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Abstract
Diabetic cardiomyopathy (DCM) is commonly defined as cardiomyopathy in 
patients with diabetes mellitus in the absence of coronary artery disease and 
hypertension. As DCM is now recognized as a cause of substantial morbidity and 
mortality among patients with diabetes mellitus and clinical diagnosis is still 
inappropriate, various expert groups struggled to identify a suitable biomarker 
that will help in the recognition and management of DCM, with little success so 
far. Hence, we thought it important to address the role of biomarkers that have 
shown potential in either human or animal studies and which could eventually 
result in mitigating the poor outcomes of DCM. Among the array of biomarkers 
we thoroughly analyzed, long noncoding ribonucleic acids, soluble form of 
suppression of tumorigenicity 2 and galectin-3 seem to be most beneficial for 
DCM detection, as their plasma/serum levels accurately correlate with the early 
stages of DCM. The combination of relatively inexpensive and accurate speckle 
tracking echocardiography with some of the highlighted biomarkers may be a 
promising screening method for newly diagnosed diabetes mellitus type 2 
patients. The purpose of the screening test would be to direct affected patients to 
more specific confirmation tests. This perspective is in concordance with current 
guidelines that accentuate the importance of an interdisciplinary team-based 
approach.
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Core Tip: Diabetic cardiomyopathy (DCM), which affects 12% of diabetics, is an under-
recognized and lethal complication of diabetes. Thus, there is an urgent need for 
reliable and available biomarkers for DCM detection. To date, none of the conducted 
studies have been successful in identifying such biomarkers. Hence, in concordance 
with current guidelines that accentuate the importance of an interdisciplinary team-
based approach, we propose the combination of speckle tracking echocardiography and 
a few novel biomarkers as a screening method for DCM in patients with new onset 
diabetes mellitus type 2.
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INTRODUCTION
The first records of diabetic cardiomyopathy (DCM) date back to 1972[1], when it was 
first observed in the post-mortem analysis of diabetics who died of heart failure (HF), 
having no evidence of coronary artery pathology or any other pathology that could 
explain the observed structural changes. These findings were supported by the 
Framingham study in which HF was five times more common among patients with 
diabetes mellitus (DM)[2], even after the adjustment for hypertension and coronary 
heart disease. DCM is now commonly defined as cardiomyopathy in patients with DM 
in the absence of coronary artery disease, valvular disease, and hypertension, or any 
other conventional cardiovascular risk factor for that matter[3]. Diagnostic criteria 
include left ventricular diastolic dysfunction and/or reduced left ventricular ejection 
fraction, pathological left ventricle hypertrophy and interstitial fibrosis[4]. However, 
timely and appropriate diagnosis is still fairly challenging in everyday clinical practice
[5]. The reason behind the exigent diagnosis of this clinical entity lies in the long 
asymptomatic phase of the disease. DCM initially presents with clinically covert 
myocardial fibrosis, dysfunctional cardiac remodeling and associated diastolic 
dysfunction, later progressing to systolic dysfunction, and eventually to overt HF. The 
changes that lead to DCM are triggered by hyperinsulinemia and increased insulin 
resistance, whereas the underlying molecular changes that are involved in the 
pathophysiologic development of DCM include: Abnormalities in the adenosine 
monophosphate-activated protein kinase, nuclear factor κ-light-chain-enhancer of 
activated B cells (NFκB), nuclear factor erythroid 2–related factor 2, mitogen-activated 
protein kinase (MAPK), cyclic adenosine 5′-monophosphate-responsive element 
modulator, peroxisome proliferator-activated receptors (PPARs), O-linked N-acetyl-
glucosamine, protein kinase C (PKC), micro ribonucleic acid (microRNA) and exosome 
pathways[4]. As DCM is now recognized as a cause of substantial morbidity and 
mortality among patients with diabetes mellitus, affecting 12% of patients with 
diabetes, various expert groups struggle to identify a suitable biomarker that will help 
in the recognition and management of DCM[6,7]. The rising burden of DM, estimated 
to afflict 592 million people by 2035[8], calls attention to this matter even more. 
Similarly, the prevalence of DM in HF could be over 40%, while in patients with DM, 
the prevalence of HF ranges from 10% to 22%[9,10]. Unfortunately, so far none of the 
conducted studies have resulted in the implementation of either conventional cardiac 
biomarkers or new diagnostic tools in DCM management, yet the current guidelines 
accentuate the importance of an interdisciplinary team-based approach[11]. Therefore, 
in this study we sought to address the role of certain biomarkers that have shown 
potential in either human or animal studies and which could eventually result in 
mitigating the poor outcomes of DM by participating in the prevention and/or 
treatment of DCM.

PATHOPHYSIOLOGY OF DIABETIC CARDIOMYOPATHY
So far, most of the underlying pathophysiological mechanisms leading to DCM have 
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been disclosed[12]. The pathogenesis of DCM is complex and consists of the following 
systemic and cardiac processes triggered by hyperinsulinemia and increased insulin 
resistance: impaired coronary microcirculation, dysregulation of the sympathetic 
nervous system activity and the renin-angiotensin-aldosterone system (RAAS), 
inappropriate immune response, metabolic disequilibrium of the myocardium and 
abnormalities of the sub-cellular components. Underlying these pathophysiological 
events, a role for several proteins and signaling pathways has emerged: adenosine 
monophosphate-activated protein kinase, PPARs, O-linked N-acetylglucosamine, 
Sodium-Glucose Cotransporter 2 (SGLT2), PKC, MAPK, NFκB, erythroid 2–related 
factor 2, microRNA and exosomes[4,13]. Other important mediators implicated in 
almost every step of DCM development are reactive oxygen species. It is important to 
point out that these processes are not independent, instead they mutually interact and 
result in HF. In this review, we highlight some of the above-mentioned pathways 
relevant for comprehension of the role of biomarkers, as greater details of DCM 
pathophysiology are beyond the scope of this review. The development of HF in DM 
is gradual and consists of three distinct phases.

Insulin cell signaling is comprised of two major transduction pathways. The first 
being phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) and the other being 
MAPK[13]. The PI3K-AKT pathway mainly exerts the metabolic functions of insulin, 
most important being glucose transporter-4 (GLUT4) cell-surface expression and 
endothelial nitric oxide (NO) synthase (eNOS) expression. In contrast, the MAPK 
pathway promotes growth, hypertrophy and remodeling[14]. In an insulin resistant 
state, these pathways are imbalanced in favor of the MAPK pathway, creating a base 
for DCM development[15]. Attenuation of the PI3K-AKT and up-regulation of the 
MAPK pathway are a result of complex interactions between ROS, overfeeding, RAAS 
activity and many other components which we will discuss further.

Coronary microcirculation seems to be impaired in DM, mediated by multiple 
pathophysiological processes[16]. Stiffness of small blood vessels is commonly 
observed among patients with DM, driven by hyperinsulinemia-induced vascular 
smooth muscle cells differentiation to an osteoblast-like phenotype[17]. In an insulin-
resistant state, owing to reduced eNOS levels, NO synthesis is reduced, whereas its 
degradation is accelerated as a consequence of a heightened state of oxidative stress
[18,19]. As it promotes vasodilation via guanylyl cyclase activation, a negative balance 
of NO leads to coronary vasoconstriction[20]. Recent studies suggest a role of the 
endothelial-to-mesencyhmal transition (EndoMT) in this setting. EndoMT is a 
mechanistic phenomenon that explains the loss of normal vascular phenotype of 
endothelial cells, increased cardiac fibroblast content and cardiac fibrosis in the 
diabetic heart[21]. Importantly, Widyantoro et al[22] showed that cardiac fibrosis in the 
diabetic myocardium is due to stimulation of the EndoMT pathway. It seems that this 
detrimental cascade which is translated from vasculature onto myocardium could be 
an important contributor to the onset of HF with preserved ejection fraction (HFpEF)
[23].

Altered sympathetic nervous system activity is one of the established hallmarks of 
DM[24]. The over-expression of β1-adrenergic receptors has been shown to promote 
myocyte hypertrophy, interstitial fibrosis and myocyte apoptosis[25]. Conversely, 
sympathetic denervation as a part of  cardiac autonomic neuropathy (CAN) is also an 
important feature of DM. Interestingly, myocardial regions of persistent sympathetic 
innervation exhibit the greatest deficits of vasodilator reserve[26], thus indicating an 
association between CAN and impaired myocardial blood flow.

It has been shown that hyperglycemia increases the transcription of angio-
tensinogen and angiotensin II (At II) production from the local angiotensin converting 
enzyme, hence increasing the RAAS activity[27]. Accordingly, obesity is also 
associated with up-regulation of the RAAS[28]. On the other hand, RAAS activity 
influences insulin signal transduction pathways on multiple levels, which results in an 
abundance of cardiac and systemic repercussions[29]. By stimulating the creation of 
ROS via nicotinamide adenine dinucleotide phosphate oxidase, as well as by direct 
phosphorylation of the insulin receptor substrate-1 serine residues, At II inhibits the 
metabolic PI3K signaling pathway. As eNOs production is mainly dependent on the 
PI3K pathway[30], At II reduces NO synthesis and thus promotes endothelial 
dysfunction of myocardial blood vessels[31]. Additionally, aldosterone activation of 
the mineralocorticoid receptors results in increased ROS production, increased sodium 
channel expression and activation of serum/glucocorticoid-regulated kinase 1. 
Altogether, this leads to reduced production of NO and consequently vascular 
stiffness and impaired cardiac relaxation[32]. Conversely, the MAPK pathway enhance
-ment by At II and ROS induces vascular remodeling[33].
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Low-grade systemic inflammation and increased polarization towards the pro-
inflammatory M1 macrophages and TH1 lymphocytes is fairly common among obese 
patients and in an insulin-resistant state[15,34,35]. Although regulatory T cells 
attenuate inflammation in the myocardium, it has been proposed that the secreted pro-
inflammatory cytokines, chemokines and growth factors could result in increased 
cardiac fibrosis and impaired diastolic relaxation[36,37].

An influx of glucose to the myocardial cells is mainly exerted via insulin-mediated 
GLUT4, whereas free fatty acids (FFA) uptake depends on fatty acid translocase 
(CD36) expression[14,38]. Under physiological circumstances, the heart can use both 
glucose and FFA as a source of energy. However, in an insulin-resistant state, the 
expression of GLUT4 diminishes, whereas CD36 expression on plasma membrane is 
up-regulated. Moreover, elevated levels of intracellular FFA stimulate PPAR-alpha 
expression, which leads to an increased uptake and oxidation of FFA. Hence, 
myocardial metabolism shifts from glucose to FFA oxidation, making the myocardium 
less energy-efficient[39]. As DCM progresses, the expression of genes regulating beta-
oxidation of fatty acids is down-regulated, thereby further mitigating the metabolic 
efficiency of the myocardium[40]. Hyperglycemia leads to the accumulation of the 
advanced glycation end-products (AGE) via non-enzymatic glycation. The AGE induce 
extracellular matrix cross-linking thus promoting myocardial fibrosis and impaired 
passive relaxation[13]. Additionally, AGE can stimulate a pro-inflammatory state by 
binding to the receptors for AGE[41,42]. It should be noted that a relatively novel 
group of anti-diabetic agents, the SGLT2 inhibitors, have been shown to attenuate 
hyperglycemia-induced cardiac dysfunction in lipodystrophic mice[43]. In con-
cordance, they exert a cardioprotective effect manifested by improved systolic 
function, decreased fibrosis and reduced inflammation in At II infusion-induced 
cardiomyopathy in diabetic mice[44], elucidating the beneficial effects of SGLT2 
inhibitors observed in human studies[45]. Mechanisms by which SGLT2 inhibition 
mitigates DCM and HF in general is an increase in natriuresis, osmotic diuresis, 
plasma volume contraction, reduction of blood pressure and arterial stiffness and 
lastly, by providing highly energy-efficient substrates for cardiac metabolism, such as 
β-hydroxybutyrate[43,45].

Mitochondrial damage is one of the pivotal pathophysiological mechanisms that 
contribute to DCM. Substrate overflow induces mitochondrial ROS production and 
impaired oxidative phosphorylation. Consequently, this leads to altered mitochondrial 
Ca2+ handling, which prolongs diastolic relaxation time (diastolic dysfunction) and in 
later stages leads to cell death[46-48]. Apart from mitochondrial damage, excessive 
ROS also impair post-translational protein modifications that occur in the endoplasmic 
reticulum and interfere with insulin signaling pathways. Endoplasmic reticulum stress 
further stimulates ROS production and favors myocyte apoptosis.

MicroRNAs, small non-coding RNAs, take part in the regulation of mitochondrial 
function, ROS production, Ca2+ handling, apoptosis, autophagy and fibrosis, all of 
which are regarded as important mechanisms in diabetes induced HF[13]. These 
microRNAs are transported in exosomes, recently recognized extracellular vesicles 
involved in cell-to-cell communication[49].

The development of DCM can be divided in three distinct phases (Figure 1)[13]. In 
the initial phase, there are no obvious changes in the myocardium tissue and systolic 
function is preserved[50]. However, using echocardiography and magnetic resonance 
imaging (MRI) in rodents, authors observed subtle anomalies that indicate impaired 
diastolic relaxation. MRI findings that pointed to the impaired diastolic relaxation 
were slow initial and peak filling rates, whereas abnormal myocardial performance 
index, long period of isovolumic relaxation and impaired septal annular wall motion 
were the observed echocardiographic diastolic parameters[51,52,15]. In humans, early 
DCM is characterized by increased cardiac stiffness and impaired cardiac relaxation 
with consequent reduction in early diastolic filling and an increase in atrial filling [50,
53]. In addition, another hallmark is a decrease in the myocardial blood-flow reserve 
that can be detected by various imaging techniques[54]. Needless to say, the whole 
initial phase is completely asymptomatic. As underlying pathophysiological 
mechanisms continue to exhibit their deleterious cellular effects on cardiac tissue, 
DCM becomes more and more evident. In the advanced phase, as myocardium 
becomes hypertrophic and increasingly permeated with fibrous tissue, left ventricular 
mass and wall thickness both increase and hence, diastolic dysfunction becomes 
clinically apparent. In this phase, patients may notice first symptoms which 
correspond to the symptoms observed in HFpEF, the most prominent being exercise 
intolerance[55,56]. In the late phase of DCM development, except for diastolic dysfun-
ction, further progression of cardiac remodeling finally results in mitigation of systolic 
function and consequent HF with reduced ejection fraction[12]. It is important to note 
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Figure 1 Schematic representation of the diabetic cardiomyopathy phases. Each background color corresponds to its respective phase: green (early 
phase), yellow (advanced phase), red (late phase). The red line represents the incremental nature of symptom severity. SNS: Sympathetic nervous system; GLUT4: 
Glucose transporter type 4; RAAS: Renin-Angiotensin-Aldosterone System.

that DCM staging still remains theoretical, since it is difficult to reach a definite 
diagnosis of DCM. However, we believe that staging is useful because it highlights the 
importance of timely DCM diagnosis.

BIOMARKERS IN DIABETIC CARDIOMYOPATHY
Role of traditional cardiac biomarkers in the management of diabetic 
cardiomyopathy
Established cardiac biomarkers used for detection in patients with HF have failed to 
timely recognize DCM. Brain natriuretic peptide (BNP) correlation with HF is blunted 
owing to the association between BNP and insulin resistance[57]. In contrast, N-
terminal pro-BNP and ANP have been able to predict HF in experimental DCM rat 
models[58,59]. Furthermore, both natriuretic peptides successfully demonstrated 
diastolic dysfunction in diabetics and in conjunction with 2D echocardiography [60,
61]. However, their value as a biomarker was limited to symptomatic patients, those 
with pseudo-normalized mitral flow pattern and those with a restrictive filling pattern
[60]. There was no correlation of these natriuretic peptides with diastolic dysfunction 
among asymptomatic patients and those with relaxation abnormalities. Additional 
studies also demonstrated a lack of correlation among asymptomatic patients with 
diastolic dysfunction and overall poor correlation with most of the echocardiography 
parameters[62,63]. In conclusion, the utility of natriuretic peptides in pre-clinical DCM 
detection is limited; however, BNP seems to be an independent predictor of poor 
outcomes in this cardiomyopathy[64-66].

Another family of entrenched cardiac markers are the troponins, a set of proteins 
that control the calcium-mediated interaction between actin and myosin. This 
multiprotein complex consists of troponin C which binds calcium, troponin T (TnT) 
which binds to tropomyosin and troponin I (TnI) which prevents actin-myosin 
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interaction[67]. Cardiac troponin I and T are commonly used in routine clinical 
practice due to their high sensitivity and specificity for the detection of myocardial 
injury[68]. Both human and animal studies suggest that TnI and TnT are constitutively 
phosphorylated in diabetes via PKC, leading to depressed myofilament function and 
Ca2+ responsiveness[69,70]. Of note, losartan, an At II receptor blocker seems to 
abrogate TnI phosphorylation[71]. Although it is well-known that TnT and TnI are 
elevated among patients with diabetes, especially among those with concomitant 
coronary artery disease, to our knowledge no studies have investigated the difference 
in troponin plasma levels between diabetics with DCM and diabetics without DCM[72,
73]. Taken together, established laboratory biomarkers measuring myocardial injury 
and mechanical hemodynamic overload of the ventricles are not specific markers of 
DCM.

Novel biomarkers of diabetic cardiomyopathy
Cardiotrophin-1 (CT-1), a member of the glycoprotein 130 family, is a potent inducer 
of cardiomyocyte hypertrophy in vitro[74]. CT-1 secretion is stimulated by various 
triggers: mechanical stretch of cardiomyocytes, hypoxic stress, ROS, At II, aldosterone, 
urocortin, glucose, insulin and fibroblast growth factor-2[75-82]. Triggered by any of 
the above-mentioned, CT-1 modulates myocardial contractility, fibrosis and cardiac 
conduction via activation of the JAK/STAT and MAPK pathways (Figure 2)[83,84]. 
Apart from its effects on heart remodeling, CT-1 also takes part in cardiac glucose 
metabolism by increasing insulin-stimulated glucose uptake[85,86]. In line with this, 
plasma CT-1 levels are positively correlated with basal glycemia and left ventricular 
hypertrophy[87]. Other studies showed elevated plasma levels of CT-1 in recently 
diagnosed diabetics and neonates exposed to maternal diabetes[88], but interestingly, 
reduced levels in obese non-diabetics[89,90]. Moreover, low CT-1 plasma levels seem 
to be associated with decreased risk of both metabolic syndrome and DM type 2 in 
obese subjects[91]. Although CT-1 is to a great extent implicated in DCM, there are two 
major setbacks that prevent CT-1 implementation in the DCM diagnostic algorithm
[92]. Firstly, CT-1 is also expressed by various tissues such as liver, lung, kidney and 
skeletal muscle[93]. Secondly, CT-1 plasma level alterations are also associated with 
other types of cardiomyopathies, including ischemic, making it less specific[84].

Insulin-like growth factor binding protein 7 (IGFBP7) is a part of the IGFBP 
superfamily of homogenous proteins which regulate the IGF signaling pathway by 
binding with insulin and IGFs[94]. Unlike IGFBP 1-6, IGFBP7 has low binding affinity 
to IGF but high affinity to insulin[95]. Owing to its high binding affinity to insulin, 
IGFB7 may interfere with the biological response of insulin, subsequently inducing 
insulin resistance and is involved in the development of diabetes, as shown by 
multiple studies (Figure 2)[96,97]. Apart from its role in insulin signaling, IGFBP7 is 
associated with multiple processes including fibrogenesis and tumor development [98,
99]. IGFBP7 has also been implicated in HF where it serves as a novel prognostic 
biomarker for heart failure with reduced ejection fraction and shows a significant 
correlation with the presence and severity of the echocardiographic parameters of 
abnormal diastolic function[100]. In a recent study, the potential of IGFBP7 in 
improving the diagnosis of acute HF has been highlighted[101]. The most important 
evidence of IGFBP7 utility in the setting of DCM was provided by Shaver et al[102] 
who tested the potential of various serum biomarkers in a West Virginian population. 
The authors compared plasma levels between controls and diabetics (DM group), but 
more importantly, between diabetics with diastolic dysfunction (DM, DD+ group) and 
diabetics without diastolic dysfunction (DM, DD- group). IGFBP7 plasma levels were 
significantly higher in the DM, DD+ group in comparison to the DM, DD- group. 
Given their role in insulin resistance, fibrogenesis, HF development and the results 
presented by Shaver et al[102], we argue that further research of IGFBP7 in this manner 
is valuable as it could be a candidate for early detection of DCM.

Another important finding by Shaver et al[102] is in regards to transforming growth 
factor-β (TGF-β), a ubiquitous fibrogenic cytokine that promotes extracellular matrix 
accumulation[103]. As a result of increased ROS production, TGF-β is up-regulated in 
patients with diabetes[104]. Additionally, TGF-β correlates with the degree of cardiac 
fibrosis[105]. Of note, although most of the TGF-β-induced cardiac fibrosis is exerted 
by modulating the fibroblast phenotype and function[106], an additional mechanism 
that may contribute to fibrosis is TGF-β-mediated induction of EndoMT[107,108], a 
deleterious process implicated in HFpEF pathophysiology[23]. Shaver et al[102] 
reported higher plasma levels of TGF-β in patients with both DM and DD in 
comparison to the other two groups, respectively. Therefore, TGF-β could serve as a 
marker in DCM management. This is in line with previous studies conducted on this 
topic. By using FT23, an orally active anti-fibrotic compound, Tan et al[109] success-
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Figure 2 Molecular targets of the diabetic cardiomyopathy biomarkers in cardiomyoctes. MAPK: Mitogen-activated protein kinase; PI3K: 
Phosphatidylinositol 3-kinase-protein kinase B; IGFBP7: Insulin-like growth factor binding protein 7; GLUT4: Glucose transporter type 4.

fully demonstrated the TGF-β-mediated attenuation of diastolic dysfunction in an 
experimental model of DCM. In line with the latter, Smad3, a signaling pathway by 
which TGF-β exerts a part of its pro-fibrotic features, has been shown to mediate 
diabetic cardiac hypertrophy, fibrosis, and diastolic dysfunction[110,111].

Activin A, a protein secreted by epicardial adipose tissue (EAT) is another member 
of the TGF-β superfamily that seems to be involved in the development of DCM[112]. 
Greulich et al[113] demonstrated that excessive activation of Activin A-signaling 
results in contractile dysfunction and insulin resistance in high fat diet fed guinea pigs. 
The underlying mechanism seems to be inhibition of insulin-mediated phosphory-
lation of rrAkt, a key regulator of myocardial glucose uptake (Figure 2)[114]. In 
addition, authors also observed decreased calcium ATPase-2a expression and 
sarcomere shortening. By cultivating rat cardiomyocytes with EAT byoptates derived 
from diabetics, Blumensatt et al[115] highlighted the role of microRNA in Activin A-
induced insulin inhibition and led to further disclosure of DCM pathophysiology. 
Finally, the potential of Activin A as a biomarker in diabetes has been exploited by 
Chen et al[116]. These authors reported an association between Activin A plasma levels 
and both impaired myocardial glucose metabolism and left ventricular remodeling in 
patients with uncomplicated type II diabetes[116]. In contrast to diastolic dysfunction 
and HF, Activin A is not elevated in uncomplicated DM, which could be beneficial for 
its utility as a biomarker. However, we doubt that Activin A will find clinical implic-
ations in this manner, as its plasma levels are affected by metformin, a ubiquitous 
diabetes medication, and the secretion of Activin A is not limited to EAT but it is also 
expressed by many other cells[116-121].

Considering the importance of ROS overproduction in DCM pathophysiology and 
the well-known ROS-induced inflammatory response, multiple authors have tested the 
potential of inflammatory markers in this setting. A recent study on core gene 
biomarkers in patients with DCM addressed the vital role of interleukin-6 in DCM 
pathophysiology[122]. Furthermore, Shaver et al[102] found that both interleukin-6 
and tumor necrosis factor-alpha are more increased in patients with both DM and DD 
in contrast to patients with DM exclusively. Nevertheless, owing to the low specificity 
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of the two, it seems that growth differentiation factor-15 (GDF-15), another inflam-
matory marker, has a much better chance of being implemented in DCM diagnosis 
[123]. GDF-15, another member of the TGF-β superfamily is produced in response to 
oxidative stress and inflammation by multiple cell types, including macrophages, 
adipocytes, and cardiovascular cells[123]. Elevated plasma levels of GDF-15 seem to be 
associated with increased risk in fatal and non-fatal cardiovascular events of 
community-dwelling subjects and patients with cardiovascular disease, as shown by 
multiple studies[125-127]. Interestingly, in these studies GDF-15 levels were higher 
among patients with established DM type 2. Additionally, several studies addressed 
the contribution of GDF-15 in diastolic dysfunction[128,129]. As demon-strated by 
Dominguez-Rodriguez et al[130], elevated levels of GDF-15 can predict DCM 
development in the absence of other risk factors, such as age, smoking, hypertension 
and known cardiovascular disease. Importantly, multiple authors have shown that 
GDF-15 expression in various tissues is higher in pre-diabetes and DM type 2 patients 
in comparison to individuals without the mentioned metabolic disorders, making 
GDF-15 a promising biomarker for identification of DCM and its repercussions among 
diabetics[131,132]. Notably, a new class of GFRAL (high affinity binding receptor for 
GDF-15)/RET (receptor tyrosine kinase)-based drugs for the treatment of obesity and 
metabolic syndrome could improve cardiovascular risk in individuals with metabolic 
diseases by mediating the endogenous effects of GDF-15[133].

Galectin-3 is a lectin family protein that has been associated with fibrosis and 
inflammation in cardiac, kidney and liver diseases[134,135]. Galectin-3 levels correlate 
with accumulation of AGE, oxidative stress products and pro-apoptotic pathways 
which directly promote endothelial dysfunction[136,137]. Perhaps the most important 
role of galectin-3 is its role in HF, where galectin-3 is an important mediator by which 
multiple molecules, such as At II and aldosterone, exert their pro-fibrotic activity and 
where it is able to promote oxidative stress with well-known repercussions[138-143]. 
The first evidence to support these findings were provided by Sharma et al[144] in a 
study which demonstrated that galectin-3 was the strongest differentially regulated 
gene associated with HF. Subsequently, a number of authors produced abundant 
evidence that successfully associated galectin-3 with HF in both animal models and in 
human studies, leading to the Food and Drug Administration approval of galectin-3 as 
a novel biomarker for predicting cardiovascular adverse events in 2010[145-149]. It is 
important to note that inhibition of galectin-3 could be an important target molecule in 
the HF therapeutic approach, based on its potential to undermine cardiac fibrosis and 
mitigate poor outcomes of HF. Multiple studies have highlighted the link between DM 
type 2 and galectin-3. The Dallas Heart Study associated galectin-3 with diabetes 
prevalence and incidence even after adjustment for conventional metabolic and 
cardiovascular risk factors[150]. Furthermore, in young obese patients without known 
cardiovascular disease, galectin-3 is associated with the presence of left ventricular 
diastolic dysfunction and elevated pulmonary artery systolic pressure, indicating its 
possible role in screening for preclinical metabolic heart disease[151]. On the other 
hand, in patients with HF, galectin-3 plasma levels were higher among those with 
impaired glucose metabolism (Figure 2)[152]. Finally, the possible role of galectin-3 in 
the DCM diagnostic approach was evaluated in a recent study by Flores-Ramírez et al
[153]. The study showed that galectin-3 is elevated in diabetic patients with mild 
depressed ejection fraction and is associated with a diminished global longitudinal 
strain, an easy and reproducible echocardiographic tool in the evaluation and follow-
up of DCM[154].

The soluble form of suppression of tumorigenicity 2 (sST2) is a interleukin-33 (IL-33) 
decoy receptor that tones down the Th2 inflammatory response via the IL-
33/ST2/sST2 axis (Figure 3)[155]. Consequently, the protective effects of IL-33 in 
atherosclerosis and cardiac remodeling are mitigated, as this axis is an important 
component of the autocrine/paracrine mechanism that prevents tissue injury[156,
157]. Increased plasma concentrations of sST2 are not specific for a single disorder in 
humans which undermines its value as a biomarker[158]. However, increased plasma 
levels of sST2 have been linked to a worse prognosis in numerous diseases, the most 
important being HF[159-162]. In line with this, sST2 is now included in the 2017 
ACCF/AHA guidelines for additive risk stratification of patients with acute and 
chronic HF[163]. In the case of diabetes, Fousteris et al[164] demonstrated higher 
plasma concentrations of sST2 among patients with DM type 2 in comparison to 
healthy controls. More importantly, authors observed even higher levels of sST2 in 
patients with both DM type 2 and grade I left ventricular diastolic dysfunction, an 
early finding in DCM[165]. The presented data suggest a possible association between 
sST2 and the early stages of DCM; however, a larger body of evidence is needed to 
support these findings.
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Figure 3 Molecular target of the soluble form of suppression of tumorigenicity 2. sST2: Soluble form of suppression of tumorigenicity 2; IL-33: 
Interleukin-33; ST2L: Suppression of tumorigenicity 2 ligand; TH2: T helper lymphocyte type 2.

Long noncoding RNAs (lncRNAs) are a diverse subgroup of noncoding RNAs 
comprised of sequences longer than 200 nucleotides that act as epigenetic regulators of 
gene expression[166]. There is a large body of evidence indicating that lncRNAs are 
implicated in cardiac development, function and diseases[167,168]. Recent studies 
suggest that circulating lncRNAs could serve as diagnostic and prognostic biomarkers 
of cardiac remodeling and survival in cardiovascular diseases[169,170]. Both in vitro 
and in vivo studies showed that lncRNAs are involved in the pathophysiology of 
diabetes and its complications[171-173]. The most important study that addressed the 
potential of multiple lncRNAs as early DCM biomarkers was conducted by de 
Gonzalo-Calvo et al[174]. These authors compared a panel of lncRNAs that are directly 
involved in either diabetic conditions or cardiovascular disease and attempted to 
determine their relationship with MRI indices of cardiac dimensions and function. 
Long intergenic non-coding RNA predicting cardiac remodeling (LIPCAR) was 
inversely associated with E/A peak flow, an established indicator of diastolic 
dysfunction. In addition, LIPCAR serum levels positively correlated with grade I 
diastolic dysfunction. However, although LIPCAR was also correlated with waist 
circumference, plasma fasting insulin, subcutaneous fat volume and HDL-C, which 
could seemingly undermine LIPCAR value as a specific biomarker of cardiac 
impairment, the observed correlation with cardiac dysfunction was independent of the 
aforementioned. On the other hand, smooth muscle and endothelial cell-enriched 
migration/differentiation-associated long noncoding RNA (SENCR) and myocardial 
infarction-associated transcript (MIAT) lncRNAs serum levels were both associated 
with left ventricular mass to volume ratio, a marker of cardiac remodeling, even after 
adjustment for possible confounding factors. Notably, the highest left ventricular mass 
to volume ratios were observed in patients with the highest MIAT and SENCR 
expression. It is also important to point out that neither SENCR nor MIAT levels 
correlated with other clinical, biochemical, or metabolic parameters, which supports 
the hypothesized utility of these lncRNAs as biomarkers of left ventricular 
remodeling.

MicroRNAs are small noncoding RNA molecules which regulate gene expression by 
post-transcriptional mechanisms[175]. These molecules control around 30% of all 
protein-coding genes of the mammalian genome[176]. Additionally, microRNAs are 
also paracrine mediators of cell-to-cell communication transported via exosomes, a 
mechanism which has lately become an emerging research field for understanding the 
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development of cardiac pathology[177]. The release of circulating exosomes filled with 
microRNA in the bloodstream from cardiomyocytes, driven by oxidative stress or 
hypoxia/reoxygenation, as well as stable microRNA-protein complex transport, makes 
microRNA an attractive target for analytical studies[178-182]. Recent pre-clinical level 
studies identified several distinct microRNAs which have been involved in DCM 
pathophysiology. Among many, we highlighted those we thought most suitable for 
DCM diagnosis based on their pathophysiologic role in DCM: microRNA-223 which 
regulates Glut4 receptor expression and cardiomyocyte glucose uptake and 
microRNA-133a which is implicated in cardiac hypertrophy and myocardial matrix 
remodeling[183-185]. Despite their potential, there are currently no ongoing clinical 
trials regarding the role of microRNAs in this manner. Perhaps the biggest setback in 
using microRNAs as markers is discordance between human and animal serum 
microRNAs associated with DCM[186]. The only exceptions are microRNA-34a, a 
regulator of high glucose-induced apoptosis and microRNA-30d, a molecule involved 
in the process of cardiomyocyte pyroptosis[187,188].

CONCLUSION
Despite substantial efforts to establish appropriate diagnostic biomarkers of DCM, this 
entity is not even diagnosed among clinicians, mainly due to the absence of agreement 
among experts[4]. Hence, new strategies must be applied in order to ameliorate poor 
outcomes of diabetes-related HF. In an ideal setting, DCM would be recognized in the 
early asymptomatic phase, before irreversible myocardial damage occurs. Different 
imaging approaches such as Phase-MRI, Speckle tracking echocardiography (STE) and 
nuclear imaging have been successful in the recognition of early metabolic myocardial 
changes in both animal and human studies[189-194]. However, most of these are 
limited by price and availability, whereas STE, although promising, can have reduced 
accuracy in irregular ventricular remodeling and wall thinning[6]. Importantly, global 
longitudinal strain, an echocardiographic measurement, seems to be more impaired in 
DM vs healthy controls whereas among diabetics, it is more impaired in patients with 
albuminuria in comparison to patients without it[195]. In addition, patients with 
uncomplicated DM type II show a similar time-dependent pattern of global longit-
udinal strain change, altogether indicating subclinical systolic dysfunction in patients 
with diabetes that is associated with duration and extent of the disease[196]. Of the 
aforementioned biomarkers, we believe that lncRNA, sST2 and galectin-3 will be the 
most beneficial for DCM detection, as their plasma/serum levels accurately correlate 
with the early stages of DCM.

In addition, there are several molecules which are rarely debated in this manner and 
which we find valuable for further research based on their functional properties. 
Catestatin, a pleiotropic cardioprotective peptide that counterbalances the negative 
effects of the sympathetic nervous system, is implicated in both the metabolic 
syndrome and HF[197]. Specifically, alongside sST2, our recent study suggested that 
catestatin plasma levels reflect myocardial fibrosis and sympathetic overactivity 
during the acute worsening of HF[198]. With regard to diabetes, catestatin has been 
shown to increase glucose uptake and up-regulate GLUT4 plasma expression in rat 
cardiomyocytes[199], as well as improve insulin sensitivity in mice with diet-induced 
obesity[200].

To sum up, further research is needed to improve DCM approach strategies. The 
combination of relatively inexpensive and accurate STE with some of the highlighted 
biomarkers seems promising (Table 1); however, well-designed studies with long-term 
follow-up and validation are obligatory for implementation in everyday clinical 
practice. With the exception of “What to test?”, rather more important questions are 
“When and whom to test”. Given that DCM affects around 12% of diabetics, we need a 
predictive scoring system to establish that a patient is at risk of DCM development, as 
they all are. Thus, screening methods should be applied for all newly-diagnosed type 2 
DM patients. In DM type 1, due to the discrepancy in certain pathophysiological 
aspects in respect to DM type 2, further research is needed to reach proper conclusions
[201,202]. With regard to “When to test?”, as DCM progression deteriorates heart 
function stepwise and as new therapeutic strategies that specifically target early phase 
mechanisms emerge, it will be vital to detect DCM as soon as possible. Finally, we 
argue that an effort must be made to create an easy and reproducible algorithm which 
will, by using a combination of STE and biomarkers, direct affected patients to 
confirmation tests such as Phase-MRI. Consequently, in patients with validated DCM, 
new specific therapies that target early phase mechanisms could be applied. This type 
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Table 1 Promising novel biomarkers in diagnostic approach to diabetic cardiomyopathy

Biomarker Pathophysiological pathway Supporting evidence

LncRNA (LIPCAR, MIAT, SENCR) Epigenetic regulation of multiple genes involved in diabetes and 
cardiac dysfunction

Liu et al[171]; Yan et al[172]; Carter et al[173]; 
de Gonzalo-Calvo et al[174]

sST-2 IL-33 decoy receptor that tones down Th2 inflammatory response 
via the IL-33/ST2/sST2 axis

Fousteris et al[164]; Kiencke et al[165]

TGF-β The main pro-fibrotic factor in heart failure: it modulates the 
fibroblast phenotype and function and mediates induction of 
EndoMT

Shaver et al[102]; Iglesias-De La Cruz et al
[104]; Asbun et al[105]

Galectin-3 Mediator by which multiple molecules (e.g. angiotensin II and 
aldosterone) exert their pro-fibrotic activity and promote oxidative 
stress

Ho et al[146]; Ueland et al[147]; Sharma et al
[148]

GDF-15 Regulator of inflammatory pathways involved in regulation of 
apoptosis, cell repair and cell growth

Berezin[123]; Dominguez-Rodriguez et al[130]

RNA: Ribonucleic acid; LncRNA: Long noncoding ribonucleic acid; LIPCAR: Long intergenic non-coding ribonucleic acid predicting cardiac remodeling; 
MIAT: Myocardial infarction-associated transcript; SENCR: Smooth muscle and endothelial cell-enriched migration/differentiation-associated long 
noncoding ribonucleic acid; sST2: Soluble form of suppression of tumorigenicity 2; GDF-15: Growth differentiation factor-15; TGF-β: Transforming growth 
factor-β; EndoMT: Endothelial-mesenchymal transition.

of approach is needed to stratify patients because most of the new therapies will be 
very costly.
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