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Background. Osteosarcoma is one of the most common bone tumors among children. Tumor-associated macrophages have been
found to interact with tumor cells, secreting a variety of cytokines about tumor growth, metastasis, and prognosis. *is study
aimed to identify macrophage-associated genes (MAGs) signatures to predict the prognosis of osteosarcoma.Methods. Totally 384
MAGs were collected from GSEA software C7: immunologic signature gene sets. Differential gene expression (DGE) analysis was
performed between normal bone samples and osteosarcoma samples in GSE99671. Kaplan–Meier survival analysis was performed
to identify prognostic MAGs in TARGET-OS. Decision curve analysis (DCA), nomogram, receiver operating characteristic
(ROC), and survival curve analysis were further used to assess our risk model. All genes from TARGET-OS were used for gene set
enrichment analysis (GSEA). Immune infiltration of osteosarcoma sample was calculated using CIBERSORT and ESTIMATE
packages. *e independent test data set GSE21257 from gene expression omnibus (GEO) was used to validate our risk model.
Results. 5 MAGs (MAP3K5, PML, WDR1, BAMBI, and GNPDA2) were screened based on protein-protein interaction (PPI),
DGE, and survival analysis. A novel macrophage-associated risk model was constructed to predict a risk score based on
multivariate Cox regression analysis. *e high-risk group showed a worse prognosis of osteosarcoma (p< 0.001) while the low-
risk group had higher immune and stromal scores. *e risk score was identified as an independent prognostic factor for os-
teosarcoma. MAGs model for diagnosis of osteosarcoma had a better net clinical benefit based on DCA.*e nomogram and ROC
curve also effectively predicted the prognosis of osteosarcoma. Besides, the validation result was consistent with the result of
TARGET-OS. Conclusions. A novel macrophage-associated risk score to differentiate low- and high-risk groups of osteosarcoma
was constructed based on integrative bioinformatics analysis. Macrophages might affect the prognosis of osteosarcoma through
macrophage differentiation pathways and bring novel sights for the progression and prognosis of osteosarcoma.

1. Introduction

Osteosarcoma, as a common malignant tumor, occurred
mostly in the distal femur and proximal tibia metaphyses.
Currently, the incidence of osteosarcoma worldwide was
three to four per million people [1]. *e main treatment for
osteosarcoma consisted of chemotherapy and surgery [2]. As
a highly aggressive tumor, nearly half of osteosarcoma would
metastasize, and the lung was the most common metastatic
site [3]. Despite a relatively low incidence of osteosarcoma,
the prognosis of osteosarcoma continued to be very poor,

and the cure rate after surgery was not high (17%) [4].
Hence, it was significant to explore new and effective
methods to treat osteosarcoma.

*e tumor microenvironment (TME) mainly consisted
of tumor cells, extracellular matrix proteins, blood vessels,
fibroblasts, immune cells, endothelial cells, and extracellular
factors [5]. In the last few decades, TME has been paid more
attention and studied in many fields, including tumor an-
giogenesis and metastasis [6]. Being an important part of the
TME, tumor-associated macrophages (TAM) have been
observed to affect the metastasis and prognosis of tumors
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[7]. A recent study showed that the infiltration of macro-
phages was related to the prognosis of breast cancer through
paracrine interaction between breast cancer cells and
macrophages [8]. A previous research also revealed that
macrophages would promote the growth of epithelial cells
with cancer-related mutations [9]. A recent study also im-
plied that TAM prevented metastasis in high-grade osteo-
sarcoma by collecting 132 clinical osteosarcoma samples
[10]. TAM could be divided into three types based on their
functional properties: M1, M2, and M0 [11]. M1 macro-
phages, activated by lipopolysaccharides, *1, and other
cytokines, played an important role in promoting inflam-
mation and antimicrobial [12]. Meanwhile, M2 macro-
phages, mainly induced by CSF-1 and IL-10, were involved
in tumor progression, wound healing, tissue repairing, and
inhibition of inflammation [13]. It is currently believed that
M2 macrophages promoted tumor growth and metastasis
while M1 macrophages inhibited tumor formation by se-
creting cytokines [14]. An injection of M1 macrophages into
mice with Ehrlich ascites carcinoma could improve the
survival rate of the mice [15]. A former study also indicated
that M1 macrophages could reduce the growth of colon
cancer cells [16]. Moreover, a high proportion of M2
macrophages could lead to a poor prognosis in ovarian
cancer [17]. In Zhou’s study, osteosarcoma metastasis could
be prevented by all-trans retinoic acid through the prohi-
bition of M2 polarization [18]. Although osteosarcoma and
TAM have been studied in recent years, the TAM-related
diagnosis and prognostic indicators of osteosarcoma were
still rare. Furthermore, most of the current osteosarcoma
indicators were based on the hematological study [19], and
the influence of the tumor microenvironment on osteo-
sarcoma was rarely considered. *erefore, developing a
macrophage-associated risk model to predict the prognosis
of osteosarcoma was urgently needed.

*erapeutically applicable research to generate effective
treatments (TARGET) was a database of pediatric tumors,
including acute lymphoblastic leukemia, acute myeloid
leukemia, kidney tumors, neuroblastoma, and osteosar-
coma. *e CIBERSORT deconvolution algorithm was a
machine learning method to calculate the infiltration of
various immune cells based on bulk transcriptome data
through linear support vector regression and highly robust
to noise [20]. LM22 was a gene expression label matrix of
immune cells. It consisted of 547 genes that could differ-
entiate 22 immune cell phenotypes [21]. CIBERSORT has
been widely used in predicting the proportion of immune
cells in cancers. *e Connectivity Map (cMap) was an in-
strumental online bioinformatics database that includes
gene expression profiles of more than 7,000 tumor cell lines
and 1,309 drugs [22]. Decision curve analysis was a statistical
method to evaluate clinical prediction models, diagnostic
experiments, and molecular markers [23]. Nomogram could
simplify the complex prediction model in the probability
estimation of the event (such as death or recurrence) based
on the specific situation of each patient. Multivariate Cox
regression analysis has been widely applied in clinical re-
search [24]. Here, the clinical and transcriptome data of
osteosarcoma from the TARGET database (TARGET-OS)

were collected in this study. 384 MAGs were collected from
GSEA software C7: immunologic signature gene sets [25,
26]. *e STRING database was further used to detect MAGs
with a high connection [27]. *en 5 MAGs were selected to
construct the risk model through integrative bioinformatics
analysis. Moreover, the prognostic nomogram was con-
structed to evaluate our risk model and further validated by a
bootstrap test. Besides, the independent data set from the
GEO database was collected to validate our model. In this
study, we aimed to identify macrophage-associated gene
signatures to predict the prognosis of osteosarcoma, which
could help clinicians evaluate patients’ conditions and
provide novel insights for osteosarcoma.

2. Materials and Methods

2.1. Sample Collection and Data Preprocessing.
TARGET-OS including 88 osteosarcoma samples and
clinical information was collected from the TARGET da-
tabase (https://ocg.cancer.gov/programs/target). Besides,
the human genome annotation GTF file was collected from
the GENCODE platform (https://www.gencodegenes.org/).
Moreover, the test data set GSE21257 consisting of 53 os-
teosarcoma samples and clinical information was collected
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).
TARGET-OS had 88 samples including 50 males and 37
females (1 sample with unknown gender) while GSE21257
consisted of 53 samples including 34 males and 19 females.
GSE99671 had 36 samples (22 males and 14 females) in-
cluding 18 normal bone samples and 18 osteosarcoma
samples. *e median ages (interquartile range (IQR)) of
TARGET-OS and GSE21257 were 14.5 (12.2–17.4) years and
16.7 (13.6–18.7) years, respectively. GPL10295 platform was
used for the GSE21257 data set while the GPL20148 platform
was used for the GSE99671data set. Robust spline normali-
zation was performed in GSE21257 while normalization of
fragments per kilobase of exon model per million mapped
fragments (FPKM) was performed in the TARGET-OS data
set. Gene sets involving macrophage from GSEA software C7:
immunologic signature were selected by searching using the
keyword “macrophage.” *en, a total of 384 MAGs were
collected after removing overlapped genes. *ese 384 MAGs
were listed in Table S1. All data were normalized through the
z-score method:

z �
x − μ
σ

, (1)

where Zwas the standard value; xwas the specific gene ex-
pression value; µwas the mean expression value of each
sample; and σwas the standard deviation.

*e probe was a fluorescent-labeled nucleic acid com-
plementary to a specific nucleotide sequence of the target
gene. *e RNA or cDNA fragment of the gene was captured
by base complementary hybridization. Here, we used each
probe to match genes. *e maximum value of the probe was
selected when the gene matched at least two probes.
TARGET-OS was the training data set while GSE21257 was
the test data set. Detailed information about patients with
complete clinical information in TARGET-OS and
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GSE21257 were presented in Tables 1 and 2. Basic infor-
mation of three data sets were provided in Table 3. *e
flowchart of this study was shown in Figure 1.

2.2.DifferentialGene ExpressionAnalysis andProtein-Protein
Interaction Analysis. Totally 384 MAGs were used for DGE
using the limma package [28] in R software. Gene signatures
of normal bone samples or osteosarcoma were identified
based on DGE analysis. Benjamini–Hochberg (BH) method
[29] was used here to adjust multiple hypotheses. *e
screening criteria for significant genes were adjusted to
p< 0.05. *e differentially expressed genes were further
transformed into GRP files and uploaded to the cMap da-
tabase (http://www.broad.mit.edu/cmap/) for small mole-
cule drug prediction analysis. Potential therapeutic targets
for osteosarcoma were selected based on enrichment score
and p< 0.05. Meanwhile, 384 MAGs were used for PPI
analysis in the STRING database and further visualized by
Cytoscape [30]. *e confidence level was 0.4, and MAGs
with degrees higher than 2 were selected for further analysis.

2.3. Analysis of Infiltration of Immune Cells in Osteosarcoma
Samples. *e infiltration of immune cells in TARGET-OS
was calculated by the CIBERSORTdeconvolution algorithm.
As a part of the CIBERSORT deconvolution algorithm, the
machine learning method, nu-support vector regression
(]-SVR), was applied to this analysis. Different ] values
including 0.25, 0.5, and 0.75 were selected to perform ]-SVR
to predict the infiltration of immune cells for each sample.
*e solution of ]-SVR was screened based on the lowest
root-mean-square error between the true and the predicted
expressions. *e formula of the CIBERSORT algorithm was
as follows:

Mij � 􏽘
r

k�1
SikFcj, (2)

whereMij represented the expression level of gene i in mixed
sample j, which was the sum of its expression in r immune
cell type. Sikwas a label matrix (LM22; https://cibersort.
stanford.edu/download.php), which represented the gene
expression level of gene i in immune cells. Fcjrepresented the
proportion of cell types in the mixed sample j. *e per-
mutations of the signature matrix were 1,000. *e ESTI-
MATE package was also used to calculate the immune and
stromal scores of each sample [31].

2.4. Survival Analysis. *e survival and survminer packages
were used for survival analysis in R software. *e collected
384 MAGs were divided into high- and low-risk groups
based on their expression in the TARGET-OS data set for
survival analysis. Besides, high- and low-risk groups from
the TARGET-OS and the GSE21257 data sets were used for
survival analysis, respectively. High/low immune and high/
low stromal score groups were also used for survival analysis.
*e survival rate was compared by the log-rank test. p< 0.05
indicated statistical significance.

2.5. Construction of Multivariate Cox Regression Model.
Multivariate Cox regressionmodel was constructed based on
5 differentially expressed MAGs from the TARGET-OS data
set using survival package (https://cran.r-project.org/web/
packages/survival/index.html) and survminer package
(https://cran.r-project.org/web/packages/survminer/index.
html) in R software. For each MAG, the coefficient of
multivariate Cox regression was regarded as the coefficients
in the risk score. *en the risk score of each sample was
calculated. *e formula was as follows:

risk score � 􏽘
n

j�1
coefj
∗
Xj. (3)

where coef was the coefficient of multivariate regression
analysis of MAGs. Xwas the expression of each MAG. *is

Table 1: Detailed clinical information about the TARGET-OS data
set.

Characteristics
Risk group

p

valueLow-risk
group

High-risk
group

Age (IQR) 15.67
(12.36–16.49)

13.35
(10.08–16.23) 0.173

Gender
Female 15 12 0.311Male 14 19

Race
White 26 25

0.384Black 5 2
Asian 2 4

Tumor metastasis
Metastatic 4 8 0.161Nonmetastatic 29 23

IQR: interquartile range.

Table 2: Detailed clinical information about the GSE21257 data set.

Characteristics
Risk group

p value
Low-risk group High-risk group

Age (IQR) 16.67(14.59–18.59) 15.08(13–18.17) 0.258
Gender

Female 10 9 0.854Male 17 17
IQR: interquartile range.

Table 3: Detailed information about the GSE21257, the GSE99671,
and the TARGET-OS data sets.

TARGET-OS GSE21257 GSE99671
Osteosarcoma
samples 88 53 36

Male 50 34 22
Female 37 19 14
Research object Human Human Human
Time of uploading
chip Aug 17,2019 Mar 22,2012 Nov 03,

2017
Median ages
(IQR) 14.5(12.2–17.4) 16.7(13.6–18.7) NA

IQR: interquartile range, NA: not applicable.
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model was constructed to predict risk scores in osteosar-
coma samples. *e risk here referred to the risk of a poor
prognosis in the osteosarcoma samples. *e higher the risk
score, the higher the probability of the poor prognosis in
osteosarcoma, and vice versa. Osteosarcoma samples were
divided into high- and low-risk groups by risk score.
Pheatmap package (https://cran.r-project.org/web/
packages/pheatmap/index.html) was used to display the
expression of MAGs in the high- and low-risk groups in R
software. *en risk score and other clinical characteristics
were also used for multivariate Cox regression analysis to
identify potential independent prognostic factors of osteo-
sarcoma in the TARGET- OS and the GSE21257 data sets.

2.6. Decision Curve and ROC Analyses. *e DCA curve was
shown with the net benefit rate as the ordinate and the high-
risk thresholds as the abscissa using the rmda package
(https://cran.r-project.org/web/packages/rmda/index.html)
in R software. *e calculation formula of net benefit was as
follows:

net benefit �
true positive

n
−
false positive

n

∗ pt

1 − pt

. (4)

where nwas the sample size, and ptwas the threshold
probability. Here, we explored three clinical prognostic

models in TARGET-OS: simple clinical data model
(gender, race, age, and tumor metastasis), simple MAGs
model (5 MAGs and risk score), and complex model that
integrated MAGs and clinical features (gender, race, age,
tumor metastasis, 5 MAGs, and risk score). *e model
with the greatest net benefit under different high-risk
thresholds was recommended for clinical applications of
osteosarcoma. Meanwhile, ROC curves to predict the 1-,
3-, and 5-year survival of TARGET-OS and GSE21257
were performed using the time ROC package in R software
[32].

2.7. Construction and Internal Validation of Prognostic
Nomogram. *e nomogram was constructed to predict the
overall survival (1 year, 3 years, and 5 years) of patients in
TARGET-OS using the rms package (https://cran.r-project.
org/web/packages/rms/index.html) in R software. Here,
patients’ clinical characteristics such as age, gender, tumor
metastasis, race, and risk score were used for the con-
struction of a nomogram. *en internal validation of no-
mogram was performed, and bootstrap was set to 1,000. *e
discrimination of nomogram was evaluated by concordance
index while calibration plots of 1-, 3-, and 5-year survival
curves of TARGET-OS were performed to evaluate the
prediction performance of nomogram.

Intersection

Data preprocessing
and normalization

Data preprocessing
and normalization

Construction and internal
validation of nomogram to

predict the prognosis of
osteosarcoma

Construction of
macrophage-associated

risk model

Validated by independent
data set GSE21257 (n = 53)

Calculating risk score
and Kaplan–Meier

survival curve

Calculating immune infiltration
in TARGET-OS by

CIBERSORT

Collecting 384 macrophage-
relared genes (MAGs)from GSEA

so�ware C7. Immunologic
signature gene sets.

Differential gene
expression analysis

between normal bone
samples and

osteosarcoma

Protein-protein interaction
between 384 MAGs

Survival analysis

Identification of potential
drugs for osteosarcoma

by connectivity map
analysis

Calculating risk score and
Kaplan-Meier survival

curve

Collecting gene data set from
TARGET-OS (n = 88)

Collecting gene data set from
GSE99671 (n = 36)

Decision curve analysis Gene set enrichment
analysis

Receiver operating
characteristic (ROC) curve for

predicting the 1-, 3-, and 5-year
survival of osteosarcoma

Receiver operating
characteristic (ROC) curve to
predict the 1-, 3-, and 5-year

survival of osteosarcoma

Figure 1: Flowchart of this study.
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2.8.Gene Set EnrichmentAnalysis. All genes from TARGET-
OS were used for GSEA based on low- and high-risk groups.
Significant macrophage-associated pathways in the osteo-
sarcoma microenvironment were identified using GSEA
software. False discovery rate (FDR)< 0.05 and p< 0.05
indicated statistical significance.

2.9. Statistical Analysis. Statistical Product and Service So-
lutions software (SPSS 22.0) and R 3.6.2 were used for data
analysis. A chi-square test was performed for categorical
data. *e independent-samples Kruskal–Wallis test was
performed to compare MAGs expression between normal
bone samples and osteosarcoma samples. Meanwhile, the
Kruskal-Walls test was also performed to compare stromal
and immune scores between high- and low-risk groups,
respectively. All significance levels were p< 0.05.

3. Results

3.1. Identification of 5 MAGs Related to the Prognosis of
Osteosarcoma. A total of 384 MAGs were screened and used
for subsequent analysis. PPI analysis of these 384 MAGs was
shown in Figure 2(a). Most MAGs were well-connected to
each other. Compared with macrophages in normal bone
samples, TAM had different functions and played an im-
portant role in tumor progression. *erefore, DGE analysis
was used to identify marker MAGs in normal bone samples
and osteosarcoma. *e result of DGE analysis between
normal bone sample and osteosarcoma in the GSE99671
data set was shown in Figure 2(b). Gene BAMBI (p= 0.024)
and gene ALOX5AP (p= 0.001) were top upregulated genes
in osteosarcoma while gene WDR1 (p= 0.042), gene PML
(p= 0.012), gene MAP3K5 (p= 2.60E− 05), gene GNPDA2
(p= 0.027), gene CCL5 (p= 7.37E− 08), and gene MAOA
(p= 9.08E− 07) were top upregulated genes in normal bone
sample. cMap analysis was also performed based on these
differentially expressed MAGs, and the results were shown
in Table 4. Exisulind (p= 0.031), atractyloside (p= 0.006),
and doxycycline (p= 0.010) were identified as potential
drugs for osteosarcoma. Immune infiltration of each sample
in TARGET-OS and the correlation between immune cells
were shown in Figures 2(c) and 2(d), respectively. *e av-
erage proportions of M0, M1, and M2 macrophages were
43.4%, 2.35%, and 27.2%, respectively. *e median pro-
portions (IQR) of M0, M1, andM2macrophages were 46.6%
(32.2%–54.3%), 1.36% (0.420%–3.41%), and 23.4% (18.5%–
36.8%), respectively. Moreover, Kaplan–Meier survival
analysis of 384 MAGs in TARGET-OS was performed. *en
a total of 5 intersection MAGs (WDR1, PML, MAP3K5,
GNPDA2, and BAMBI) were screened based on the results
of DGE, PPI, and survival analysis. *e influence of different
gene expression levels on the prognosis of osteosarcoma was
further explored.*e survival curve of eachMAG in TARGET-
OS was shown in Figures 3(a)–3(e). Gene WDR1 (p=0.003),
PML (p=0.002), MAP3K5 (p< 0.001), and GNPDA2
(p=0.030) showed a better prognosis of osteosarcoma in the
high expression group. Moreover, gene BAMBI in the high
expression group showed a worse prognosis (p=0.013).

Besides, the relative expression of each MAG in normal bone
samples and osteosarcoma sampleswas shown in Figures 3(f)–
3(j). *e expression of gene WDR1 (p=0.006), PML
(p=0.005), MAP3K5 (p=0.010), and GNPDA2 (p=0.009)
were significantly higher in normal bone sample while in
osteosarcoma samples, the expression of BAMBI (p=0.006)
was significantly higher. *en the effect of different expression
levels of these 5 MAGs on gender and age was also explored.
However, the results turned out that these 5 MAGs were not
significantly related to gender or age.*ese 5 MAGs were used
for subsequent analysis.

3.2. Construction of a Macrophage-Associated Risk Model.
*emacrophage-associated risk model was constructed by 5
MAGs through multivariate Cox regression analysis in
TARGET-OS. *e formula of our risk model was as follows:

risk score � (−0.767)
∗WDR1 + (−0.674)

∗PML

+ (−2.046)
∗MAP3K5 + (−2.534)

∗GNPDA2

+ (−0.307)
∗BAMBI.

(5)

*en, osteosarcoma samples were divided into high- and
low-risk groups by risk score, and the results were shown in
Figures 4(a) and 4(b). As the risk score of patients increased,
the number of deaths rose, and the survival time of patients
decreased. Besides, our score could effectively predict the
prognosis of osteosarcoma (concordance index = 0.797).
*erefore, in order to further explore the prognostic dif-
ference between the high- and low-risk groups, clinical
information of high- and low-risk groups were used as
training data for survival curve analysis. *e result was
shown in Figure 4(c). Compared with the high-risk group,
the low-risk group had a significantly improved prognosis
(p< 0.001). *e 5-year survival rates of high- and low-risk
groups were 43.0% and 90.1%, respectively. A heat map of
the expression of 5 MAGs in TARGET-OS was displayed in
Figure 4(d). Besides, different stromal and immune scores
among high- and low-risk groups were explored. *e results
turned out that the stromal and immune scores of the low-
risk group were both significantly higher than the high-risk
group (Figures 5(a) and 5(b)). *e survival plot of each
group with different immune and stromal scores was sub-
sequently shown in Figures 5(c) and 5(d). *e low-risk
group continued to have a significantly better prognosis
(p< 0.0001), regardless of its immune and stromal scores.
Since there was a significant prognostic difference between
high- and low-risk groups, our risk score was considered to
predict the prognosis of osteosarcoma effectively.

3.3. Macrophage-Associated Risk Score: An Independent
Prognostic Factor of Osteosarcoma. Clinical characteristics
might be correlated with the prognosis of osteosarcoma. To
explore whether our risk model could independently predict
the prognosis, the risk score and other clinical information
of TARGET-OS including gender, tumor metastatic, race,
and age were used for Cox regression analysis. *e results
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Figure 2: Continued.
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were shown in Figure 6(a). In univariate Cox regression
analysis, risk score (p< 0.001) and tumor metastatic
(p= 0.003) were closely related to the prognosis of osteo-
sarcoma. Moreover, in multivariate Cox regression analysis,
risk score (p< 0.001) and tumor metastatic (p= 0.001) were
still related to the prognosis of osteosarcoma, indicating that
tumor metastatic and our risk score could be considered
independent prognostic factors of osteosarcoma.

3.4. MAG Model for Diagnosis of Osteosarcoma Had a Better
Net Clinical Benefit than the Simple Clinical Model. *e
decision curve of three clinical prognostic models (simple
clinical data model (gender, race, age, and tumor metastasis),
simple MAGs model (5 MAGs and risk score), and complex
model) in TARGET-OS were shown in Figures 6(b)–6(d).
Compared with clinical models, our MAGs model had a better
net benefit for patients’ 3- and 5-year survival rate (Figures 6(b)
and 6(c)). As shown in Figure 6(d), compared with clinical
models, our MAGs model had the greatest net benefit to di-
agnose osteosarcoma metastasis. Among them, the simple

clinical data model exhibited the lowest net benefit while the
complex model had the highest net benefit. *erefore, a
comprehensive analysis of clinical and genetic information
could increase the net benefit of the model. Besides, in
Figure 6(e), the area under the curve for prediction of 1-, 3-,
and 5-year survival of osteosarcoma was 0.78, 0.84, and 0.84,
respectively. *is result also indicated that our MAGs model
could accurately predict the prognosis of osteosarcoma.

3.5. Nomogram Effectively Predicted the Prognosis of
Osteosarcoma. Since considering both clinical features and
our MAGs model had the best net clinical benefit, the
nomogram was constructed by integrating gender, age,
tumor metastasis, race, and risk score. *e result was dis-
played in Figure 7(a). As the total points became higher, the
1-, 3-, and 5-year survival rate of patients decreased. *e
concordance index of the nomogram was 0.842, and the
calibration curve of 1-, 3-, and 5-year survival of osteo-
sarcoma (Figures 7(b)–7(d)) also illustrated our nomogram
that could effectively predict the prognosis of osteosarcoma.
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Figure 2: Identification of prognostic MAGs through PPI andDGE and immune infiltration of TARGET-OS: (a) PPI analysis of 384MAGs,
(b) differential gene expression analysis between osteosarcoma samples and normal bone sample, (c) correlation plot of each immune cell in
TARGET-OS, and (d) immune infiltration of each sample in TARGET-OS.
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3.6. Validation of Our Risk Model by Independent Data Set.
*e independent data set GSE21257 was used for the vali-
dation of our risk model. *e GSE21257 data set was divided
into high- and low-risk groups based on the macrophage-
associated risk model. As shown in Figures 8(a) and 8(b),
compared with the low-risk group, the high-risk group had a
lower survival time. *e survival curve of different risk
groups was shown in Figure 8(c). *e 5-year survival rates of
the high- and low-risk groups were 48.1% and 76.9%, re-
spectively. *e low-risk group had better clinical outcome
(p= 0.040).*e areas under the curve for prediction of 1-, 3-
, and 5-year survival of osteosarcoma were 0.76, 0.72, and
0.73, respectively (Figure 8(d)). Moreover, the risk score and
clinical information of GSE21257 including gender and age
were also used for Cox regression analysis.*e risk score was
significantly correlated with the prognosis of osteosarcoma
in univariate (p= 0.024) and multivariate (p= 0.020) re-
gression analyses (Figure 9(a)). *erefore, our risk score
could be considered an independent prognostic factor of
osteosarcoma.

3.7. Low-Risk Group Was Related to Macrophage Differenti-
ation Pathway. GSEA was also performed for all genes
from TARGET-OS. *e results were shown in Table S2,
and important pathways are shown in Figures 9(b)–9(d).
Genes were enriched in GO: macrophage activation
(enrichment score (ES) = 0.56, p< 0.001, and
FDR < 0.001), GO: macrophage migration (ES = 0.54,
p= 0.001, and FDR = 0.003), GO: macrophage differen-
tiation (ES = 0.56, p= 0.001, and FDR = 0.004), and GO:
regulation of macrophage chemotaxis (ES = 0.59,
p= 0.004, and FDR = 0.009). *ese biological processes
were considered important pathways of TAM in the os-
teosarcoma microenvironment. *e above analysis
revealed that MAGs played a significant role in osteo-
sarcoma. Moreover, the results of characteristics of
clinical information and prognosis of osteosarcoma were
consistent with the result of TARGET-OS. *erefore, our
risk model could differentiate different risk groups suc-
cessfully, and the low-risk group was correlated with a
better prognosis of osteosarcoma.

4. Discussion

As osteosarcoma is one of the most common childhood
tumors in the world, its treatment and prognosis have re-
ceived widespread attention. Despite the surgical treatment
along with pre- and postoperative chemotherapy, the event-
free 5-year survival rate remained low [33]. A previous study
revealed that gene PPARG, gene IGHG3, and gene PDK1
were correlated with osteosarcoma [34]. However, this
conclusion was not validated by the independent data set. In
this study, DGE analysis was performed based on normal
bone samples and osteosarcoma samples to identify dif-
ferentially expressed MAGs. We further identified exisulind,
atractyloside, and doxycycline as top potential drugs for the
treatment of osteosarcoma. A recent study illustrated that
exisulind could induce apoptosis in lung cancer by down-
regulating cyclic GMP phosphodiesterase and further im-
prove the prognosis of lung cancer [35]. Atractyloside was
also found to suppress the progression and metastasis of
colon cancer in Lu’s study [36]. A previous report also
showed that doxycycline could reduce the proliferation of
melanoma cells by inhibiting apoptosis [36]. Considering
the important role these drugs played in other tumors, they
might become promising drugs for osteosarcoma treatment.
*e selected 5 MAGs (MAP3K5, PML, WDR1, BAMBI, and
GNPDA2) were identified as prognostic-related genes for
osteosarcoma, and a novel macrophage-associated risk
model was constructed based on these 5 MAGs. MAP3K5,
also called ASK1, was an important kinase in the process of
cell apoptosis, participating in the regulation of multiple
cell-signaling pathways in inflammation and tumors [37]. A
recent research indicated that MAP3K5 promoted macro-
phage activation and migration in mice models [38]. Fur-
thermore, knockout MAP3K5 mice were more likely to
develop colon cancer [39]. *ese research works were also
consistent with our study. MAP3K5 might be related to a
better prognosis of a tumor by activating macrophages,
which also needed further study to validate. *e biological
function of the gene PML was associated with its nuclear
location, and PML was associated with cell cycle regulation
and tumor suppression [40]. For instance, reduced ex-
pression of PML was found to promote multiple tumor

Table 4: Potential drugs for the treatment of osteosarcoma by cMap analysis.

cMap name Mean n Enrichment p Specificity Percent nonnull
Exisulind −0.516 2 −0.874 0.03167 0.0287 100
Chenodeoxycholic acid −0.549 4 −0.698 0.01751 0.1 75
Atractyloside −0.445 5 −0.695 0.00581 0.0227 60
Clorsulon −0.409 4 −0.687 0.02077 0.0567 50
Doxycycline −0.391 5 −0.664 0.01007 0.0226 60
Paromomycin −0.515 4 −0.654 0.03296 0 75
Naltrexone −0.352 5 −0.643 0.01448 0.0562 60
Chlormezanone −0.426 4 −0.641 0.03975 0.0276 75
Indometacin 0.165 8 0.508 0.01946 0.0156 50
Flufenamic acid 0.305 6 0.527 0.04479 0.0511 50
Prilocaine 0.31 6 0.531 0.04177 0.0081 50
Orphenadrine 0.455 6 0.561 0.02674 0.0461 66
Hydralazine 0.259 6 0.607 0.0114 0 50
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Figure 3: Continued.
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Figure 3: *e results of survival curve for 5 MAGs (BAMBI, PML, GNPDA2, WDR1, and MAP3K5) and the expression of each MAG in a
normal bone sample and osteosarcoma: (a)–(e) survival curve of 5 MAGs (BAMBI, PML, GNPDA2, WDR1, and MAP3K5) by
Kaplan–Meier method and (f)–(j) the boxplots of expression of each MAG in normal bone sample and osteosarcoma. ∗p< 0.05 and
∗∗p< 0.01.
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growth, including prostate adenocarcinoma, breast carci-
noma, and thyroid carcinoma [41]. A previous research
reported that PML was critical to the formation of mac-
rophages [42]. Here, we reported that high expression of
PML might inhibit osteosarcoma growth, which was also
consistent with these findings. WDR1 took part in inducing

the disassembly of actin filaments, and dysfunction of
WDR1might cause autoinflammatory disease, which in turn
activated macrophage [43]. BAMBI, a pseudoreceptor of the
TGF signaling pathway, played a key role in regulating
macrophage polarization [44]. A former study indicated that
highly expressed BAMBI could contribute to colon cancer

10

8

6

4

2

0
0 20 40

Patients (increasing risk score)

Ri
sk

 sc
or

e

60 80

High risk

Low risk

(a)

12

10

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

8

6

4

2

0

0 20 40
Patients (increasing risk score)

60 80

Dead

Alive

(b)

100

Starata
Group = High
Group = Low

0.75

0.50

0.25Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

St
ra

ta Group = High
Group = Low

0

43 36 24 17 16 12 9
42 41 31 28 26 16 9

6543
Time

210

Number at risk

p < 0.0001

1 2 3
Time

4 5 6

(c)

Type

MAP3K5

PML

WDR1

BAMBI

GNPDA2

4

2

0

–2

–4

Low

Type
High

(d)

Figure 4: Construction of macrophage-associated risk model and survival curve of high-/low-risk groups in TARGET-OS: (a) TARGET-OS
was divided into high- and low-risk groups using the median risk score as the cutoff value, (b) the relationship between risk score and
survival time and status of patients, (c) the survival curve of high- and low-risk groups in TARGET-OS, and (d) the heat map between
expression of 5 MAGs and osteosarcoma samples.
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metastasis through Wnt/beta-catenin in mice models [45].
Besides, the expression of BAMBI was significantly higher in
ovarian cancer through TGF-beta signaling [46]. BAMBI
was also highly expressed in pancreatic cancer by the TGF-
beta pathway [47]. Similarly, our study reported that high
expression of BAMBI would result in a poor prognosis of
osteosarcoma, which implied that BAMBI could be a new
target for the treatment of osteosarcoma. GNPDA2 was

closely related to obesity and body mass index. A recent
epidemiological survey also showed that people with a high
body mass index were at higher risk of cancer [48]. Besides,
macrophage accumulating in adipose tissue was related to
obesity [49]. *erefore, these genes were considered to be
potential targets for the treatment of osteosarcoma, and
further experiments are needed to verify the role of these
genes in osteosarcoma.
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Figure 5: Comparison of stromal and immune scores among high- and low-risk groups and survival analysis: (a) comparison of stromal
score among high- and low-risk groups, (b) comparison of immune score among high- and low-risk groups, (c) survival analysis of different
stromal scores among high- and low-risk groups (L: low, H: high, LSS: low stromal score, and HSS: high stromal score), and (d) survival
analysis of different immune scores among high- and low-risk groups (L: low, H: high, LIS: low immune score, and HIS: high immune
score).∗p< 0.05and ∗∗p< 0.01.
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Figure 6: Identification of risk score as an independent prognostic factor of osteosarcoma, decision curve analysis of three models
(simple gene model, simple clinical model, and complex model), and ROC curve for predicting the prognosis of osteosarcoma in 1, 3,
and 5 years: (a) identification of risk score as an independent prognostic factor of osteosarcoma by univariate and multivariate Cox
regression analyses, (b) the decision curve of the net benefit of the 2 models for the 3-year survival rate (simple gene and simple clinical
models), (c) the decision curve of the net benefit of the 3 models for the 5-year survival rate (simple gene, simple clinical, and complex
models); (d) the decision curve of the net benefit of the 3 models for the diagnosis of osteosarcoma metastasis (simple gene, simple
clinical, and complex models), and (e) ROC curve to predict the prognosis of osteosarcoma in 1, 3, and 5 years.
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Our study showed that the low-risk group had signifi-
cantly higher immune and stromal scores, which was cor-
related with a better prognosis. Similarly, a previous study
indicated that osteosarcoma samples with high immune
scores had a better prognosis [34]. ROC curve also exhibited
excellent accuracy of our risk model in TARGET-OS and
GSE21257. *e decision curve considered the clinical utility
of specific models and focused on the net benefit of different
clinical interventions. Here, the decision curve of three
models (simple gene model, simple clinical model, and
complex model) demonstrated that comprehensive con-
sideration of genetic information and clinical information
could obtain the greatest benefits. Besides, the nomogram
also accurately predicted the prognosis of osteosarcoma.
*erefore, our risk model could effectively predict the
prognosis of osteosarcoma, which could be a potential
clinical indicator of osteosarcoma. *e GSEA results of

TARGET-OS showed that GO: macrophage activation, GO:
macrophage migration, GO: macrophage differentiation,
and GO: regulation of macrophage chemotaxis were con-
sidered key pathways in osteosarcoma. Macrophage acti-
vation and migration were correlated with tumor growth. A
recent study reported that activated TAM could promote the
angiogenesis of breast cancer [50]. TAM also promoted
cancer development by upregulation of LAMP2a [51]. *e
migration of macrophages was inhibited under hypoxia,
which was conducive to tumor growth [52]. Besides, mac-
rophage migration could accelerate tumor invasion without
relying on matrix metalloproteinase [53]. Macrophage dif-
ferentiation also played a significant role in the tumor
microenvironment. A previous study showed that M2
macrophage was closely associated with malignant oral
squamous cell carcinomas [54]. Macrophage could be
shifted to M1 macrophage by phenelzine in triple-negative
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Figure 7: Construction and internal validation of nomogram to predict the prognosis of osteosarcoma: (a) construction of the nomogram
by collecting age, gender, tumor metastasis, race, and risk score; (b) 1-year survival calibration curve; (c) 3-year survival calibration curve;
and (d) 5-year survival calibration curve.
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breast cancer [55]. Moreover, the chemokine system was
found to affect macrophage polarization. A former research
reported that interferon gamma could induce the activation
of M1 macrophage [56]. *ese biological processes were
closely related to TAM in tumor, which also provided a
novel research perspective for the role of TAM in
osteosarcoma.

Our study, however, had some limitations: (1) due to the
limitation of sample size, we needed more research to
support our conclusion, and (2) we also lacked prospective
clinical trials to verify the performance of our model further.
*erefore, we looked forward to more research on MAGs to
explore novel ideas for the clinical treatment of
osteosarcoma.
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Figure 8: Validation of macrophage-associated risk model and survival curve of high-/low-risk groups in GSE21257: (a) GSE21257 was
divided into high- and low-risk groups using the median risk score as the cutoff value, (b) the relationship between risk score and survival
time and status of patients, (c) the survival curve of high- and low-risk groups in GSE21257, and (d) ROC curve to predict the prognosis of
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5. Conclusion

In general, 5 MAGs (MAP3K5, PML, WDR1, BAMBI, and
GNPDA2) correlated with the prognosis of osteosarcoma were
screened for the construction of the risk model. A novel
macrophage-associated risk score to differentiate low- and
high-risk groups of osteosarcoma was constructed based on
multiple bioinformatics analyses. *e high score indicated the
poor prognosis of osteosarcoma while the low score indicated
the better prognosis of osteosarcoma. Besides, our risk score
was validated by the independent data set successfully, and
nomogram effectively predicted the prognosis of osteosarcoma.
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Figure 9: Validation of risk score as an independent prognostic factor of osteosarcoma in GSE21257 and important pathways identified by
GSEA: (a) validation of risk score as an independent prognostic factor of osteosarcoma in GSE21257 by univariate and multivariate Cox
regression analyses, (b) the important enrichment pathway: GO – macrophage migration, (c) the important enrichment pathway: GO-
macrophage differentiation, and (d) the important enrichment pathways: GO-macrophage activation.
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