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Abstract
The novel coronavirus disease (COVID-19) broke out worldwide in 2020. The purpose of this paper was to find out the impact of
migrant population on the epidemic, aiming to provide data support and suggestions for control measures in various epidemic
areas. Generalized additive model was utilized to model the relationship between migrant population and the cumulative number
of confirmed cases of COVID-19. The difference of spatial distribution was analyzed through spatial autocorrelation and hot spot
analysis. Generalized additive model demonstrated that the cumulative number of confirmed cases was positively correlated with
migration index and population density. The predictive results showed that, if no travel restrictions are imposed on the migrant
population as usual, this number of COVID-19 would have reached 27,483 (95% CI 16,074, 48,097; the actual number was
23,177). The increase in one city (Jian) would be 577.23% (95%CI 322.73%, 972.73%) compared with the real confirmed cases
of COVID-19. The average increase in 73 cities was 85.53% (95%CI 19.53%, 189.81%). Among the migration destinations, the
number of cases in cities of Hubei province, Chongqing, and Beijing was relatively high, and there were large-scale high-
prevalence clusters in eastern Hubei province. Without restrictions on migration, the high prevalence areas in Hubei province
and its surrounding areas will be further expanded. The reduced population mobility and population density can greatly slow
down the spread of the epidemic. All epidemic areas should suspend the transportation between cities, strictly control the
population travel, and decrease the population density, so as to reduce the spread of COVID-19.
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Introduction

In 2020, a novel coronavirus disease (COVID-19) epidemic
broke out in the world. This is a lung disease caused by novel
coronavirus (SARS-CoV-2). Its incubation is 1–14 days (pos-
sibly longer, up to 24 days (Guan et al. 2020)), with an aver-
age of 3–7 days. Respiratory droplets and close contact trans-
mission are the main transmission routes (fecal-oral transmis-
sion also exists (Wu et al. 2020c)). Themajority symptoms are
dry cough, fever, and fatigue (foundation et al. 2020; House
and Association 2020). Although the fatality rate is slightly
lower than that of SARS in 2003 (Cowling et al. 2006; Lau

et al. 2010; Wu et al. 2020a), the risk of patients suffering
from basic diseases and the elderly is higher than that of the
general population (Wu et al. 2020a). Moreover, COVID-19
is extremely infectious (Riou and Althaus 2020; To et al.
2020; Wu et al. 2020b; Yang et al. 2020a), and 44% of
human-to-human transmission may occur before symptoms
appear (He et al. 2020).

According to research findings, the epidemic may have
occurred in China by the end of 2019 (Li et al. 2020).
Although the place where the disease initially began to spread
is still unclear, it spread rapidly throughout China. As of
January 31, the total number of confirmed cases nationwide
had exceeded 10,000 (China 2020b).

On January 31, the World Health Organization (WHO)
officially listed the epidemic in China as a “public health
emergency of international concern (PHEIC).” Then, on
March 11, COVID-19 was identified as a “pandemic.” This
fully confirms the seriousness of the epidemic. Affected by the
epidemic, all provinces in China have started the first-level
response to the public health emergency, suspending or
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greatly reducing the transportation of passengers at the pro-
vincial and municipal levels, in order to reduce the personnel
travel. Schools, enterprises, and institutions have also
suspended work and postponed resumption of work.
Research by Zifeng Yang and other scholars illustrated that
Wuhan’s city closure measure can effectively slow down the
growth of confirmed cases of COVID-19 epidemic (Yang
et al. 2020b). Meanwhile, the article of Huaiyu Tian’s team
also confirmed the effectiveness of measures such as city clo-
sure, suspension of public transportation, and prohibition of
public gatherings (Tian et al. 2020).

This study hopes to find out the influence of migrant pop-
ulation on the number of confirmed cases of COVID-19 and
the changes in spatial distribution. Besides, according to the
prediction results and spatial analysis, epidemic prevention
suggestions were provided for the global epidemic areas in
terms of resuming work, personnel travel, etc., so as to control
the spread of the epidemic in the world at an early date.

Methods

Data sources

Samples of cumulative confirmed cases of COVID-19 came
from websites of the Health Commissions of all provinces in
China (China 2020a). The migration data of relevant population
(mainly covering the cities’ migration in Hubei province) were
extracted from Baidu migration data platform (Maps 2020).
Data on population density were collected from statistical year-
books and bulletins of provinces and cities (Statistics 2020).

Migration and COVID-19 data

As the epidemic focus of this outbreak in China, Wuhan city
was blockaded on January 23, 2020. According to this, the
time range of migration data (model fitting part) in this study
was set to January 1–23, 2020. We use these data to learn a
generalized additive model (GAM). From January 23 to
February 29, since the city was blockaded, we used the mi-
gration data of the last year to predict the number of confirmed
cases of COVID-19 and then we compared the predicted num-
bers with the real numbers.

Migration data from December 29, 2018, to February 7,
2019, of the lunar year (consistent with the date of 2020 lunar
year, i.e., January 23 to February 29, 2020, solar year) was
included as the forecast. Baidu migration data platform pro-
vided migrant population (%) and emigration index for each
city. Migrant population refers to the scale of migration
flowing from epidemic area to destination during January 1–
23, which is recorded in the form of percentage. Emigration
index reflects the daily outflow intensity of population in dif-
ferent cities and can be used for horizontal comparison

between cities (Maps 2020). Then, we define a variable called
migration index (MI). The migration index (MI) reflects the
scale of migrant population from one city to another (i.e., MI
of city B indicates the scale of migrants from epidemic area A
to city B), and all cities have migration indexes corresponding
to one specific city. The formula for calculating the migration
index variable of each city is as follows:

MI of city ¼ Migrant population %ð Þ
� ∑23

n¼1Emigration indexn

where n is the date (i.e., n = 1 represents January 1).
Since nearly 70% of the population (mean 66.75%) moved

out of Wuhan to other cities in Hubei province, those cities’
data with the migrant population value of greater than 3%
were also included in the analysis (a total of 9 cities in
Hubei province, accounting for 56.57% ofWuhan’s migration
population). Based on the migration destination of Wuhan, 75
cities were selected from the top 100 cities with the largest
migrant population after matching (selecting the migrant des-
tination cities shared by the above 9 cities). The specific list of
cities was presented in Appendix A.

The incubation period of the COVID-19 is usually 1–14
days. In order to cover all cases affected by migration as fully
as possible, the cumulative confirmed cases on February 6 (14
days apart from the Wuhan travel ban) were included in this
study. This part of the data corresponded to MI dataset from
January 1 to 23 and was used to learn the GAM model to
evaluate the impact of migrant population, with a total of
16,094 cases, covering 75 cities. The data used in the compar-
ative analysis of the prediction part were the cumulative num-
ber of confirmed cases in each city as of 24:00 on March 14,
totaling 23,177 cases.

Other data

The urban travel intensity (UTI) refers to the exponentiation
result of the ratio of the number of travelers (within one day)
to the resident population in the city. The model’s fitting part
was the sum of the data from January 1 to 23 (unit: city).
Subsequent data (up to the end of February) were used as
the construction variables for the prediction part. In view of
the population density (PD), considering the influence of the
Chinese Spring Festival custom, and in order to reduce the
bias as much as possible, the census register population was
utilized to fit the model, and the prediction part used the data
of the resident population after resuming work.

Statistical analysis

In this study, R software was used for analysis and model-
ing. Generalized additive model was utilized to model the
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relationship between migrant population and the cumula-
tive number of confirmed cases of COVID-19. Meanwhile,
the difference of spatial distribution was analyzed through
spatial autocorrelation and hot spot analysis in ArcGIS
10.2 software, and maps were drawn. A probability level
of p < 0.05 represented the result with statistical
significance.

GAM model

GAM was used in this study to study the relationship be-
tween the cumulative number of confirmed cases of
COVID-19 and the migration data. Its principle is to min-
imize residual while maximizing simplicity. Some or all of
the independent variables in the regression model adopt
(spline) smoothing function to reduce the model risk
caused by linear settings (Chiang 2007; Venables and
Dichmont 2004; Wood and Augustin 2002). Because MI
refers to migrants who have moved to other cities, there is
no data representing migrants in their own cities; so, some
variables (such as MI dataset of Xiaogan City) have miss-
ing data. Considering comprehensively, after transforming
variables to a certain extent (through normal transforma-
tion), we used both Lasso and stepwise regression
(backward) to screen a total of 12 variables (urban travel
intensity (UTI), PD, Wuhan MI, and the MI of the other 9
cities mentioned above). By combining with the two re-
sults and the goodness of fit of the selected variables into
the model, five variables were finally incorporated into
GAM model, namely, Wuhan migration index (WhMI),
Xiangyang migration index (XyMI), Huangshi migration
index (HsMI), urban travel intensity (UTI), and population
density (PD). The formula of the GAM model is:

Log Cumulative confirmed cases of COVID−19ð Þ∼s WhMIð Þ−0:33
� �

þ XyMIð Þ−0:12 þ s HsMIð Þ−0:33
� �

þ s UTIð Þ5:22
� �

þ s Log PDð Þð Þ

where s( ) denotes a (spline) smooth transformation func-
tion, which is used to help set up a model using spline
based smooths. We applied the above model and used the
code “predict.gam” in R software to predict the cumulative
number of regional confirmed cases.

Spatial analysis

ArcGIS software undertook the spatial analysis part of this
study. The natural breaks (Jenks) method was used in the
grading of the migrant population map (Chen et al. 2013).
Spatial autocorrelation and hot spot analysis methods were
applied to analyze the regional differences of confirmed cases.

Spatial autocorrelation (Global Moran’s I) is a method to
judge whether there is spatial aggregation of data. When data

tends to cluster spatially (high-value clustering or low-value
clustering), Moran’s I index will be positive and vice versa
(ESRI 2018b).

Hot spot analysis method is to calculate Getis-Ord Gi*
statistics for each element in the dataset. Through the ob-
tained z-score and p-value, it can be judged where features
with either high or low values cluster spatially. When an
element has a high value and is surrounded by other adja-
cent high-value features, the local sum for the feature and
its neighbors is calculated. If this is so different from the
expected local sum that it cannot be randomly generated, a
statistically significant z-score will be produced. For statis-
tically significant positive z-scores, the larger the z-score
is, the more intense the clustering of high values (hot spot),
and the smaller the z-score is, the more intense the cluster-
ing of low values (cold spot) (ESRI 2018a).

The Getis-Ord local statistic is given as:

G*
i ¼

∑n
j¼1wi; jx j−X∑n

j¼1wi; j

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n∑n

j¼1w
2
i; j− ∑n

j¼1wi; j

� �h i

n−1

s

where xj is the attribute value for feature j, wi, j is the spatial
weight between features i and j , and:

X ¼ ∑n
j¼1x j
n

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

j¼1x
2
j

n
− X
� �2

s

Results

Epidemiological characteristics

The sample of this study was from the data of confirmed cases
of COVID-19 shared by China in 2020. Statistics were made
on two time nodes, respectively: the cumulative numbers of
confirmed cases on February 6 and March 14. As of February
6, the cumulative number of confirmed cases in China has
reached 31,161.

According to the spatial distribution map of the epidemic
situation in the whole country (Fig. 1), the cumulative number
of confirmed cases in Hubei province was much higher than
that in other provinces and cities. Especially, Wuhan, the cap-
ital city of Hubei province has the most cumulative number of
confirmed cases (up to 11,618 cases, accounting for 37.28%
of the whole cumulative confirmed cases in China). In addi-
tion, the cumulative numbers of confirmed cases in Beijing,
Chongqing, and some coastal areas of Zhejiang and
Guangdong provinces were relatively high. The results of
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spatial analysis demonstrated that, as of February 6, the cu-
mulative numbers of confirmed cases were aggregated in spa-
tial distribution (Moran’s I Index = 0.07, z-score = 9.60, p-
value = 0.000). Further hot spot analysis confirmed it: most of

Hubei province and its neighbors (Henan, Anhui, Jiangsu, and
parts of Hunan) were areas with high prevalence of COVID-
19, and the degree of aggregation was extremely high. The
results were shown in Fig. 2.

Fig. 1 Spatial distribution of
cumulative confirmed cases of
coronavirus disease (COVID-19)
in China (February 6)

Fig. 2 Spatial aggregation of
cumulative confirmed cases of
Coronavirus Disease (COVID-
19) in China (February 6)
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Migration characteristics

Statistics from Baidu Migration Data Platform showed that
Wuhan’s emigration index on the 21st–23rd was much higher
than that of the same period last year (up 23.31%, 23.33%, and
20.82%, respectively). Meanwhile, after travel restrictions, the
emigration index dropped significantly. The emigration

indexes of Wuhan, Xiangyang, and Huangshi were shown in
Fig. 3. Among the many migration destinations, about 70% of
the population were destined for other cities in Hubei prov-
ince. The migration situation of each region can be found in
Fig. 4.

From the perspective of city level, Wuhan’s migration des-
tinations (75 cities covered by the model) were also mostly

Fig. 3 Trends of emigration
index in 2019 and 2020

Fig. 4 Destination of Wuhan’s migrants (provincial level)
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Fig. 5 Major destination of
Wuhan’s migrants (city level)

Fig. 6 Major destination of
Xiangyang’s migrants (city level)
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cities in Hubei province. Besides, Beijing and Chongqing also
had a large scale of immigrants. Xiangyang’s main migration
destinations were concentrated in the northern part of Hubei
province and the southern part of Henan, while that of
Huangshi were mainly located in the eastern part of Hubei
and the areas bordering Jiangxi province. The results were
shown in Figs. 5, 6, and 7.

GAM model

In this study, the cumulative confirmed cases in Wuhan’s main
migration destination were selected for analysis (16,094 cases,
covering 51.65%). The model fitting results (Tables 1 and 2)
illustrated that the cumulative number of confirmed cases of
COVID-19 was correlated with the migrant population
(Wuhan, Xiangyang, and Huangshi) and regional population

density (R2
adj ¼ 0:873, deviance explained = 89.6%, GCV =

0.198), and the correlation was statistically significant.

Figure 8 demonstrated the nonlinear (or linear) relationship
between variables and the cumulative number of confirmed
cases (please note that the variables WhMI, XyMI, and HsMI
were all transformed to negative power): overall, there were
concomitant upward trends between WhMI, HsMI, PD, and
the cumulative number of regional confirmed cases. Among
them, Wuhan and Huangshi rose in the curve. In the early
stage of population migration in Wuhan, the cumulative num-
ber of cases caused by the expansion of migration scale was
still relatively slow to rise, but when the migration scale con-
tinued to expand, the cumulative number of confirmed cases
would increase dramatically. However, the result in Huangshi
was just the opposite, and its early rising trend was higher than
that in the later period. Furthermore, XyMI (Table 1) and PD
were also positively associated with the cumulative number of
confirmed cases.

Fig. 7 Major destination of
Huangshi’s migrants (city level)

Table 1 Parametric coefficients of GAM model

Variables Estimate Std. error t-value p-
value

Intercept 6.270 0.589 10.644 0.000

(XyMI)−0.12 −2.170 0.737 −2.945 0.005

Table 2 Approximate significance of GAM model smooth terms

Variables edf Ref. df F p-
value

s((WhMI)−0.33) 4.611 5.572 5.528 0.000

s((HsMI)−0.33) 5.337 6.416 8.391 0.000

s((UTI)5.22) 1 1 1.227 0.273

s(Log(PD)) 1 1 7.332 0.009
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Predictive analysis

We adjusted the five independent variables included in the
model and calculated the cumulative number of predicted
cases in 73 cities (Xiangyang and Huangshi cannot be predict-
ed without their own MI). The predictive results showed that
the total cumulative number of confirmed cases of COVID-19
would have reached 27,483 (95% CI 16 074, 48 097) due to
the population movement after returning to work (the actual

number was 23,177). The average increase in 73 cities was
85.53% (95% CI 19.53%, 189.81%), while the highest in-
crease (Jian City, Jiangxi province) reached 577.23% (95%
CI 322.73%, 972.73%). The spatial aggregation range of ep-
idemic in the surrounding areas of Hubei province was most
prominent (Figs. 9 and 10).

Comparing the spatial distribution difference between the
predicted cases and the actual confirmed cases, we found that
the epidemic in some major areas will be further aggravated if

Fig. 8 Smooth function in GAM model

Fig. 9 Differences in spatial distribution of predicted cases of coronavirus disease (COVID-19) in China (March 14)
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normal work is resumed without taking corresponding restric-
tive measures. A total of 64 cities (about 87.67%) will see the
increase in the cumulative number of confirmed cases (deeper
marker color), and values will be much higher than those for
the same period on March 14.

Discussion

The international pandemic was very severe. As of March 31,
the cumulative number of confirmed cases of COVID-19
worldwide has exceeded 750,000. This number increased from
10,000 to 670,000, the process that took only 27 days, and the
growth rate was extremely frightening. The control measures
and intensity adopted by the government in response to the
epidemic are crucial to prevent the epidemic from spreading
further. The relief of the epidemic in China just reflects the
effectiveness of the intervention measures (Yang et al. 2020b).

In this study, GAM model was used to model and predict
the major population movements and the cumulative number
of confirmed cases. Combined with the spatial distribution
map of the epidemic and migration, the relationship between
the two was clearly and accurately expounded (Deviance ex-
plained reached 89.6%). The expansion of migrant population
scale in major cities which related to the epidemic focus (or
severely affected areas) was the main incentive for the in-
crease in the number of regional confirmed cases. The forecast
results revealed that the total cumulative number of confirmed
cases in 73 cities will increase by 85.53% (95% CI 19.53%,
189.81%) if restrictions on population movement are not
adopted and work is resumed in advance. Meanwhile, the
scope of the “hardest hit areas” will be further expanded (in

mid-March). During the epidemic period, China implemented
effective prevention and control measures such as postponing
the resumption of work and suspending classes, have reduced
the travel and concentration of people, and have greatly
curbed the increase and spread of the cumulative number of
confirmed cases. A recent study published in the Science also
confirms this conclusion (Tian et al. 2020). Furthermore, the
results also confirmed the negative impact of population den-
sity on the development of the epidemic. This should also be
given priority attention. Interventions such as quarantine,
school closure, and workplace distancing that can urge people
to keep a distance between people can effectively block the
spread of the virus (Koo et al. 2020; Wu et al. 2020a).

Although the abovementioned intervention measures may
lead to unemployment or other problems and bring great im-
pact to the national or regional economy, they are still very
effective, and the benefits will outweigh the losses. If the
spread of SARS-CoV-2 is allowed to proceed without inter-
vention, the negative impact of the spread will further aggra-
vate the economic recession. We hoped that all countries will
pay more attention and adopt strict intervention measures
(e.g., mandatory wearing of masks, suspension of intercity
traffic in affected areas, postponement of the start of school,
and the resumption of work), rather than just giving “advice”
(Zhang et al. 2020a).

It is worth noting that many countries prohibit unnecessary
travel but allow activities such as walking pets. A recent study
pointed out that cats were also infected (Zhang et al. 2020b). In
spite of the fact that there is no clear basis for human-animal
transmission, it is still necessary to be vigilant about the poten-
tial risk of transmission through pets and the movement of
people caused by walking pets. The interactions that exist have

Fig. 10 Spatial aggregation differences of predicted cases of coronavirus disease (COVID-19) in China (March 14)
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yet to be further validated. In addition, asymptomatic infected
persons have been continuously detected recently. Countries
should also attach great importance to the risks posed by the
movement of such people (Hu et al. 2020; Qiu 2020).

Limited by the data, the migrant population data of each
city involved in this research model was in the form of “pro-
portion,” and the specific population number cannot be
known, and the migration data of cities can only be obtained
to top 100, which may have some influence on the accuracy of
the research results.

Conclusion

The reduced population mobility and population density have
positive effects on slowing down the spread of the epidemic.
In conclusion, we strongly recommend that other countries
learn from China’s experience, suspend the transportation be-
tween cities, comprehensively and strictly control the popula-
tion travel, and decrease the population density, so as to re-
duce the spread of diseases.
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