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Purpose. Treatment outcomes for advanced liver cancer are poor. Immunotherapy is a treatment strategy that has been widely used
to treat other cancers. Studies have shown that CD8+ T lymphocytes are essential factors affecting the efficacy of immunotherapy.
We used computational biology methods to determine the coexpressed gene network that promotes CD8+ T lymphocyte
infiltration. Method. We obtained the liver cancer gene matrix and clinical follow-up information data from TCGA liver
hepatocellular carcinoma FPKM. We obtained single nucleotide polymorphism (SNP) data to evaluate the tumor mutation
burden. The “estimate” package and the CIBERSORT algorithm were used to evaluate tumor purity and the proportion of CD8+
T lymphocytes in the liver cancer cohort. We used the gene expression matrix of liver cancer and the relative proportion of CD8+
T lymphocytes as input files and performed WGCNA based on this analysis. The weighted coexpression network identified the
most CD8+ T lymphocyte-related coexpression modules in liver cancer. Then, we analyzed the biological processes involved in
the module. We determined the coexpression module with CD8+ T lymphocyte infiltration in terms of data and function. We
then screened the factors in the coexpression module correlated with CD8+ T lymphocyte content greater than 0.4. Finally, the
expression levels of these factors were verified at the protein level using immunohistochemistry and single-cell sequencing.
Results. We determined the CD8+ T lymphocyte proportions that correlated with coexpression networks. Four coexpressed genes
(C1QC, CD3D, GZMA, and PSMB9) were identified as CD8+ T cell coexpression genes that promoted infiltration of CD8+ T
cells. Because the factors in the coexpression network often participate in similar biological processes, we found that these factors
were most related to antigen processing and presentation of peptide antigen through functional enrichment. In the clinical
phenotype analysis, we found that 18 factors can be used as independent prognostic protective factors. We found that these
factors were significantly negatively correlated with tumor purity and negatively correlated with M2 macrophages in the
immunophenotyping analysis. Using immunohistochemistry and single-cell sequencing analysis, we found that CD3D antibody
staining was weaker in tumor tissues than normal tissues and was related to CD8+ T cells. Conclusion. These coexpressed genes
were positively related to the high infiltration proportion of CD8+ T lymphocytes in an antigen presentation process. The
biological process might provide new directions for patients who are insensitive to immune therapy.

1. Introduction

In recent years, breakthroughs have been made in using
immune checkpoint inhibitors [1], ushering in a new era to
treat advanced tumors. The emergence of immunotherapy
provides options for the treatment of liver cancer; these
include immune checkpoint inhibitors, adoptive cell transfer,
tumor vaccines, and cytokine therapy. Immune checkpoint
inhibitors enhance antitumor immune responses by revers-

ing the exhaustion of T cell function and restoring immune
recognition and immune attack. Immune checkpoint inhibi-
tor targets include programmed death-ligand 1 (PD-L1) and
its receptor PD-1 (programmed cell death protein 1) and
cytotoxic T lymphocyte-related antigen 4. PD-1 is a member
of the CD28 family and is expressed on the surface of most
immune cells, mainly on CD8+ T cells [2]. It binds to PD-
L1 and PD-L2 to cause inhibitory signals to be transmitted
to T cells and induce tolerance [3]. PD-L1 is abnormally
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expressed in various tumors, including liver cancer; tumor
cells achieve immune escape by abnormally expressing PD-
L1 or PD-L2 [4]. Nivolumab (PD-1 monoclonal antibody)
[5], pembrolizumab (PD-1monoclonal antibody), and atezo-
lizumab (PD-L1 monoclonal antibody) have been used to
treat advanced liver cancer. Although immunotherapy has
achieved gratifying results and has been approved as a treat-
ment option for liver cancer, the objective response rate of
the PD-1/PD-L1 antibody alone rarely exceeds 40%. The
objective response rate of nivolumab and pembrolizumab in
liver cancer was not significantly effective [6]. It is currently
believed that the main reason for the low objective response
rate of immunotherapy is the emergence of drug resistance
[7]. The drug resistance of immunotherapy is a complex and
multimechanism interdependent dynamic process, explained
by impaired immune infiltration in tumors, depletion of T
cells, or recruitment of immunosuppressive cells.

Studies have shown that low PD-1 expression in tumor
tissues and low CD8+ T lymphocyte infiltration can cause
this insensitivity [8]. According to the results of a meta-
analysis of non-small-cell lung cancer, increased numbers
of CD8+ tumor-infiltrating lymphocytes are associated with
better overall survival [9]. In patients with advanced mela-
noma treated with pembrolizumab, the densities of CD8+ T
cells in the invasion margin and tumor center of the tissue
specimens of responders were higher than those of nonre-
sponders [10].

Therefore, this article intends to identify the coexpression
modules and functions related to the content of CD8+ T lym-
phocytes in the tumor microenvironment and define the coex-
pression network related to the content of CD8+ T cells, to
provide a basis for improving the efficacy of immunotherapy.

2. Methods

2.1. Data Collection and Preprocessing. TCGA expression
matrix data from LIHC samples were downloaded from
The Cancer Genome Atlas (http://cancergenome.nih.gov/).
Tumor transcriptomic profiles of 19530 mRNA were mea-
sured in 377 liver hepatocellular carcinoma patients and were
brought into the subsequent analysis. The hepatocellular
carcinoma single-cell mice sequencing cohort GSE129516
[11] was also downloaded from the GEO database, whose
platform is GPL24247.

2.2. CD8+ T Cell Proportion Evaluation. To obtain the rela-
tive proportion of CD8+ T lymphocytes in each liver hepato-
cellular carcinoma sample, we used the CIBERSORT [12]
method. CIBERSORT evaluated the proportion of 22
tumor-infiltrating immune cells in each sample. The samples
with p < 0:05 were brought into the WGCNA.

2.3. Tumor Microenvironment Score and Tumor Mutation
Burden (TMB). The estimation of stromal and immune cells
in malignant tumor tissues [13] is a method that evaluates
the proportion of stromal and immune cells by gene expres-
sion signatures [13]. To perform a correlation analysis with
the tumor mutation burden [14, 15], we obtained TCGA-
LIHC SNP data and evaluated the tumor mutation burden
of each sample.

2.4. Weighted Gene Coexpression Network Analysis
(WGCNA). We used WGCNA [16] to explore the correla-
tions between gene expression and CD8+ T lymphocytes.
First, we matched the mRNA matrix of TCGA-LIHC and
the corresponding CD8+ T lymphocyte content of the
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Figure 1: Flow chart of this paper.
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sample and included them in the subsequent WGCNA. To
ensure the nonscale of the network, we built a scale-free
topology network [17, 18] and set the soft threshold at 5
(R‐squared = 0:78, slope = −1:93) and the number of genes
in the minimum module at 30.

2.5. Gene Ontology Functional Analysis. Gene ontology (GO)
[19] analysis was performed to show the biological processes
and molecular functions based on the different modules. In
this study, we performed GO analysis based on the cluster-
Profiler [20] package in R3.6.2.

2.6. Cox Hazard Proportion Regression Model and Subgroup
Evaluation.We applied the Cox risk proportional regression
model for the factors in the grey module. The prognostic risk
model related to CD8+ T lymphocytes in liver cancer was
determined using the forward screening method. We used
survival analysis and the area under the curve (AUC) to eval-
uate the accuracy of the prognostic risk model after rain.
Next, we divided TCGA-LIHC cohort into various subgroups
according to age, gender, clinical stage, and tumor purity and
evaluated the CD8+ T lymphocyte-related risk models in
various subgroups.

2.7. Gene Set Enrichment Analysis.Gene set enrichment anal-
ysis (GSEA) [21] was used to calculate the most involved
pathway to these coexpression genes.

2.8. Immunohistochemistry. The extracted human tissues
were fixed with a 4% formaldehyde buffer. Deparaffinized
specimens were then sectioned into 4μm slices. Tissue slices
were incubated at 60°C for 2 h before dewaxing; the sections
were autoclaved at 115°C for 3min for antigen retrieval in a
citric acid buffer (pH6.0) and quenched for endogenous
peroxidase activity with 0.3% H2O2 solution for 15min.

Then, the slices were blocked for nonspecific binding with
normal goat serum for 45min and incubated with the specific
primary antibody against C1QC, GZMA, CD3D, and PSMB9
(dilution 1 : 200) overnight at 4°C. Subsequently, the sections
were treated with the goat anti-mouse secondary antibody
for 30min at room temperature. Protein expression was visu-
alized using 3,3′-diaminobenzidine. Images were captured
using a Nikon Eclipse 80i microscope (Nikon Corporation).

3. Results

A flow chart is displayed in Figure 1, which illustrates the
logic of our analysis.

3.1. CD8+ T Lymphocyte, Tumor Purity, and Tumor Mutation
Burden Evaluation. We measured the CD8+ T lymphocyte
proportion, tumor purity, matrix score, immune score, and
tumor mutation burden of each LIHC sample. Using the
screening principle of p < 0:05, we obtained 377 liver cancer
samples accurately evaluated by CD8+ T lymphocytes. By inte-
grating the immune-related file with TCGA-LIHC mRNA
expression files, we determinedWGCNAphenotype entry files.

3.2. CD8+ T Lymphocyte Coexpression Network Conduction
in TCGA-LIHC. WGCNA was performed on TCGA liver
hepatocellular carcinomas. To construct a CD8+ T lympho-
cyte coexpression network, we used a dynamic hybrid cutting
method to construct a hierarchical clustering tree
(Figure 2(a)). Each leaf on the tree represents a gene, and
each branch represents a coexpression module. A total of
22 expression modules were obtained (Figure 2(b)). Then,
we calculated the correlation coefficient between each mod-
ule and CD8+ T lymphocytes and selected the grey60 and
purple modules according to the correlation coefficient
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Figure 2: WGCNA. (a) TCGA-LIHC sample clustering results. (b) Twenty-two coexpression modules were conducted by WGCNA. (c)
Correlation heat map among different coexpression modules and clinical phenotypes and CD8+ T levels. (d, e) The correlation of genes in
grey60 modules with CD8+ T cells and tumor purity. (f, g) The correlation of genes in magenta modules with CD8+ T cells and tumor purity.
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Table 2: The module and gene significance for CD8+ T cell-related genes in the magenta module.

ID Module color GS.T.cells.CD8 P.GS.T.cells.CD8

NKG7 Magenta 0.626 1:14e − 34
CST7 Magenta 0.592 3:00e − 30
GZMA Magenta 0.544 5:89e − 25
CCL5 Magenta 0.523 7:31e − 23
CXCL9 Magenta 0.470 3:59e − 18
HCST Magenta 0.463 1:22e − 17
CD3D Magenta 0.421 1:35e − 14
CD2 Magenta 0.413 5:29e − 14
CALHM6 Magenta 0.406 1:55e − 13
GMFG Magenta 0.405 1:57e − 13
MZB1 Magenta 0.397 5:69e − 13
C1QA Magenta 0.395 7:18e − 13
PIM2 Magenta 0.389 1:82e − 12
CD3E Magenta 0.384 3:42e − 12
C1QB Magenta 0.375 1:15e − 11
IGLL5 Magenta 0.367 3:32e − 11
CORO1A Magenta 0.362 6:86e − 11
AIF1 Magenta 0.355 1:59e − 10
C1QC Magenta 0.341 9:21e − 10
JCHAIN Magenta 0.333 2:36e − 09
GS: gene significance.

Table 1: The module and gene significance for CD8+ T cell-related genes in the grey60 module.

ID Module color GS.T.cells.CD8 P.GS.T.cells.CD8

PSMB9 Grey60 0.42727727 5:76e − 15
PSMB10 Grey60 0.3960461 6:76e − 13
PSMB8 Grey60 0.392423292 1:14e − 12
HLA-E Grey60 0.392387821 1:14e − 12
GBP4 Grey60 0.38525836 3:13e − 12
RARRES3 Grey60 0.379808931 6:66e − 12
CD74 Grey60 0.379010979 7:43e − 12
HLA-DQB1 Grey60 0.378859742 7:58e − 12
PSME2 Grey60 0.378610599 7:84e − 12
GBP1 Grey60 0.377173717 9:54e − 12
HLA-DPB1 Grey60 0.376684402 1:02e − 11
HLA-DRB1 Grey60 0.368162706 3:18e − 11
HLA-A Grey60 0.359477552 9:81e − 11
IRF1 Grey60 0.345346667 5:71e − 10
HLA-DMA Grey60 0.337351935 1:49e − 09
HLA-F Grey60 0.334500299 2:08e − 09
UBE2L6 Grey60 0.333949723 2:22e − 09
HLA-DRA Grey60 0.328624957 4:11e − 09
HLA-DPA1 Grey60 0.318999761 1:21e − 08
HLA-DMB Grey60 0.315091809 1:86e − 08
GS: gene significance.
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(Figure 2(c)). The grey60 module had the strongest correla-
tion with CD8+ T lymphocyte proportion in TCGA-LIHC
cohort (cor = 0:38; p = 4e − 12) (Figure 2(c)). The magenta
module correlated with the CD8+ T lymphocyte propor-
tion in TCGA-LIHC cohort (cor = 0:31; p = 2e − 08)
(Figure 2(c)). Based on these findings, we supplemented
the heat map of the correlation between the factors in
the grey60 and magenta modules (Figures 2(d)–2(g)).
The grey60 module showed a significant correlation with
CD8+ T cells (cor = 0:86, p = 1:5e − 21) and tumor purity
(cor = 0:85, p = 1:3e − 20). The magenta module showed a
significant correlation with CD8+ T cells (cor = 0:65, p =
4:3e − 20) and tumor purity (cor = 0:96, p = 4:9e − 87).

3.3. CD8+ T Lymphocyte Coexpression Module Functional
Analysis. We determined the top 20 CD8+ T lymphocyte

proportions positively coexpressing mRNA in TCGA-LIHC
grey60 and magenta modules (Tables 1 and 2). The 20 CD8
+ T lymphocyte proportions positively coexpressing mRNA
in the magenta module were most significantly enriched in
antigen processing and presentation. The 20 CD8+ T lym-
phocyte proportions positively coexpressing mRNA in the
grey60 module were most significantly enriched in regulating
lymphocyte activation, suggesting that these biological
processes might promote CD8+ T lymphocyte infiltration
in the liver hepatocellular cancer microenvironment
(Figures 3(a) and 3(b)). The protein-protein interaction
network of yellow and green modules is shown in Figure 3.

3.4. Clinical Phenotype and Immune Phenotype Correlation of
Coexpression Genes. To determine the outcome status corre-
lation of these coexpression genes, we performed survival
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Figure 4: The survival analysis of genes in magenta and grey60 modules. The grey60 module genes acted as prognostic protective genes.
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Figure 5: The Pearson correlation test among genes in magenta and grey60 modules with CD8+ T cell proportions.
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Figure 6: The Pearson correlation test among genes in magenta and grey60 modules with tumor purity.
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analysis. The patients in low expression groups for CCL5
(TCGA: p = 0:03), CST7 (TCGA: p = 0:005), HLA-DPA1
(TCGA: p = 0:012), HLA-E (TCGA: p = 0:042), NKG7
(TCGA: p = 0:007), CD2 (TCGA: p = 0:013), GBP1 (TCGA:
p = 0:037), HLA-DPB1 (TCGA: p = 0:034), IGLL5 (TCGA:
p = 0:029), HLA-DRB1 (TCGA: p = 0:014), CD3E (TCGA:
p = 0:004), GZMA (TCGA: p = 0:006), HLA-DRA (TCGA:
p = 0:036), JCHAIN (TCGA: p = 0:012), MZB1 (TCGA: p =
0:036), CORO1A (TCGA: p = 0:034), and HLA-DMA
(TCGA: p = 0:04) showed survival risk against high expression
groups (Figure 4). These results suggest that these coexpression
genes in grey60 and magenta modules protect against liver
hepatocellular cancer. Next, we found that these factors were
positively correlated with CD8+ T lymphocytes (Figure 5) and
negatively correlated with tumor purity (Figure 6).

3.5. Cox Regression Hazard Model of CD8+ T Lymphocyte
Coexpression Genes. A CD8+ T lymphocyte coexpression

gene Cox regression hazard model was conducted based on
these liver hepatocellular outcome protective factors.

Risk = 0:005 ∗ C1QC + 0:036 ∗ CD3D
− 0:123 ∗GZMA + 0:012 ∗ PSMB9:

ð1Þ

The samples in high-risk samples for liver hepatocellular
cancer patients (TCGA: p < 0:001;HR = 23) (Figure 7) showed
survival risk against low-risk groups, with AUC = 0:67
(Figure 7). The risk score was evaluated in various subgroups,
including age, gender, stage, tumor purity, and tumor muta-
tion burden. The results were significant in these subgroups.

3.6. GSEA. Antigen processing and presentation, the chemo-
kine signaling pathway, the cytokine-cytokine receptor inter-
action pathway, and the T cell receptor signaling pathway
were related to the high expression group in C1QC, CD3D,
GZMA, and PSMB9 (Figure 8).
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cell-related gene risk scores.
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3.7. Tissue Verification and Single-Cell Markers. Immunohis-
tochemical analysis of the protein expression levels of CD3D
in and around carcinomas was performed in the liver cancer
cohorts of the First Affiliated Hospital of China Medical
University. The results showed that CD3D had lower staining
intensity (Figure 9(a)). We also performed UMAP dimen-
sional reduction clustering in the data of a single cell of liver
cancer in GEO. After annotating the subsets with “SingleR,”
we obtained the subsets containing T cell macrophages and
other cells. We found that the expression content of CD3D
was relatively high in the T cell subsets, which confirmed
our previous conclusion in TCGA-LIHC (Figure 9(b)).

We analyzed the relationship between CD3D and cur-
rently known gene sets in the tumor microenvironment and
verified the expression association between CD3D and
CD8A in two other cohorts, GSE29721 [22] and GSE121248
[23]. We also marked the distribution of different T cell sub-
types in single-cell cohorts, and the results showed that
CD3D was more strongly associated with CD8A and less with
CD4+ T lymphocytes (Supplementary Figure 1).

4. Discussion

Immunotherapy is a late-stage cancer treatment strategy
widely used in clinical practice; nevertheless, there are many
unsatisfactory results, including the low success rate of

immunotherapy, complications associated with immuno-
therapy, and the super progression of immunotherapy.
Studies have shown that the low success rate of immunother-
apy is related to the low infiltration of CD8+ T lymphocytes,
the weakening of the antigen presentation process, and the
reduction of PD-1 expression. In this study, we explored
the coexpression network that promotes the infiltration of
CD8+ T lymphocytes in liver cancer by combining computa-
tional biology and experiments. The factors in the coexpres-
sion network are considered to have similar biological
functions in organisms. Therefore, mining these coexpres-
sion factors helps us understand the biological processes
most closely related to the infiltration of CD8+ T lympho-
cytes in liver cancer.

The grey60 module was the most relevant coexpression
module for CD8+ T lymphocytes. The factors in this module
are related to the regulation of T cell proliferation. To date,
we have demonstrated that these factors are related to the
infiltration of CD8+ T lymphocytes at the sequencing and
functional levels. Based on our inferences, we believe that
these factors may improve outcomes by increasing the
infiltration of CD8+ T lymphocytes. Then, we conducted
survival analysis on these factors and successfully con-
structed a prognostic risk score for liver cancer based on
CD8+ T lymphocyte coexpression factors. The differences
in protein levels of C1QC, CD3D, GZMA, and PSMB9 in
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different liver cancer stages were determined using
immunohistochemistry.

C1QC encodes the complement C1q C chain, which asso-
ciates with C1r and C1s to yield the first component of the
serum complement system [24, 25]. C1q is composed of 18
polypeptide chains which include six A-chains, six B-chains,
and six C-chains. Each chain contains an N-terminal
collagen-like region and a C-terminal C1q globular domain.
The protein encoded by CD3D is part of the T cell recep-
tor/CD3 complex (TCR/CD3 complex) and is involved in T
cell development and signal transduction [26, 27]. The
encoded membrane protein represents the delta subunit of
the CD3 complex. Along with four other CD3 subunits, the
encoded membrane protein binds either TCR alpha/beta or
TCR gamma/delta to form the TCR/CD3 complex on the
surface of T cells [28]. In this study, transcriptome, histolog-
ical, and single-cell cohorts were used to demonstrate the
importance of C1QC and CD3D in CD8+ T lymphocytes.

This article has some limitations. We used TCGA and
liver cancer tissues from China Medical University to
conduct a joint analysis. More external cohorts still need to
be cross-validated. Due to the limited computing power of
computers, we only included factors with variances in the
top 25% when performing WGCNA. This may cause some
false-negative results. More advanced computers need to be
used to repeat this screening method. Although we hypothe-
size that these factors can improve the therapeutic effect of
liver cancer immunotherapy by promoting the infiltration
of CD8+ T lymphocytes, due to the lack of immunotherapy
efficacy evaluation in the follow-up data of TCGA, we only
explored the passage of these coexpression factors in liver
cancer. More cohorts with immune follow-up data need to
be added to promote the infiltration of CD8+ T lymphocytes
and improve the outcome of patients.

In summary, we constructed a prognostic risk scoring
model for liver cancer based on a CD8+ T lymphocyte con-
tent coexpression molecular network, determined that the
factors in the risk scoring model can be used as independent
prognostic factors for liver cancer, and determined the levels
of these factors at the mRNA and protein levels. These
prognosis-related CD8+ T lymphocyte coexpression factors
and their related biological functions may provide new direc-
tions for improving the efficacy of immunotherapy.
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