In [231], Toriya et al.
addressed the task of image alignment between a pair of mul-
timodal images by mapping the appearance features of the
first modality to the other using GAN models. Here, GANs
were used as a means to apply keypoint-mapping techniques
to multimodal images. Figure 9 shows a simplified diagram
of a multimodal GAN.

Modality 1
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Modality n

.

.

Multimodal data

Discriminators

Generators

Positive data

Negative data

Prediction

Random noise

Fig. 9 A schematic illustration of multimodal GAN

In summary, unsupervised GAN is one of the most pow-
erful generative models that can address scenarios where
training data is lacking or some hidden concepts are missing.
However, it is extremely tricky to train the network when
generating discrete distributions, and the process itself is
unstable compared to other generative networks. Moreover,
the function that this network seeks to optimize is an adver-
sarial loss function without any normalization.

3.4.2.6 Attention mechanism based

In recent years, the attention mechanism (AM) has become
one of the most challenging tasks in computer vision and
machine translation [232]. The idea of AM is to focus on
a particular position in the input image by computing the
weighted sum of feature vectors and mapping them into a
final contextual representation. In other words, it learns how
to reduce some irrelevant attributes from a set of feature vec-
tors. In the multimodal analysis, an attentional model can
be designed to combine multiple modalities, each with its
internal representation (e.g., spatial features,motion features,
etc.). That is,when a set of features is derived fromspatiotem-
poral cues, these variable-length vectors are semantically
combined into a single fixed-length vector. Furthermore, an
AM can be integrated into RNN models to improve the gen-
eralization capability of the former by capturing the most
representative and discriminating patterns from heteroge-
neous datasets. A formalism for integrating an AM into the
basic RNN model was developed by Bahdanau et al. [1].
Since the encoding side of an RNN generates a fixed-length
feature vector from its input sequence, this can lead to very
tedious and time-consumingparameter tuning.Therefore, the
AM acts as a contextual bridge between the encoding and
decoding sides of an RNN to pay attention only to a partic-
ular position in the input representation.
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Consider as an example of neural machine translation [1]
(see Fig. 10), where an encoder is trained to map a sequence
of input vectors x = (x1, . . . , xTx ) into a fixed-length vector
c and a decoder to predict the next word (yt ′) from previous
predicted ones

{
y1, . . . , yt ′−1

}
. Here, c refers to an encoded

vector produced by a sequence of hidden states that can be
expressed as follows:

c = q(h1, . . . , hTx ), (8)

where q denotes some activation functions. The hidden state
ht (ht ∈ R

n) at time step t can be formulated as:

ht = f (xt , . . . , ht−1). (9)

The context vector ci can then be computed as a weighted
sum of a sequence of annotations

{
h1, . . . , hTx

}
as follows:

ci =
Tx∑

j=1

σi j h j , (10)

where the alignment weight σi j of each annotation h j can be
calculated as:

σi j = exp(ei j )
∑Tx

k=1 exp(eik)
, (11)

and ei j = a(si−1, h j ). si−1 is the hidden state at the (i−1)-th
position of the input sequence.

Since its introduction, the AM has gained wide adop-
tion in the computer vision community due to its spectral
capabilities for many multimodal applications such as video
description [233,234], salient object detection [235], etc. For
example, Hori et al. [233] proposed a multimodal atten-
tion framework for video captioning and sentence generation
based on the encoder–decoder structure using RNNs. In par-
ticular, the multimodal attention model was used as a way
to integrate audio, image, and motion features by select-
ing the most relevant context vector from each modality.
In [236], Yang et al. suggested the use of stacked attention
networks to search for image regions that correlate with a
query answer and identify representative features of a given
question more precisely. More recently, Guo et al. [237]
introduced a normalized variant of the self-attention mecha-
nism, called normalised self-attention (NSA), which aims to
encode and decode the image and caption features and nor-
malize the distribution of internal activations during training.

In summary, the multimodal AM provides a robust solu-
tion for cross-modal data fusion by selecting the local
fine-grained salient features in a multidimensional space and
filtering out any hidden noise. However, the only weakness
of AM is that the training algorithm is unstable, which may
affect the predictive power of the decision-making system.

h2 h3 hTh1
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a t,1 a t,2 a t,3 a t,T

Source sequence

S t-1 S t

Y t-1 Yt

Attention layer

Context vector

Decoder

Encoder

Target

Additive attention 

Alignment weights

Fig. 10 A schematic illustration of the attention-based machine trans-
lation model

Furthermore, the number of parameters to be trained is huge
compared to other deep networks such as RNNs, CNNs, etc.

3.5 Multitask learning

More recently, multitask learning (MTL) [108,109] has
become an increasingly popular topic in the deep learn-
ing community. Specifically, the MTL paradigm frequently
arises in a context close to multimodal concepts. In contrast
to single-task learning, the idea behind this paradigm is to
learn a shared representation that can be used to respond
to several tasks in order to ensure better generalizability.
Although, there are some similarities between the fusion
methods discussed in Sect. 3.4 and the methods used to per-
formmulti-tasks simultaneously.What they have in common
is that the sharing of the structure between all tasks can be
learned jointly to improve performance. The conventional
typology of the MTL approach consists of two subtasks:

– Hard parameter sharing [110]: It consists of extracting a
generic representation for different tasks using the same
parameters. It is usually applied to avoid overfitting prob-
lems.

– Soft parameter sharing [111]: It consists of extracting a
set of feature vectors and simultaneously drawing simi-
larity relationships between them.

Figure 11 shows a meta-architecture for the two-task case.
As can be seen, there are six intermediate layers in total, one
shared input layer (bottom), two task-specific output layers
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Fig. 11 A meta-architecture in the case of two tasks A and B [109]

(top), and three hidden layers per task, each divided into two
G-subspaces. Typically,MTL contributes to the performance
of the target task based on knowledge gained from auxiliary
tasks.

3.6 Multimodal alignment

Multimodal alignment consists of linearly linking the fea-
tures of two or more different modalities. Its areas of appli-
cation include medical image registration [169], machine
translation [1], etc. Specifically,multimodal image alignment
provides a spatial mapping capability between images taken
by sensors of different modalities, which may be catego-
rized into feature-based [167,168] and patch-based [165,166]
methods. Feature-based methods detect and extract a set of
matching features that should be structurally consistent to
describe their spatial patterns. Patch-basedmethods first split
each image into local patches and then consider the similar-
ity between them by computing their cross-correlation and
combination. Generally, the alignment task can be divided
into two subtasks: the attentional alignment task [170,171]
and the semantic alignment task [172,173]. The attentional
alignment task is based on the attentional mapping between
the features of the input modality and the target one, while
the semantic alignment task takes the form of an alignment
method that directly provides alignment capabilities to a pre-
dictive model. The most popular use of semantic alignment
is to create a dataset with associated labels and then gener-
ate a semantically aligned dataset. Both of these tasks have
proven effective in multimodal alignment, where attentional
alignment features are better able to take into account the
long-term dependencies between different concepts.

3.7 Multimodal transfer learning

Typically, training a deepmodel from scratch requires a large
amount of labeled data to achieve an acceptable level of

performance. A more common solution is to find an effi-
cient method that transfers knowledge already derived from
another trained model onto a huge dataset (e.g., 1000k-
ImageNet) [198]. Transfer learning (TL) [70] is one of the
model regularization techniques that have proven their effec-
tiveness for training deep models with a limited amount of
available data and avoiding overfitting problems. Transfer-
ring knowledge from a pre-trained model associated with a
sensory modality to a new task or similar domain facilitates
the learning and fine-tuning of a target model using a target
dataset.

The technique can accelerate the entire learning process
by reducing inference time and computational complexity.
Moreover, the learning process can learn the data distribution
in a non-parallel manner and ensure its synchronization over
time. It can also learn rich and informative representations by
using cooperative interactions among modalities. Moreover,
it can improve the quality of the information transferred by
eliminating any latent noise and conflict [113,115–117]. For
example, Palaskar et al. [113] proposed amultimodal integra-
tion pipeline that loads the parameters of a pre-trained model
on the source dataset (transcript and video) to initialize the
training of the target dataset (summary, question, and video).
They used hierarchical attention [114] as a merging mecha-
nism that can be used to generate a synthesis vector frommul-
timodal sources. An example of a multimodal transfer learn-
ing pipeline based on the fine-tuning mechanism is shown in
Fig. 12. It can be seen that a deep model is first pre-trained
on a source domain, the learned parameters are then shifted
to different modalities (i.e., fine-tuned models) and finally
blended into the target domain using fusion techniques.

3.8 Zero-shot learning

In practice, the amount of labeled data samples for effective
model training is often insufficient to recognize all possi-
ble object categories in an image (i.e., seen and unseen
classes). This is why zero-shot learning [130] takes place.
This supervised learning approach opens up many valuable
applications such as object detection [131], object clas-
sification and retrieval of videos [141], especially when
appropriate datasets are missing. In other words, it addresses
multi-class learning problemswhen some classes do not have
sufficient training data. However, during the learning pro-
cess, additional visual and semantic features such as word
embeddings [132], visual attributes [133], or descriptions
[134] can be assigned to both seen and unseen classes. In
the context of multimodality, a multimodal mapping scheme
typically combines visual and semantic attributes using only
data related to the seen classes. The objective is to project a
set of synthesized features in order to make the model more
generalizable toward the recognition of the unseen class in
test samples [135]. Suchmethods tend to use GANmodels to
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Fig. 12 An illustration of an
example of a multimodal
transfer learning process
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synthesize and reconstruct the visual features of the unseen
classes, resulting in high accuracy classification and ensuring
a balance between seen and unseen class labels [136,137].

4 Tasks and applications

When modeling multimodal data, several compromises have
to bemade between system performance, computational bur-
den, and processing speed. Also, many other factors must
be regarded when selecting a deep model due to its sensi-
tivity and complexity. In general, multimodality has been
employed in many vision tasks and applications, such as
face recognition and image retrieval. Table 2 summarizes
the reviewedmultimodal applications, their technical details,
and the best results obtained according to evaluation metrics
such as accuracy (ACC) and precision (PREC). In the fol-
lowing, we first describe the core tasks of computer vision,
followed by a comprehensive discussion of each application
and its intent.

4.1 Generic computer vision tasks

4.1.1 Object detection

Object detection tasks generally consist of identifying rect-
angular windows (i.e., bounding boxes) in the image (i.e.,
object localization) and assigning class labels to them (i.e.,
object classification), through a process of patch extraction
and representation (i.e., region of interest (RoI)). The local-
ization process aims at defining the coordinates and position
of the patch. In order to classify each object instance, a patch
proposal strategy may be applied before the final prediction
step. In practice, there are several possible detection meth-
ods. The most typical of these is to apply the classifier to
an arbitrary region of the image or to a range of different
shapes and scales. In the case of detecting patches, the same
techniques used in traditional computer vision, such as the
sliding window (SW) fashion, can be easily applied when
patches are generated in SW mode, neural networks can
be used to predict the target information. However, due to
their complexity, this type of solution is not cost-effective,
both in terms of training duration and memory consump-
tion. In order to significantly reduce this complexity, the
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deep learning community has pioneered a new generation
of CNN-based frameworks. Recent literature has focused on
this challenging task: In [67], Jiao et al. studied a variety of
deep object detectors, ranging from one-stage detectors to
two-stage detectors.

4.1.1.1 One-stage detectors

Monomodal based The overfeat architecture [24] consists
of several processing steps, each of which is dedicated to
the extraction of multi-scale feature maps by applying the
dense SWmethod to efficiently perform the object detection
task. To significantly increase the processing speed of object
detection pipelines, Redmon et al. [25] implemented a one-
stage lightweight detection strategy called YOLO (You Only
Look Once). This approach treats the object detection task as
a regression problem, analyzing the entire input image and
simultaneously predicting the bounding box coordinates and
associated class labels.However, in somevision applications,
such as autonomous driving, security, video surveillance,
etc., real-time conditions become necessary. In this respect,
two-stage detectors are generally slow in terms of real-time
processing. In contrast, SSD (single-shot multibox detector)
[78] has reduced the needs of the patches’ proposal net-
work and, thus, accelerated the object detection pipeline.
It can learn multi-scale feature representation from multi-
resolution images. Its capability to detect objects at different
scales enables it to enhance the robustness of the entire chain.
Like most object detectors, the SSD detector consists of two
processing stages: extracting the feature map through the
VGG16 model and detecting the object by applying a con-
volutional filter through the Conv4 − 3 layer. As similar to
the principle of YOLO and SSD detectors, RetinaNet [79]
takes only one stage to detect dense objects by producing
multi-scale semantic feature maps using a feature pyramid
network (FPN) backbone and theResNetmodel. To dealwith
the class imbalance in the training phase, a novel loss func-
tion called “focal loss” is considered by [79]. This function
allows training a one-stage detector with high accuracy by
reducing the level of artifacts.

Multimodal based High-precision object recognition sys-
tems with multiple sensors are aware of external noise and
environmental sensitivity (e.g., lighting variations, occlu-
sion, etc.). More recently, the availability of low-cost and
robust sensors (e.g., RGB-D sensors, stereo, etc.) has encour-
aged the computer vision community to focus on combining
the RGB modality with other sensing modalities. According
to experimental results, it has been shown that the use of
depth information [183,184], optical flow information [185],
and LiDAR point clouds [186] in addition to conventional

RGB data can improve the performance of one-stage based
detection systems.

4.1.1.2 Two-stage detectors

Monomodal based The R-CNN detector [74] employs the
patch proposal procedure using the selective search [80] strat-
egy and applies the SVM classifier to classify any potential
proposals. Fast R-CNN was introduced in [75] to improve
the detection efficiency of R-CNN. The principle of Fast R-
CNN is as follows: it first feeds the input image into the CNN
network, extracts a set of feature vectors, applies a patch
proposal mechanism, generates potential candidate regions
using the RoI pooling layer, reshapes them to a fixed size,
and then performs the final object detection prediction. As
an efficient extension of fast R-CNN, Faster R-CNN [76]
serves to use a deep CNN as a proposal generator. It has an
internal strategy for proposing patches called region proposal
network (RPN). Simultaneously, RPN carries out classifica-
tion and localization regression to generate a set of RoIs. The
primary objective is to improve the localization task and the
overall performance of the decision system. In other words,
the first network uses prior information about being an object,
and the second one (at the end of the classifier) that deals with
this information for each class. The feature pyramid network
(FPN) detector [77] consists of a pyramidal structure that
allows the learning of hierarchical feature maps extracted
at each level of representation. According to [77], learning
multi-scale representations is very slow and requires a lot
of memory. However, FPN can generate pyramidal repre-
sentations with a higher semantic resolution than traditional
pyramidal designs.

Multimodal based As mentioned before, two-stage detec-
tors are generally based on a combination of a CNN model
to perform classification and a patch proposal module to
generate candidate regions like RPNs. These techniques
have proven effective for the accurate detection of multiple
objects under normal and extreme environmental conditions.
However, multi-object detection in both indoor and out-
door environments under varying environmental and lighting
conditions remains one of the major challenges facing the
computer vision community. Furthermore, a better trade-off
between accuracy and computational efficiency in two-stage
object detection remains an open question [84]. The question
maybe addressedmore effectively by combining twoormore
sensory modalities simultaneously. However, the most com-
mon approach is to concatenate heterogeneous features from
different modalities to generate an artificial multimodal rep-
resentation. The recent literature has shown that it is attractive
to learn shared representations from the complementarity and
synergies between several modalities for increasing the dis-
criminatory power of models [190]. Such modalities may
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include visual RGB-D [187], audio-visual data [188], visi-
ble and thermal data [189], etc.

4.1.1.3 Multi-stage detectors

Monomodal based Cascade R-CNN [26] is one of the most
effective multi-stage detectors that have proven their robust-
ness over one and two-stagemethods. It is a cascaded version
of R-CNN aimed at achieving a better compromise between
object localization and classification. This framework has
proven its capability in overcoming some of the main chal-
lenges of object detection, including overtraining problems
[5,6] and false alarm distribution caused by the patches’
proposal stage. In other words, the trained model may be
over-specialized on the training data and can no longer gener-
alize on the test data. The problem can be solved by stopping
the learning process before reaching a poor convergence rate,
increasing the data distribution in various ways, etc.
Multimodal based More recently, only a few multimodal-
based multi-stage detection frameworks [191–193] have
been developed and have achieved outstanding detection per-
formance on benchmark datasets.

4.1.2 Visual tracking

For decades, visual tracking has been one of the major chal-
lenges for the computer vision community. The objective
is to observe the motion of a given object in real time. A
tracker can predict the trajectory of a given rigid object from
a chronologically ordered sequence of frames. The task has
attracted a lot of interest because of its enormous relevance
in many real-world applications, including video surveil-
lance [82], autonomous driving [83], etc. Over the last few
decades, most deep learning-based object tracking systems
have been based on CNN architectures [84,139]. For exam-
ple, in 1995,Nowlan et al. [85] implemented the first tracking
system that tracks hand gestures in a sequence of frames
using a CNN model. Multi-object tracking (MOT) has been
extensively explored in recent literature for a wide range of
applications [86,138]. Indeed, MOT (tracking-by-detection)
is another aspect of the generic object tracking task.However,
MOT methods are mainly designed to optimize the dynamic
matching of the objects of interest detected in each frame. To
date, the majority of the existing tracking algorithms have
yet to be adapted to various factors, such as illumination and
scale variation, occlusions, etc [178]. Multimodal MOT is
a universal aspect of MOT aimed at ensuring the accuracy
of autonomous systems by mapping the motion sequence of
dynamic objects [194]. To date, several multimodal variants
of MOT have been proposed to improve the speed and accu-
racy of visual tracking by using multiple data sources, e.g.,
thermal, shortwave infrared, and hyperspectral data [195],

RGB and thermal data [196], RGB and infrared data [197],
etc.

4.1.3 Semantic segmentation

In image processing, image segmentation is a process of
grouping pixels of the image together according to partic-
ular criteria. Semantic segmentation consists of assigning a
class label to each pixel of a segmented region. Several stud-
ies have provided an overview of the different techniques
used for semantic segmentation of visual data, including the
works of [27,28]. Scene segmentation is a subtask of seman-
tic segmentation that enables intelligent systems to perceive
and interact in their surrounding environment [27,66]. The
image can be split into non-overlapping regions according
to particular criteria, such as pixel and edge detection and
points of interest. Some algorithms are then used to define
inter-class correlations for these regions.

Monomodal based Over the last few years, the fully convo-
lutional network (FCN) [29] has become one of the robust
models for a wide range of image types (multimedia, aerial,
medical, etc.). The network consists of replacing the final
dense layers with convolution layers, hence the reason for
its name “FCN”. However, the convolutional side (i.e., the
feature extraction side) of the FCN generates low-resolution
representations which lead to fairly fuzzy object boundaries
and noisy segmentations. Consequently, this requires the
use of a posteriori regularizations to smooth out the seg-
mentation results, such as conditional random field (CRF)
networks [69]. As a light variant of semantic segmentation,
instance segmentation yields a semanticmask for each object
instance in the image. For this purpose, some methods have
been developed, including Mask-RCNN [30], Hybrid Task
Cascade (HTC) [31], etc. For instance, the Mask R-CNN
model offers the possibility of locating instances of objects
with class labels and segmenting them with semantic masks.
Scene parsing is a visual recognition process that is based on
semantic segmentation and deep architectures. A scene can
be parsed into a series of regions labeled for each pixel that
is mapped to semantic classes. The task is highly useful in
several real-time applications, such as self-driving cars, traf-
fic scene analysis, etc. However, fine-grained visual labeling
and multi-scale feature distortions pose the main challenges
in scene parsing.

Multimodal based More recently, it has been shown in the
literature that the accuracy of scene parsing can be improved
by combining several detection modalities instead of a single
one [91]. Many different methods are available, such as soft
correspondences [94], 3D scene analysis from RGB-D data
[95], to ensure dense and accurate scene parsing of indoor
and outdoor environments.
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4.2 Multimodal applications

4.2.1 Human recognition

In recent years, a wide range of deep learning techniques has
been developed that focus on human recognition in videos.
Human recognition seeks to identify the same target at dif-
ferent points in space-time derived from complex scenes.
Some studies have attempted to enhance the quality of per-
son recognition from two data sources (audio-visual data)
using DBN and DBM [72] models, which have allowed
several types of representation to be combined and coordi-
nated. Some of these works include [48], [73]. According
to Salakhutdinov et al. [72], a DBM is a generative model
that includes several layers of hidden variables. In [48], the
structure of deepmultimodal Boltzmannmachines (DMBM)
[71] is similar to that of DBM, but it can admit more than
one modality. Therefore, each modality will be covered
individually using adaptive approaches. After joining the
multi-domain features, the high-level classification will be
performedbyan individual classifier. In [73],Kooet al. devel-
oped a multimodal human recognition framework based on
face and body information extracted from deep CNNs. They
employed the late fusion policy to merge the high-level fea-
tures across the different modalities.

4.2.2 Face recognition

Face recognition has long been extremely important, rang-
ing from conventional approaches that involve the extraction
and selection of handcrafted features, such asViola and Jones
detectors [49] to the automatic extraction and training of end-
to-end hierarchical features from raw data. This process has
been widely used in biometric systems for control and mon-
itoring purposes. The most biometric systems rely on three
modes of operation: enrolment, authentication (verification),
and identification [92]. However,most facial recognition sys-
tems, including biometric systems, suffer from a restriction
in terms of universality and variations in the appearance
of visual patterns. End-to-end training of multimodal facial
representations can effectively help to overcome this limi-
tation. Multimodal facial recognition systems can integrate
complex representations derived from multiple modalities
at different scales and levels (e.g., feature level, decision
level, score level, rank level, etc.). Note that face detec-
tion, face identification, and face reconstruction are subtasks
of face recognition [50]. Numerous works in the literature
have demonstrated the benefits of multimodal recognition
systems. In [51], Ding et al. proposed a new late fusion pol-
icy using CNNs for multimodal facial feature extraction and
SAEs for dimensional reduction. The authors of [93] intro-
duced a biometric system that combines biometric traits from

differentmodalities (face and iris) to establish an individual’s
identity.

4.2.3 Image retrieval

Content-based image research (CBIR), commonly known as
query by image content (QBIC) and content-based visual
information retrieval (CBVIR) [54], is the process of recover-
ing visual content (e.g., colors, edges, textures, etc) stored in
datasets by learning their visual representations. The retrieval
procedure leads to the generation of metadata (i.e., key-
words, tags, labels, and so on). The CBIR mechanism can
be simulated in two fundamental phases: the offline database
indexing phase and the online retrieval step. During the
indexing stage, image signatureswill be generated and stored
in a database. In the retrieval phase, the image to be recovered
will be treated as a query and thematching processwill recon-
cile this image signaturewith that stored in the database.Over
the last few years, several cross-modal image retrieval tasks,
e.g., text-to-image retrieval [100], sketch-to-image retrieval
[101], cross-view image retrieval [102], composing text and
image-to-image [103], etc. have been covered in the litera-
ture.

4.2.4 Gesture recognition

Gesture recognition is one of the most sophisticated tasks
of computer vision. The task has already gained the atten-
tion of the deep learning community for many reasons. In
particular, its potential is to facilitate human–computer inter-
action and detect motion in real time. As gestures become
more diversified and enriched, our instinctive intelligence
will recognize basic actions and associate them with generic
behaviors. The challenge of action recognition is mainly
related to the difficulty of extracting body silhouettes from
foreground rigid objects to focus on their emotions [96].
Occlusions that occur between different object parts can lead
to a significant decrease in performance. However, various
factors, such as variations in speed, scale, noise, and object
position, can significantly affect the recognition process.
Some real-world applications of gesture recognition include
driver assistance, smart surveillance, human–machine inter-
action, etc. Regarding the multimodal dimensions of gesture
recognition, the authors of [97] proposed a multi-stream
architecture based on the RNN (LSTM) model to capture
spatial-temporal features from gesture data. In [98], the
authors developed a multimodal gesture recognition system
using the 3D Residual CNN (ResC3D) model [99] trained
on an RGB-D dataset. The features extracted by the ResC3D
model are then combinedwith a canonical correlation scheme
to ensure consistency in the fusion process. Likewise, Abav-
isani et al. [200] developed a fusion approach to derive
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knowledge from multiple modalities in individual unimodal
3D CNN networks.

4.2.5 Image captioning

Recently, image captioning has become an active research
topic in the field of multimodal vision, i.e., the automatic
generation of text captions to describe the content of images.
In a supervised learning way, training of model parameters
is provided by a set of labeled learning examples in the
form of an image and its related captions. The task has also
been demonstrated its ability for application in a variety of
real-world systems, including socialmedia recommendation,
image indexing, image annotation, etc. Most recently, Biten
et al. [52] combined both visual and textual data to gener-
ate captions across two stages: template caption generation
stage and entity insertion stage. Similarly, Peri et al. [53]
proposed a multimodal framework that encodes both images
and captions using CNN and RNN as an intermediate level
representation and then decodes these multimodal represen-
tations into a new caption that is similar to the input. The
authors of [128] presented an unsupervised image caption-
ing framework based on a new alignment method that allows
the simultaneous integration of visual and textual streams
through semantic learning of multimodal embeddings of
the language and vision domains. Moreover, a multimodal
model can also aggregate motion information [174], acous-
tic information [175], temporal information [176], etc. from
successive frames to assign a caption for each one. We invite
the reader to read the survey of Liu et al. [177] to learn more
about the methods, techniques, and challenges of image cap-
tioning.

4.2.6 Vision-and-language navigation

Visual-and-language navigation (VLN) [87,88,118–121] is
a multimodal task that has become increasingly popular in
recent years. The idea behind VLN is to combine several
active domains (i.e., natural language, vision, and action)
to enable robots (intelligent agents) to navigate easily in
unstructured environments. A key innovation in this area is
the synthesis of heterogeneous data into multiple modali-
ties using natural language commands to navigate through
crowded locations and visual cues to perceive the surround-
ings. It seeks to establish an interaction between visual
patterns and natural language concepts by merging these
modalities into a single representation.

4.2.7 Embodied question answering

Embodied question answering (EQA) [89,90,122] is an
emerging multimodal task in which an intelligent agent acts
intelligently in a three-dimensional environment in order to

respond to a given question. To this end, the agent must first
explore its environment, capture visual information, and then
answer the question posed. In [90], the authors proposed the
multi-target embodied question answering (MT-EQA) task
as a generalization of EQA. In contrast to EQA, MT-EQA
considered some questions related to multiple targets, where
an agent has to navigate toward various locations to answer
a question asked (Fig. 13a).

4.2.8 Video question answering

Currently, video question answering (VQA) [125–127,129,
143] is one of the promising lines of research for reason-
ing the correct answer to a particular question, based on the
spatiotemporal visual content of video sequences. To answer
that question, we need to consider the correlation between
features in the spatial and temporal dimensions (Fig. 13b).
The VQA task can be conceptually divided into three sub-
tasks. The first task is to identify the endpoints of the problem
in the natural domain, while the second task is to capture the
correlation of the problem in the spatial domain. The third
task consists of reasoning about how this correlation varies in
space over time. Typically, video sequences contain audio-
visual information of substantially different structures and
visual appearance, which requires reasoning schemes that
take into account the spatiotemporal nature of the data. To this
end, increased attention has been paid to these challenges by
developing a wide range of spatiotemporal reasoning mech-
anisms. Currently, the most common existing methods use
attention [125,127,129] and memory [126] mechanisms to
efficiently learn visual artifacts and the semantic correla-
tions that allow questions to be answered accurately. These
techniques are more effective for spatial-temporal video rep-
resentation and reasoning as they increase the memorization
and discrimination capacity of models.

4.2.9 Style transfer

Neural style transfer (NST), also known as style transfer, has
recently gained momentum following the publication of the
works of Gatys et al. [156]. Gatys et al. [156] demonstrated
that visual features ofmodels could be combined to represent
image styles. It arises in a context of strong growth in DNNs
for several applications, including art and painting [157,158].
For example, Lian et al. [157] proposed a style transfer-based
method that takes any natural portrait of a human and trans-
forms it into Picasso’s cubism style. Informally, style transfer
is an optimization-based technique that renders the content
of an existing image (content image) in the style of another
image (style image). Figure 14 depicts an example of trans-
ferring the style of a specific painting to a scene image using
the DeepArts tool [162]. In practice, style transfer involves
applying a particular artistic style to a content image. For
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Fig. 13 Difference in results between EQA and VQA tasks: a EQA [90], b VQA [129]

this, a loss function must be specified and minimized. It is
essentially a weighted sum of the error (loss) between the
input content and the output image and the loss between the
original style and the applied style [161]. Over the last few
years, some research has been published to improve this tool
by considering the mapping of semantic patterns in content
and style images, from which the multimodal style transfer
(MST) emerges [159,160]. The authors of [159] proposed a
universal graph-based style transfer to transformmultimodal
features by matching style patterns and semantic content and
appearance in a way that avoids the lack of flexibility in real-
world scenarios. The use of the graph cut technique allows a
better matching between content features and style clusters,
which was formulated as an energy minimization issue. In
[160], Wang et al. introduced a residual CNN architecture
and loss network to transfer the artistic style of the input
picture across multiple scales and dimensions. Specifically,
the residual network receives an image as input and learns
to produce multi-scale representations as output. These rep-
resentations are then separately considered as inputs to the
loss network so that a stylization loss can be computed for
each one.

4.2.10 Medical data analysis

In recent years, deep learning algorithms have been devel-
oped to save time and dependability during patient care by
improving clinical accuracy and detecting abnormalities in
medical images [104,140]. As one application, retinal image
registration [142] is an increasingly challenging task of med-
ical image analysis that is receiving more and more attention
from the computer vision and healthcare communities. In
[142], Lee et al. proposed a new CNN-based retinal image
registration method to learn multimodal features simultane-
ously from several imaging modalities. This method consists
of combining CNN features and small patches taken from

Fig. 14 Example of NST algorithm output to transform the style of a
painting to a given image

multiple imagingmodalities (e.g., FA, OCT fundus, etc.) and
then implementing learning and optimization processes to
achieve greater registration accuracy. In unsupervised mode,
it is possible to encode complex visual patterns over two
input imaging modalities (3D MR and TRUS) without the
need for explicit labels [144]. In clinical practice, the differ-
ent imaging modalities (e.g., computed tomography (CT),
chest X-rays, etc.) provide rich and informative features that
allow for a more accurate diagnosis in the early stages of the
disease [238]. More recently, the scientific community has
already taken an active interest in this topic to fight against the
emerging Coronavirus, known as COVID-19 (SARS-CoV-2)
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[105]. To date, the COVID-19 pandemic has spread rapidly
in most countries of the world, endangering people’s lives.
Deep learning techniques and the availability of medical data
contributed considerably to tackling the pandemic. The lat-
est literature indicates that the combination of multimodal
data can predict and screen for this virus more accurately
[106,145]. However, many studies still need to be undertaken
in the future.

4.2.11 Autonomous systems

Up to now, deep learning has proven to be a powerful tool
for generating multimodal data suitable for robotics and
autonomous systems [146]. These systems involve, for exam-
ple, the interaction of sophisticated perception/vision and
haptic sensors (e.g., monocular cameras, stereo cameras, and
so on) [147], the merging of depth and color information
from RGB-D cameras [148], and so on. Figure 15 shows an
autonomous vehicle with several on-board sensors, includ-
ing a camera and several radars and LiDARs. Most existing
approaches combine RGB data with infrared images or 3D
LiDAR points [164] to improve the sensitivity of perception
systems, which can be suitable to all conditions and scenar-
ios. For instance, RGB-D cameras (e.g., Microsoft Kinect,
AsusXtion, and soon) canprovide color andpixel-wise depth
information, characterizing the distance of visual objects in
a complex scene [199]. Among the advantages of these types
of sensors are their low computational cost, their long-range,
their ability to have an internal mechanism to limit the impact
of bad weather, etc. [149]. More recently, some automated
systems, such as mobile robots, have been used in manufac-
turing environments. However, in a manufacturing context,
these systems are usually already routinely programmedwith
repetitive actions that lack the capacity for autonomy. They
also depend on an unstructured environment for autonomous
decision making (e.g., navigation, localization, and environ-
ment mapping (SLAM)).

For decades, visual SLAM (simultaneous localization
and mapping) has been an active area of research in the
robotics and computer vision communities [148,150]. The
challenge lies both in locating a robot and mapping its sur-
rounding environment. Several methods have been reported
to improve the mapping accuracy of real-time scenarios in
unstructured and large-scale environments. Some of these
methods include descriptor-based monocular cameras with
ORB-SLAM [151], stereovision with ORB-SLAM2 [152],
and photometric error-based methods such as LSD-SLAM
[153] or DSO [154]. However, there are still many challenges
facing these data-driven automated systems, particularly for
intelligent perception andmapping. Someof these challenges
are reflected in the fact that large amounts of data are required
to train models. Therefore, large-scale datasets are required
to ensure that systems produce the desired outcomes. As a

Fig. 15 Waymoself-driving car equippedwith several on-board sensors
[163]

result, more powerful feature extractors will require more
parameters and, therefore, more learning data. For instance,
Caesar et al. [155] demonstrated how generalization per-
formance could be greatly improved when developing a
multimodal dataset, called nuScenes, which is acquired by
a wide range of remote sensors, including six cameras, five
radars, and one LiDAR. The dataset consists of 1000 scenes
in total, each about 20 s long and fully labeledwith 3Dbound-
ing boxes that cover 23 classes and eight attributes.

5 Popular visual multimodal datasets

A growing trend towards deep multimodal learning has
been fuelled by the availability of high-dimensional mul-
tisource datasets obtained from various sensors, including
RGB-D cameras (depth sensors). Multimodal data acquisi-
tion is increasingly used in many research disciplines. The
deep multimodal analysis relies on a large amount of het-
erogeneous sensor data to achieve high performance and
avoid overfitting problems. Until now, a series of benchmark
datasets have been developed for the training and valida-
tion of deep multimodal learning algorithms. This opens up
the question of which ones should be chosen and how they
can be used for benchmarking purposes with state-of-the-art
methods. To answer this question, in this section we present
a selection of multimodal datasets commonly used in vision
applications, includingRGB-D andRGBflowdatasets. Typi-
cally, optical flow information is used to capture themotion of
moving objects in a video sequence. It was originally devel-
oped by Horn et al. [65], formulated as a two-dimensional
vector flow that captures spatio-temporal motion variations
in images under fairly controlled conditions in both indoor
and outdoor environments. The emphasis on thesemodalities
(RGB, depth, and flow data) is based on the fact that formany
vision-basedmultimodal problems, it has been shown that the
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fusion of optical flow and depth informationwithRGByields
the best performance [242,243]. A selection of RGB-D and
RGB flow datasets and their detailed information is given in
Table 3, so that researchers can easily choose the right dataset
for their needs. Table 3 shows the typical computer vision
tasks, such as object recognition and semantic segmentation,
along with their respective benchmark datasets.

All datasets listed in Table 3 will be detailed in the fol-
lowing paragraphs:

– RGB-D Object: According to the original paper [55],
the larger-scale RGB-D object dataset consists of RGB
videos and depth sequences of 300 object instances in
51 categories from multiple view angles for a total of
250,000 images.

– BigBIRD:The dataset was originally introduced by [56].
It contains 125 objects, 600RGB-Dpoint clouds, and 600
12 megapixel images taken by two sensors: Kinect and
DSLR cameras.

– A large dataset of object scans: It includes more than
10,000 scanned and reconstructed objects in nine cate-
gories acquired by PrimeSense Carmine cameras.

– RGB-D Semantic Segmentation: The dataset has origi-
nally been proposed in [58], it was acquired by theKinect
RGB-D sensor. It contains six categories such as juice
bottles, coffee cans and boxes of salt, etc. On the one
hand, the training set contains three 3D models for each
category. On the other hand, the testing set includes 16
objects scenes.

– RGB-D Scenes v.1: The dataset contains eight scenes in
which each scene corresponds to a single video sequence
of several RGB-D images.

– RGBD Scenes v.2: The dataset contains 14 scenes
of video sequences including furniture that have been
acquired by the Kinect device.

– NYU:There are two versions of the dataset (NYU-v1 and
NYU-v2) that were recorded by theKinect sensor. On the
one hand, NYU-v1 dataset contains 64 different indoor
scenes and 108617 unlabelled images. On the other hand,
NYU-v2Dataset includes 464different indoor scenes and
407024 unlabeled images.

– RGB-D People: This dataset was initially introduced by
[60], it consists of more than 3000 RGB-D images cap-
tured from Kinect sensors.

– SceneNet RGB-D: This dataset contains 5M RGB-D
images extracted from a total of 16895 configurations.

– Kinetics-400: It consists of amassive dataset ofYouTube
video URLs that includes a diverse set of human actions.
The dataset includes more than 300,000 video sequences
across 400 classes of human action.

– Scene Flow: The dataset includes over 39,000 high-
resolution frames from synthetic video sequences. It

combines a wide range of data types such as RGB stereo
rendering, optical flow maps, and so on.

– MPI-Sintel:The dataset consists of 1040 annotated opti-
cal flow and corresponding RGB images from very long
sequences.

6 Discussion, limitations, and challenges

Over the last few decades, the deep learning paradigm has
proven its ability to outperform human expertise in many
practices. Deep learning algorithms involve a sequence of
multiple layers of nonlinear processing units that are used
to extract and transform feature vectors coming from raw
data. Up to now, the deep learning community is still seek-
ing a better trade-off between complex model structuring,
computational power requirements, and real-time processing
capability. Among its assets, computer vision seeks to give
machines the visual capabilities of human beings thanks to
deep learning algorithms that are fedwith information from a
wide range of sensors. In recent years, the trend toward its use
in a fairlywide range of applications has become increasingly
evident. Therefore, it is necessary to develop applications that
can automatically predict the target information. However,
most current scene-content analysis methods are still limited
in their ability to deal with information that is not usable in
real-life contexts. But this field is very interesting for the sci-
entific and industrial communities. This aspect of uncertainty
underlines the need to propose innovative and practicalmeth-
ods under very similar conditions to those used in practice.
In general, capturing multimodal data streams under differ-
ent acquisition conditions and increasing the data volume
makes it easier to recognize visual content. Deep learning
models are often robust strategies for dealing with the lin-
ear and nonlinear combination of multimodal data. Despite
the impressive results of deep multimodal learning, no abso-
lute conclusions can be drawn in this regard. Considering
this exponential growth, the main challenges of multimodal
learning methods are the following:

– Dimensionality and data conflict: Confusion between
various data sources is a challenge for future analysis.
The multimodal data is usually available in various for-
mats. This variation makes it difficult to extract valuable
information from the data. However, multimodal infor-
mation generally has a large dimension. In other words,
acquiring and processing a large amount of multimodal
data is costly in terms of computation complexity and
memory consumption. Moreover, the synchronization of
temporal data allowsmaximizing the correlation between
the features of several levels of representation. However,
feature-level fusion is more flexible than decision-level
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fusion due to the homogeneity of data samples. As men-
tioned before, some dimensionality reduction algorithms
(e.g., k-NN, PCA, etc) andmodels already exist that com-
press (encode) input signal or extract a reduced set of low
dimensional patterns to facilitate their analysis and fur-
ther processing.

– Data availability: One of the most significant chal-
lenges of deep multimodal learning is the large amount
of data required to learn discriminative featuremaps. The
amount of multimodal data significantly affects the over-
all performance of the vision system. In some cases, the
number of training samples for a given datasetmay not be
sufficient to effectively train a deeper or wider network.
However, networks trained with a limited number of
examples can no longer generalize well to a new dataset.
As mentioned earlier, several methods have been used to
increase the size of the dataset by generating additional
learning samples. One of the most common techniques
includes data augmentation, which is a transformation
process that is applied to the input data to increase the
size of the data to make it more invariant. Also, AE
can address missing patterns by generating intermediate
shared representations from the input data and showing
intra- and inter-pattern correlations.

– Real-time processing and scalability:Multimodal real-
time data processing should be considered to improve
the performance of deep learning architectures. Current
trends focus on proposing complex architectures to build
new real-time processing systems with a better trade-off
between accuracy and efficiency. However, the need to
reduce computing capacity remains the main challenge,
which can lead to a deterioration in the overall accuracy of
training algorithms.Vision-basedmultimodal algorithms
constantly require new technological developments from
year to year (e.g., cloud computing technologies, local
GPU devices, etc.) to enable the growing scalability
needed to handle the next generation ofmultimodal appli-
cations. For instance, the edge/cloud computing solution
for mulitmodal analysis provides an effortless way to
create and handle multimodal datasets for training and
deploying models [107]. In practice, autonomous vehi-
cles, healthcare robots, and other real-time embedded
systems consume more hardware resources, storage, and
battery than other emerging technologies, resulting in a
lack of adaptation to future needs.

7 Conclusion

This study provided a comprehensive overview of recent
multimodal deep learning in the computer vision commu-
nity. The focus of this survey is on the analogy between
inter- and intra-modal learning when dealing with heteroge-
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Table 3 A selection of the frequently used multimodal datasets in the literature

Reference Year Dataset Modality Main tasks Size

[55] 2011 RGB-D Object RGB + D Object recognition Contains 300 object instances under 51
categories from different angles for a total of
250,000 RGB-D images

[56] 2014 BigBIRD RGB + D Object recognition Contains 125 objects, 600 RGB-D point clouds,
and 600 12 megapixel images

[57] 2016 A large dataset of
object scans

RGB + D Object recognition Contains more than 10,000 scanned and
reconstructed objects in 9 categories

[58] 2011 RGB-D Semantic
Segmentation

RGB + D Semantic segmentation Contains 3 3D models for 6 categories and 16
test object scenes

[55] 2011 RGB-D Scenes v.1 RGB + D Object recognition Contains 8 video scenes from several RGB-D
images

Semantic segmentation

[55] 2014 RGB-D Scenes v.2 RGB + D Object recognition Contains 14 scenes of video sequences

Semantic segmentation

[59] 2011 NYU v1-v2 RGB + D Semantic segmentation NYU-v1 contains 64 different indoor scenes and
108617 unlabelled images. NYU-v2 contains
464 different indoor scenes and 407024
unlabeled images

[60] 2011 RGB-D People RGB + D Object recognition Contains more than 3000 RGB-D images

[61] 2016 SceneNet RGB-D RGB + D Semantic segmentation Contains 5M RGB-D images

Instance segmentation

Object detection

[62] 2017 Kinetics-400 RGB + Opt. flow Motion recognition Contains more than 300,000 video sequences in
400 classes

[63] 2016 Scene Flow RGB + Opt. flow Object segmentation Contains over 39,000 high resolution images

[64] 2012 MPI-Sintel RGB + Opt. flow Semantic segmentation Contains 1040 annotated optical flow and
matching RGB images

Object recognition

neous data. In this context, we provide a brief history of deep
learning, summarize typical deep learning concepts and algo-
rithms that have evolved from shallow networks to deeper
networks such as RNN, DBN, and DAE, and show their role
in multimodal fusion. We also provide an overview of mul-
timodal datasets commonly used in the literature (RGB-D
and RGB-Opt. flow) and report a methodological analysis
of computer vision problems and multimodal applications.
Vision-based implementation strategies are also discussed
in detail to improve comprehension of the multimodal algo-
rithm’s ability tomake fast and efficient decisions. The survey
also presented state-of-the-art and widely used methods for
producing uniform and multimodal distributions across dif-
ferent modalities. Furthermore, it is important to note that
each multimodal problem requires a specific fusion strategy,
ranging from traditional methods to deep learning tech-
niques. Nevertheless, choosing the right fusion of different
schemes remains a vital challenge for the computer vision
community in terms of accuracy and efficiency.
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