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Abstract

The processing of information conveyed by faces is a critical component of social communication. 

While the neurophysiology of processing upright faces has been studied extensively in autism 

spectrum disorder (ASD), less is known about the neurophysiological abnormalities associated 

with processing inverted faces in ASD. We used magnetoencephalography (MEG) to study both 

long-range and local functional connectivity, with the latter assessed using local cross-frequency 

coupling, in response to inverted faces stimuli, in 7–18 years old individuals with ASD and age 

and IQ matched typically developing (TD) individuals. We found abnormally reduced coupling 

between the phase of the alpha rhythm and the amplitude of the gamma rhythm in the fusiform 

face area (FFA) in response to inverted faces, as well as reduced long-range functional 

connectivity between the FFA and the inferior frontal gyrus (IFG) in response to inverted faces in 

the ASD group. These group differences were absent in response to upright faces. The magnitude 

of functional connectivity between the FFA and the IFG was significantly correlated with the 

severity of ASD, and FFA-IFG long-range functional connectivity increased with age in TD group, 

but not in the ASD group. Our findings suggest that both local and long-range functional 

connectivity are abnormally reduced in children with ASD when processing inverted faces, and 

that the pattern of abnormalities associated with the processing of inverted faces differs from the 
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pattern of upright faces in ASD, likely due to the presumed greater reliance on top-down 

regulations necessary for efficient processing of inverted faces.

Lay Summary:

We found alterations in the neurophysiological responses to inverted faces in children with ASD, 

that were not reflected in the evoked responses, and were not observed in the responses to upright 

faces. These alterations included reduced local functional connectivity in the fusiform face area 

(FFA), and decreased long-range alpha-band modulated functional connectivity between the FFA 

and the left IFG. The magnitude of long-range functional connectivity between the FFA and the 

inferior frontal gyrus was correlated with the severity of ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 

impairments in communication, social interactions and repetitive behaviors and restricted 

interests (American Psychiatric Association, 2013). The processing of information conveyed 

by faces is a critical component of social communication, and the outstanding ability to 

process facial information by the human brain is supported by a specialized face processing 

system that includes the right fusiform face area (FFA; Haxby & Gobbini, 2011; Kanwisher 

& Yovel, 2006). Given its importance to social communication, many groups have 

investigated face processing in ASD. While results are somewhat mixed, overall, at least at 

the neural level, many face-processing related abnormalities have been documented in ASD 

(Campatelli, Federico, Apicella, Sicca, & Muratori, 2013; Harms, Martin, & Wallace, 2010; 

Jemel, Mottron, & Dawson, 2006; Weigelt, Koldewyn, & Kanwisher, 2012; Wright et al., 

2012). To date, the vast majority of neuroimaging research on face-processing abnormalities 

in ASD has focused on the processing of upright faces, and relatively few groups have 

looked at processing of inverted faces in ASD.

The neurophysiological responses to inverted faces are of interest at least in part due to their 

relevance to the face-inversion effect (FIE). The FIE refers to the observation that while 

inversion disrupts the recognition of all objects, face inversion produces a greater 

impairment in face recognition than the impairment produced by the inversion of other 

images (Bruyer, 2011; Yin, 1969). Early behavioral findings on the FIE in ASD indicated a 

reduced FIE (Gauthier, Klaiman, & Schultz, 2009; Teunisse & De Gelder, 2003), but more 

recent studies found no evidence of consistent differences in FIE between ASD and typically 

developing (TD) individuals but more recent studies found no evidence of consistent 

differences in FIE between ASD and typically developing (TD) individuals (Tang et al., 

2015; Tavares, Mouga, Oliveira, & Castelo-Branco, 2016; Weigelt et al., 2012). Given the 

somewhat inconsistent findings, the FIE has not garnered significant attention in studies of 

ASD. Perhaps due to that, the neurophysiology associated with the processing of inverted 

faces in ASD has been investigated only using a fairly narrow set of neuroimaging measures, 
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and thus little is known about abnormalities associated with the processing of inverted faces 

in ASD. Previous studies on the neurophysiology of responses to inverted faces in ASD have 

reported no differences in averaged cortical evoked responses for upright versus inverted 

faces (Grice et al., 2001; Khadem, Hossein-Zadeh, & Khorrami, 2016). That said, we have 

previously shown the more intricate aspects of the neurophysiology underlying ASD can be 

abnormal even in the presence of seemingly normal evoked responses; more specifically, we 

have shown that local functional connectivity is abnormal in ASD, even when evoked 

responses in the FFA elicited by upright faces showed no group differences (Khan et al., 

2013; Mamashli et al., 2018), and when evoked responses in the somatosensory cortex 

elicited by a vibrotactile stimulus applied to the fingertip showed no group differences (e.g., 

Khan et al., 2015). Whether similar neurophysiological abnormalities manifest in ASD also 

during the processing of inverted faces has not been investigated.

Gaining a deeper understanding into the neurophysiology of responses to inverted faces 

ASD is particularly interesting given the evidence that the neurophysiological mechanisms 

underlying the processing of inverted faces are related to top-down regulation of face 

perception (Papathomas & Bono, 2004). There is substantial evidence of abnormalities in 

top-down processing in ASD generally (Cook, Barbalat, & Blakemore, 2012; Frith, 2004; 

Gomot & Wicker, 2012; Khan et al., 2015; Mamashli et al., 2017; Neumann, Spezio, Piven, 

& Adolphs, 2006; Seymour, Rippon, Gooding-Williams, Schoffelen, & Kessler, 2019; Sinha 

et al., 2014), and during face processing particularly (Leung, Ye, Wong, Taylor, & Doesburg, 

2014; Loth, Gómez, & Happé, 2010). Thus, investigation of the neurophysiology underlying 

inverted face processing in ASD could also shed light on top-down regulation abnormalities 

in ASD more generally.

Here, we used magnetoencephalography (MEG) to explore neurophysiological measures not 

previously used when analyzing neurophysiological responses to inverted face in ASD. In 

our prior studies on the processing of upright faces in children and adolescents with ASD, 

we found that local functional connectivity in the FFA and long range functional 

connectivity between the FFA and cortical areas involved in top-down regulation were all 

abnormally reduced in adolescents and young adults with ASD (Khan et al., 2013), but not 

in children with ASD (Mamashli et al., 2018). Accounting for this discrepancy, we found 

differences in the maturation trajectories of these local and long-range functional 

connectivity measures in the ASD group relative to the TD group (Mamashli et al., 2018). 

At the same time, the evoked responses elicited by the same stimuli, measured as the 

averaged amplitude of the response over the FFA relative to stimulus onset, and in particular 

spanning the M170 component of the evoked response, were similar between the TD and 

ASD groups, irrespective of age. Given these prior findings, we hypothesized that we would 

again find no group differences in the amplitudes of the evoked responses elicited by 

inverted faces stimuli within the FFA. In parallel, given that we previously found unaltered 

local functional connectivity in response to upright faces, measured using phase-amplitude 

coupling, within the FFA in the same ASD cohort as the current study (Mamashli et al., 

2018), and given that there is no evidence of the role of phase-amplitude coupling for 

processing inverted faces, we hypothesized we will again find this measure unaltered in 

ASD. Lastly, there is evidence of abnormal top down processing of inverted faces in children 

with ASD (Bookheimer, Wang, Scott, Sigman, & Dapretto, 2008) and abnormal top-down 
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processing in ASD in response to faces more generally (Leung et al., 2014; Loth et al., 

2010). In parallel, there is evidence of greater reliance on top down processing for inverted 

faces generally (Fan, Wang, Shao, Zhang, & He, 2020; O’Neil, Hutchison, McLean, & 

Köhler, 2014; Papathomas & Bono, 2004), alongside evidence of abnormal top-down 

processing in ASD more generally (Cook et al., 2012; Frith, 2004; Gomot & Wicker, 2012; 

Khan et al., 2015; Mamashli et al., 2017; Neumann et al., 2006; Seymour et al., 2019; Sinha 

et al., 2014). Based on these studies, we hypothesized that due to increased or differential 

recruitment of top-down modulation for processing inverted faces relative to upright faces, 

we would observe reduced top-down regulation of the FFA, expressed as decreased 

functional connectivity between frontal areas and the FFA in ASD.

Lastly, we hypothesized that, as in our prior study, we would once again observe a less 

pronounced maturational trajectory for processing inverted faces in ASD. We studied these 

measures in the same participants as in our prior study (Mamashli et al., 2018), which 

allowed us to directly compare cortical responses to upright neutral faces with cortical 

responses to inverted neutral faces.

METHODS

Participants

Participants were 21 children with ASD, and 27 typically developing (TD) children, aged 7–

18 years. The ASD and TD groups were matched for age, and verbal and nonverbal IQ, as 

measured with the Kaufman Brief Intelligence test (Kaufman & Kaufman, 2004), 

summarized in Table 1. All Participants were right-handed and had normal or corrected-to-

normal vision. All ASD participants had received a clinical diagnosis of ASD prior to the 

study. In addition, parents completed the Social Communication Questionnaire, Lifetime 

version (Constantino & Gruber, 2005; Rutter, Bailey, & Lord, 2003) and were administered 

the Autism Diagnostic Observation Schedule (ADOS-2; Gotham, Risi, Pickles, & Lord, 

2007; Hus & Lord, 2014; Lord, Rutter, DiLavore, & Risi, 2008) by trained research 

personnel to confirm the diagnosis. Final determination of diagnosis for all borderline cases 

was confirmed by Dr. Joseph, a licensed clinician and ADOS certified trainer. Participants 

with related medical conditions (e.g., Fragile-X syndrome, tuberous sclerosis) were not 

included in the study. Parent reports were used to further rule out neurological conditions 

such as epilepsy, major psychiatric episodes, and substance use over the 6 months prior to 

enrollment.

Ethical considerations

This study was approved by MGH institutional review board and informed written consent 

was obtained for every participant and their parents or guardians.

Experimental paradigm

During MEG data collection, participants were presented with pictures of upright neutral, 

angry, or fearful adult faces (both male and female), pictures of inverted neutral faces, and 

pictures of houses, in a randomized order. The fearful and angry faces conditions are not 

included in the present analyses, which focus exclusively on the neutral upright and inverted 
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faces conditions, and the houses condition. We focused only on the neutral upright faces for 

this study, because the inverted faces stimuli were also neutral – the same as the upright 

faces, only inverted. Moreover, the alterations in neural processing of emotional faces in the 

same cohort was extensively investigated in our previous study (Mamashli et al., 2018). 

Thus, in this study we analyzed only three stimulus categories from the paradigm described 

above: houses (at least 150 trial), upright neutral faces (at least 150 trial) and inverted neutral 

faces (at least 150 trial), as shown schematically in Figure 1. The number of trials per 

participant per condition ranged from 47 to 156, with no significant differences in the total 

number of trials per subject between groups, as confirmed by a two-tail t-test (p = 0.18). 

Note that only four participants in the ASD group and two in the TD group had fewer than 

100 trials per condition.

Each stimulus was displayed on the screen for 1 s followed by intertrial period (fixation 

cross) for 1 s. The participants were asked to press a button if the same face appeared 

successively on the screen to ensure attention to the stimuli. Repeat trials were excluded 

from the analyses. All participants performed at ceiling level on the task. The experiment 

was broken into 3 runs, each consisting of 50 trials of each stimulus category, where each 

run lasted about 8 min. The face stimuli were obtained from three datasets: Karolinska 

Directed Emotional Faces (KDEF; Lundqvist, Flykt, & Ohman, 1998), NimStim Face 

Stimulus Set (Tottenham et al., 2009), and Gur (Gur et al., 2002). The house stimuli were 

shared by the Kanwisher Laboratory database at the Massachusetts Institute of Technology. 

An oval black mask was used to equalize brightness and contrast of the images. The 

paradigm was written and presented using psychophysics toolbox (Brainard, 1997; Pelli, 

1997). Stimuli were presented with a projector onto a back-projection screen placed 100 cm 

in front of the participant. Participants were given a MEG compatible response pad and 

instructed to click the response button with their index finger whenever they see the same 

stimulus repeating (~10% of trials).

Data acquisition

MEG data were collected using a whole-head VectorView MEG system (MEGIN Oy, 

Finland) inside a magnetically shielded room (IMEDCO). The data were band-passed 

filtered between 0.1 and 200 Hz and sampled at 600 Hz. Four head position indicator coils 

(Uutela, Taulu, & Hämäläinen, 2001) were used to record continuous head position and 

orientation inside the MEG dewar. Prior to the MEG data collection, head shape of the 

participant, the locations of three fiduciary points (nasion and left and right auricular points), 

and the four head position indicator coils were digitized using a Fastrak digitizer 

(Polhemus). This procedure ensured the possibility of the MEG and MRI data co-

registration. EOG and ECG electrodes were used to collect signals of ocular and cardiac 

origin. Real-time averaging of trials without artifacts were used to monitor data quality 

during acquisition. Additionally, 5 min of empty room data were collected immediately 

before or immediately after each experimental session, for noise estimation purposes.

Structural MRIs were collected using a 32-channel head coil on a 3.0 T Siemens Trio whole-

body MRI scanner (Siemens Medical Systems, Erlangen, Germany) with T1-weighted, high-

resolution, magnetization-prepared rapid acquisition gradient-echo (MPRAGE). These data 

Mamashli et al. Page 5

Autism Res. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were processed with Freesurfer to yield cortical reconstruction and parcellations of 

participants (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999). The cortical 

surface of each hemisphere (~130,000 vertices) was inflated to expose the sulci for better 

visualization (Dale et al., 1999).

MEG data preprocessing

To supress noise produced by external sources, as well as to correct for head motion within 

and between runs, MEG data were spatially filtered using signal space separation method (S. 

Taulu & Simola, 2006; Samu Taulu, Kajola, & Simola, 2004). Note that there was also no 

significant difference in head motion between the two groups. Signal space projection was 

employed to remove ocular and cardiac artifacts (Gramfort et al., 2014). Subsequently, the 

data were bandpassed at 0.1–140 Hz. The data were then split into 1600 ms epochs (400 ms 

before and 1200 ms after stimulus onset). Epochs with peak-to-peak amplitude above 1000 

fT/cm in any of the gradiometers and above 3000 fT in any of magnetometer sensors were 

excluded from further analysis.

MEG source estimation

We reconstructed the geometry of the cortical surface for each participant based on their T1-

weighted MRIs using Freesurfer (Fischl, Sereno, & Dale, 1999). In source estimation, 

10,242 approximately equally spaced locations on each cortical hemisphere were used as 

candidate locations of the cortical dipole sources. A single-compartment boundary-element 

model (BEM) was used to construct the MEG gain matrix (Hamalainen & Sarvas, 1987; 

Uutela et al., 2001). The inner skull surface triangulations were generated based on each 

participant’s structural MR images using the watershed algorithm. Minimum-norm estimate 

(MNE) software was used to estimate the cortical current distributions (http://

www.martinos.org/mne). The orientation of the dipoles was fixed to be perpendicular to the 

cortical surface. Empty room data were used to compute the noise covariance matrix 

necessary for inverse operator calculation. In order to minimize the bias of the MNEs 

towards superficial currents, depth weighting was applied (Lin, Belliveau, Dale, & 

Hämäläinen, 2006). Subsequently, each participant’s inflated cortical surface was registered 

to an average cortical representation (FsAverage in Freesurfer).

Delineation of the FFA and evoked responses

The FFA is defined as the area within the right fusiform gyrus where evoked responses to 

faces are significantly larger than evoked responses to other stimuli. We used the individual 

Freesurfer anatomical parcellation to identify the right hemisphere fusiform gyrus in each 

participant. To then investigate evoked responses, the data were filtered from 0.5 to 40 Hz 

and epoched from 200 ms before and 500 ms after the stimulus onset. Evoked responses 

were computed as the total amplitude of this filtered response, irrespective of frequency, at 

each time point in that window, relative to stimulus onset. Vertex-by-vertex statistical 

analysis of the evoked response to emotional faces versus the response to evoked houses was 

used to delineate the FFA. We used a paired t-test (df = 49) to compare the evoked responses 

to emotional faces with the evoked responses to houses across epochs in each participant. 

Subsequent t-values were projected to the cortical surface and FFA boundaries were 

manually delineated based on spatial location of highest t-values. Three Partial Least 
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Squares (PLS) analyses (Krishnan, Williams, McIntosh, & Abdi, 2011; McIntosh & 

Lobaugh, 2004) were run to test for group differences in evoked responses in the FFA to 

inverted faces, to houses, and the difference between responses to inverted versus upright 

faces. For all evoked responses comparisons between groups or between conditions, 100–

250 ms was used as time window of interest. For both conditions (inverted faces and houses) 

spectral power was estimated for the time period from 0 to 500 ms for alpha and gamma 

frequency bands (7–13 Hz and 35–120 Hz, respectively), similarly to our prior study on this 

cohort (Mamashli et al., 2018). The normalized power for each frequency band was 

computed as subtraction of power during viewing houses, from power during viewing 

inverted faces and compared between groups using two separate PLS analyses.

Phase amplitude coupling computation in the FFA

Artifact cleaned data filtered from 0.1 to 144 Hz were used to compute PAC. After applying 

the inverse operator, the data were mapped to the FFA for each participant resulting in 2D 

matrix (vertices × time). We used the Modulation index (MI) approach, a statistical score 

that estimates the coupling between two time series, to quantify PAC between alpha (7–13 

Hz) phase and gamma (35–120 Hz) amplitude for each voxel as in Mamashli et al., (2018). 

For each vertex in FFA, the phase was calculated separately for frequency bins from 7 to 13 

Hz with 1 Hz steps, and amplitude was estimated for frequencies from 35 to 120 Hz, in 10 

Hz steps. Hilbert transformation was used to extract instantaneous phase and amplitude of 

the signal. To avoid artifacts caused by edge effects, filtering and Hilbert transformation 

were carried out on continuous data, which then was epoched. Each epoch length was equal 

to 1000 ms starting with stimulus onset. To eliminate spurious PAC due to sharp edges in the 

data, all epochs were concatenated into one vector per voxel (Mamashli et al., 2018). We 

estimated PAC for both inverted faces and houses (PAC was the other conditions was 

estimated as part of our prior studies). The normalized PAC was then calculated by 

subtracting PAC during viewing of houses, from PAC during viewing of inverted faces.

Z-coherence between the FFA and IFG, ACC, and precuneus

The three ROIs that showed abnormal coherence in alpha band (8–12 Hz) with the FFA in 

the ASD group in our prior studies, the IFG, ACC, and precuneus in left hemisphere, were 

selected in this study, in accordance with the ROIs identified in our prior studies (Khan et 

al., 2013; Mamashli et al., 2018). We also considered their smaller sub-ROIs (nine sub-ROIs 

of IFG, four sub-ROIs of ACC, 11 sub-ROIs of precuneus), for the purposes of computing 

coherence, to increase the signal-to-noise ratio (Mamashli, Khan, Obleser, Friederici, & 

Maess, 2019). The sub-ROIs were delineated from Freesurfer parcellation using an 

automatic routine (mris_divide_parcellation) available in the Freesurfer package (equal size 

principle) to break each large ROI into smaller equal size sub-ROIs; that is, all sub-ROIs in 

all ROIs were of approximately the same size—thereby increasing the spatial specificity for 

further connectivity analysis. The location of sub-ROIs for each ROIs is shown on Figure 3a. 

Signals from each sub-ROI and from the FFA underwent a time-frequency decomposition 

using complex Morlet wavelets. We computed coherence between FFA and the sub-ROIs of 

IFG, ACC and precuneus for inverted faces (principal condition) and houses (baseline 

condition). Subsequently, Z-Coherence were calculated by normalizing the principal 

condition coherence values by the baseline condition for the purpose of eliminating a 
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statistical bias caused by the non-Gaussian distribution of coherence values and unequal 

sample sizes (Maris & Oostenveld, 2007).

Statistical analysis of between group differences

To test for group differences in evoked responses, normalized PAC, and Z-coherence, we 

used mean-centered Partial Least Squares (PLS) analysis (Krishnan et al., 2011; McIntosh & 

Lobaugh, 2004). PLS is a multivariate nonparametric statistical approach for testing the 

significance of differences between groups or conditions. Mathematically it is based on 

singular value decomposition of the data in order to extract latent variables which account 

for the variance in the data (Lobaugh, West, & McIntosh, 2001). Subsequent global test 

based on random permutations of subjects between groups results in one p value for each 

latent variable that indicates the significance of group differences. Note that by using this 

permutations based approach, we generated a null distribution of p values based on the data, 

thus eliminating the need to assume the data follow a normal distribution. Each latent 

variable captures all data features at once, thus avoiding the need for separate tests for each 

data feature, and thereby addressing the multiple comparison problems. To investigate the 

contribution of each data feature to group differences the series of bootstrapping is 

performed. As a result, each data feature is assigned with a bootstrap ratio value that also 

can be referred to as a PLS z-score. The data features (e.g., frequency bins in case of PAC 

comparison or timepoints in case of ERF comparison) with the highest absolute PLS z-score 

are the ones where the group differences are the most robust. In this article, we use the PLS 

z-score threshold of 3 and −3 as it approximately corresponds to the limits of the 99% 

confidence interval (Krishnan et al., 2011; McIntosh & Lobaugh, 2004).

Three PLS analyses were used to compare evoked responses between groups for inverted 

faces and houses conditions, each separately, and the difference between inverted and up-

right neutral faces in the time window of 100–250 ms following stimulus onset. One PLS 

analysis was performed to test for group differences in normalized PAC within the FFA, for 

the frequency range 35–120 Hz. Two PLS analyses were run to compare normalized spectral 

power of alpha (7–13 Hz) and gamma frequency (35–120 Hz) in the 0–500 ms time window, 

to ensure that PAC results were not caused by differences in power. Three additional PLS 

analyses were carried out to compare Z-coherence between FFA and sub-ROIs of IFG, ACC 

and precuneus, for the frequency range of 8–12 Hz averaged across 100–250 ms after 

stimulus onset. For all of our PLS analysis, we used 5000 permutations and 5000 

bootstrapping series.

Association between PAC and Z-coherence

To test for a significant correlation between the magnitude of normalized PAC in right FFA 

and the magnitude of Z-coherence in the alpha band between the right FFA and the left IFG, 

both in response to inverted faces, we used a one-tailed Pearson correlation. To that end, we 

normalized PAC in frequencies where group differences were the strongest (PLS z-score ≥ 

3) and averaged Z-coherence in frequencies and sub-ROIs with PLS z-score ≥ 3.
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Association with age and ASD symptoms severity

To investigate the association between normalized PAC and age and ASD symptom severity, 

we focused on the frequencies where group differences were the strongest (PLS z-score ≥3). 

Normalized PAC values in the frequencies that exceeded that threshold were averaged, and 

the one-tailed Pearson’s correlation with age (in both the TD and the ASD groups) or 

symptom severity (in the ASD group) was computed. We used a one-tailed Pearson’s 

correlation because the directions of expected correlations were formulated based on our 

previous findings (Khan et al., 2013; Mamashli et al., 2018). Symptom severity was 

measures using the SRS total t-score and ADOS social-affective sub-score. Association of 

Z-coherence with age and symptoms severity were tested in similar way.

Classification of ASD versus TD based on normalized PAC and Z-coherence

We used a Support Vector Machine algorithm with a linear kernel (as implemented in Scikit-

Learn) to predict diagnosis (Pedregosa et al., 2011). We selected features based on our group 

differences results: (a) averaged normalized PAC in frequencies where group differences 

were the strongest (PLS z-score ≥ 3); (b) averaged alpha band Z-coherence in frequencies 

and sub-ROIs with PLS z-score ≥ 3. The classification accuracy was assessed using a 

threefold cross-validation.

RESULTS

Evoked responses to inverted faces and houses

We began by assessing whether there were any significant group differences in the evoked 

responses for inverted faces (Figure 2a), evoked responses for houses (Figure 2b) and the 

difference in evoked responses for inverted faces versus neutral faces (Figure 2c), in the FFA 

(Figure 2d), using a Partial Least Squares (PLS) analysis. We found no significant group 

differences in evoked responses for any of the above comparisons.

Local functional connectivity in the FFA

We assessed local functional connectivity using a specific subset of cross-frequency 

coupling: Phase-Amplitude Coupling (PAC; Khan et al., 2013; Mamashli et al., 2018). PAC 

is a measure of the extent to which the amplitude of a faster frequency band (here, gamma, 

35–120 Hz) is modulated by the phase of a slower frequency band (alpha, 7–13 Hz). PAC 

reflects aspects of local functional connectivity because it varies on very short spatial scales 

in the cortex (~1 cm), as shown using subdural electrocorticogram (Canolty et al., 2006). We 

found no significant group differences in PAC within condition during viewing of inverted 

faces, or during viewing of houses. We therefore assessed the normalized PAC, PAC during 

the inverted faces relative to PAC during the houses condition. The comparison of 

normalized PAC estimated in FFA in the frequency range of 35–120 Hz revealed significant 

differences (p = 0.01) between the ASD and TD groups. The group contrast showed a 

positively skewed PLS z-score distribution, indicating that the TD group had higher 

normalized PAC than the ASD group (Figure 3a,b). To identify the frequency bands where 

group differences were the most pronounced, we used a PLS z-score threshold of 3 (Figure 

3c). The group differences with the largest difference were in the frequency range of 50–55 
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Hz. There was a strong trend towards significance also around 80 Hz, but this trend did not 

meet significance at the chosen threshold. Note that alpha and gamma bands power for the 

same time period was not significantly different (p > 0.05) between the two groups as 

confirmed by two separate PLS analyses; thus, any group differences in PAC were not due to 

power differences.

Long-range connectivity between FFA and IFG, ACC and precuneus

In our prior study of face processing in adolescents and young adults with ASD, responses 

to upright emotional faces, the IFG, ACC and precuneus all showed abnormally reduced 

long-range connectivity between the FFA and each of three regions of interest (ROIs)—the 

IFG, ACC, and precuneus. Here, we compared long-range functional connectivity in 

response to inverted versus upright neutral faces between the FFA and each of these same 

three ROIs—IFG, ACC and precuneus—using Z-coherence, in the alpha frequency band. Z-

coherence was defined as coherence while viewing inverted faces normalized by coherence 

while viewing houses. To maximize power when assessing Z-coherence, we computed Z-

coherence for multiple subdivisions of each of the ROIs (Mamashli, Hämäläinen, 

Ahveninen, Kenet, & Khan, 2019). There were no group differences in Z-coherence between 

the FFA and either the precuneus or the ACC, while Z-Coherence between FFA and the IFG 

was significantly reduced in the ASD group (p = 0.004, Figure 4a). Figure 4b illustrates the 

distribution of z-score across all sub-ROIs of the IFG, revealing that group differences were 

strongest in the inferior sub-ROIs of IFG, with a consistent trend across all sub-ROIs, even 

the ones that did not reach significance. The group contrast is shown in Figure 4c, and the 

distribution of PLS z-scores is shown in Figure 4d.

Correlation between PAC and Z-coherence

In our prior studies (Khan et al., 2013; Mamashli et al., 2018), we examined whether the 

magnitude of PAC was correlated with the magnitude of FFA-IFG connectivity. In our 2013 

study of adolescents and young adults, we found that PAC and long-range functional 

connectivity during viewing of emotional upright faces were indeed correlated. In contrast, 

in our 2018 study of the cohort examined here, we found no such correlation, again during 

viewing of emotional, as well as neutral, upright faces. Here, we found that once again, there 

was a significant correlation between the magnitude of PAC and the magnitude of IFG-FFA 

functional connectivity when the two groups were combined, and there was a trend towards 

such a correlation within each group (Figure 5).

Correlations of PAC and Z-coherence with age

In our prior study of responses to upright faces in this cohort, we found a divergence in the 

maturation trajectories of functional connectivity between the groups, and tested for a 

similar effect here, using both PAC and IFG-FFA functional connectivity. We found no 

significant correlation between PAC in response to inverted faces, and age. In contrast, Z-

coherence between the FFA and all IFG subdivisions thresholded at PLS z-score ≥ 3 was 

significantly correlated with age in the TD group (R = 0.35, p = 0.039), but such a 

correlation was absent in the ASD group (Figure 6).
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Z-coherence and PAC correlations with ASD symptoms severity

To assess whether the neurophysiological measures correlated with the ASD phenotype, we 

focused on two ASD severity measures that assess the social communication and reciprocal 

social interaction domains of ASD severity: the SRS (Social Responsiveness Scale), and the 

social affective sub-score from the ADOS-2 (Autism Diagnostic Observation Schedule) 

Module 3 and 4 diagnostic algorithms (ADOSSA). Z-coherence between the FFA and IFG 

(averaged across IFG subdivisions thresholded at PLS z-score ≥ 3) in the ASD group was 

significantly correlated with both measures of ASD severity: the SRS total t-score (r = 

−0.38, p = 0.046; Figure 7a), and the ADOSSA score (r = −0.438, p = 0.024, Figure 7b), 

indicating that greater ASD severity corresponded to greater reductions in Z-coherence. In 

contrast, PAC was not correlated with either of the ASD symptom severity measures.

Classification by diagnosis based on normalized PAC and Z-coherence

Lastly, we used linear support vector machines (LSVM) to carry out a blind classification by 

group (ASD vs. TD) using PAC and Z-Coherence (FFA to all IFG subdivisions thresholded 

at PLS z-score ≥ 3). Figure 7c shows the model, which had a classification accuracy of 81% 

± 4%, relative to the 56% chance level (higher than 50% due to the unequal group sizes).

DISCUSSION

We investigated local and long-range functional connectivity alterations in response to 

inverted faces, in children with ASD. As expected from our prior studies of upright faces 

(Khan et al., 2013; Mamashli et al., 2018), and studies of others of inverted faces (Tavares et 

al., 2016; Webb et al., 2012), we did not find group differences in evoked responses elicited 

by neutral upright faces, neutral inverted faces, or houses. In contrast, we did find reduced 

local functional connectivity in the FFA in ASD compared to TD participants, measured 

using PAC. Furthermore, we found reduced long-range functional connectivity in the alpha 

frequency band between the FFA and the IFG in the ASD group. These findings were 

specific to the processing of inverted faces, since our prior investigation in the same cohort 

of children, that focused exclusively on the processing of upright faces, showed no 

differences in local or long range functional connectivity measures between the ASD and 

TD groups (Mamashli et al., 2018). In addition, in our study of the processing of upright 

faces in ASD in adolescents and young adults, three distinct top-down cortical regions 

showed reduced long-range functional connectivity with the FFA: The precuneus, the ACC, 

and the IFG. In this study, reduced long-range functional connectivity was only observed 

between IFG and the FFA. Importantly, reduced functional connectivity between the IFG 

and the FFA was correlated with more severe ASD symptomatology. In addition, functional 

connectivity between the IFG and the FFA increased with age in the TD group, but not the 

ASD group. Lastly, alterations in both local and long-range functional connectivity predicted 

the participants’ diagnosis with 81% accuracy indicating the potential value of this approach 

for ASD classification in future cohorts.

We have previously shown that PAC is abnormally reduced in adolescents and young adults 

with ASD when viewing emotional faces, but that this was not the case for younger children 

with ASD (Mamashli et al., 2018). Therefore, although abnormally reduced resting-state 
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PAC had been previously documented in other brain areas in younger participants with ASD 

(Port, Dipiero, et al., 2019), we did not expect to find reduced PAC in the FFA in response to 

inverted faces.

One potential hypothesis regarding the neural mechanisms that may underlie the unexpected 

finding of reduced PAC in ASD during viewing of inverted faces stems from the reliance of 

PAC on inhibitory processes in the brain. PAC is known to be modulated by GABAergic 

signaling, and specifically by parvalbumin expressing (PV+) interneurons (Lopez-Pigozzi et 

al., 2016; Michaels, Long, Stevenson, Chrobak, & Chen, 2018; Port, Berman, et al., 2019; 

Wulff et al., 2009). This is relevant because studies of genetics-based mouse models of ASD 

have consistently found underdeveloped PV+ interneurons (e.g., Han et al., 2012; Nakai et 

al., 2014), and abnormalities in densities of PV+ interneurons have also been documented in 

postmortem studies of ASD brains (e.g., Hashemi, Ariza, Rogers, Noctor, & Martínez-

Cerdeño, 2017). If the processing of inverted faces were to require recruitment of additional 

inhibitory processing relative to upright faces, this could in turn impact PAC. While there is 

no direct evidence of additional recruitment of inhibitory processes during viewing of 

inverted faces, there is some evidence that more generally recruitment of resources for 

processing inverted faces is abnormal in ASD, as suggested by some ERP studies 

(McPartland, Dawson, Webb, Panagiotides, & Carver, 2004; Rossion et al., 2000; Webb et 

al., 2012). If this recruitment includes GABAergic resources, as may well be the case, this 

could result in the group differences in PAC between ASD and TD groups when viewing 

inverted faces relative to upright faces, as observed here.

Evidence that the processing of inverted faces relies on top-down regulation of face 

perception (Papathomas & Bono, 2004) provides another potential explanation for our 

finding of reduced PAC. The lack of differences in general properties (such as color, shapes, 

number of features, etc.) between upright and inverted faces suggests that low level 

mechanisms of perception are not responsible for the face inversion effect. Here, we found 

reduced long-range communication in the alpha band between the IFG and FFA in ASD. 

While the finding was not direction specific, the putative role of the IFG in top down 

modulation (Gazzaley & Nobre, 2012; Mayer et al., 2007) supports a likely explanation for 

this observation where the top-down modulation of the FFA by the IFG is reduced in 

individuals with ASD when viewing inverted faces. Indeed, these alterations were associated 

with severity of ASD. This finding is also consistent with our initial hypothesis of reduced 

top-down regulation in ASD.

It is also possible that reduced long-range top-down modulation is causative, at least in part, 

of the observed reduction in local functional connectivity as measured using PAC. Indeed, 

the correlation we observed between the magnitude of PAC and the magnitude of the IFG-

FFA functional connectivity suggests such an interaction. It has been previously 

hypothesized that communication across different scales in the brain is modulated by 

coherence, and that the directionality of influence depends on the long-range modulation of 

local PAC connectivity (Canolty & Knight, 2010; Fries, 2005, 2009, 2015; Krishnan et al., 

2011; Lega, Burke, Jacobs, & Kahana, 2016).
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The reduction in top-down modulations documented here is also consistent with multiple 

reports of abnormalities in top-down processing in ASD (Cook et al., 2012; Frith, 2004; 

Gomot & Wicker, 2012; Khan et al., 2015; Mamashli et al., 2017; Neumann et al., 2006; 

Seymour et al., 2019; Sinha et al., 2014), including during face processing (Leung et al., 

2014; Loth et al., 2010). It has been suggested that ASD-related atypicalities stem mostly 

from reduced flow of feedback information, resulting in impaired top-down modulation 

(Frith, 2004). More recently, deficient top-down control was hypothesized to disrupt the 

predictive ability of the brain and to be causative of hallmark features of ASD, including 

insistence of sameness, sensory hypersensitivity and theory of mind deficits (Sinha et al., 

2014). Lastly, reduced top-down regulation during face processing in particular, was linked 

to failure to efficiently extract emotional information from faces or reconstruct the degraded 

pictures of faces (Leung et al., 2014; Loth et al., 2010).

The reduced PAC and Z-coherence in children with ASD in response to inverted faces may 

also relate to findings of reduction or absence of the FIE in ASD relative to TD children. 

While we have not investigated the FIE directly here, this is relevant because it has been 

postulated that the FIE is driven by the necessity to switch from holistic face processing to 

evaluation of face parts separately, since inversion precludes the use of configural 

information required for holistic processing, such as distance and relative position of face 

parts, while featural information, such as size and shape of face parts, is preserved (Freire, 

Lee, & Symons, 2000). This would suggest that in individuals with ASD, the holistic way of 

face processing is not established to the same degree as in TD individuals, which is 

supported by other evidence as well (Behrmann, Thomas, & Humphreys, 2006). 

Accordingly, additional top-down modulation for reconfiguration from holistic face 

processing to fragmentary face processing would be superfluous.

Lastly, we also found that Z-coherence between the FFA and the IFG increased with age in 

the TD group, but this maturation effect was absent in the ASD group. This is congruent 

with extensive reports of top-down regulation improvement and increased processing 

efficiency with age in TD individuals (Casey & Jones, 2010; Rubia, 2013) and altered 

neurocognitive developmental trajectories in ASD (Dajani & Uddin, 2016; Kitzbichler et al., 

2015; Kozhemiako et al., 2020, 2019; Mamashli et al., 2018; Vakorin et al., 2017). There is 

also evidence that the FIE effect increases with age in typical individuals (de Heering, 

Rossion, & Maurer, 2012), furthering the line of evidence in support of the processing of 

upright faces getting more efficient with age, while the processing of inverted faces does not, 

which might further explain our results of a positive correlation between age and Z-

coherence in TD group but not in ASD group.

The interpretation of these results with respect to the FIE in ASD are limited since 

behavioral FIE data were not available for this cohort. Thus, while the neurophysiological 

results refer to cortical processing of inverted faces, an important limitation of this study is 

that it cannot be extended to infer about the FIE in ASD more generally, due to lack of 

behavioral data. In addition, the limited sample size means that further replication of these 

results is warranted, and that other potential abnormalities associated with this response may 

not have been detectable with this sample size. The same limitation also applies to the 

results showing abnormal maturational trajectories in the ASD group, which would benefit 
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from a higher age density. That said, the findings of reduced local and long-range functional 

connectivity in the ASD group as well as the finding of abnormal maturation of functional 

connectivity in the ASD group, are both consistent with other related studies noted above, 

showing reduced PAC and flattened maturation trajectories in ASD across a range of 

paradigms. This consistency with prior studies therefore increases the confidence in the 

validity of the results in spite of the relatively small sample size. Another limitation is that 

no eye tracking was available during the recording, and participants’ attention was only 

ensured through the one-back task (~10% of trials). While there was no difference in 

performance on the one-back task between the groups, it is of course not as accurate as eye 

tracking, nor is it continuous. Lastly, in spite of these limitations, the correlations between 

the neurophysiological data and behavioral ASD data indicate that the results are likely to 

remain consistent in larger populations.

In conclusion, the results of the present study show multiple alterations in the processing of 

inverted faces in the ASD group, but no differences in the evoked responses to inverted faces 

between the two groups. The abnormalities mapped in the ASD group included reduced 

local functional connectivity in the FFA, and decreased long-range alpha-band modulated 

functional connectivity between the FFA and the left IFG. These results align well with 

hypotheses that reduced top-down regulation in ASD impairs the processing of inverted 

faces, and with the hypothesis that GABAergic modulations are abnormal in ASD. These 

results also suggest that the maturational trajectories of face processing in ASD diverge from 

typical development earlier for inverted faces than for upright faces, perhaps due to a greater 

reliance on GABAergic mechanisms and top-down modulation when processing inverted 

faces. In summary, our results suggest that the neurophysiological abnormalities that 

underlie ASD are often more subtle than effects detectable using common measures such as 

evoked responses, can vary with specific details of the paradigm, for example, inverted 

versus upright faces, and are age dependent. These results further underscore the importance 

of considering age when investigating the neurophysiology that underlies ASD, and the 

importance of exploring the neurophysiological substrates of ASD using a wide range of 

methodologies and approaches.
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FIGURE 1. 
A schematic representation of the stimulus. Each stimulus type was presented a minimum of 

150 times, across three runs (~50 times per run per stimulus), in random order, for 1 s, with 

1 s interstimulus interval consisting of a fixation cross. Two other stimulus categories not 

shown (or analyzed for this study) consisted of angry faces and fearful faces
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FIGURE 2. 
Evoked responses. (a) Group average of evoked responses from the inverted faces condition. 

(b) Group average of evoked responses from the houses condition. (c) No differences in 

evoked responses to inverted neutral faces versus upright neutral faces. (d) Averaged FFA 

boundaries. Shaded area in a, b, c denotes the standard error
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FIGURE 3. 
Group Differences in PAC. (a) Group contrast computed using PLS. (b) Distribution of PLS 

z-score across frequencies. (c) Normalized PAC in FFA averaged across participants (upper 

panel) and z-score as a function of frequency with threshold of 3 to illustrate the most robust 

group differences (lower panel)
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FIGURE 4. 
Functional connectivity (Z-coherence) between the FFA and the IFG. (a) The ROIs that were 

used to compute coherence in the alpha band between the left IFG and the right FFA. (b) 

Brain surface with the z-score for coherence averaged across 8–13 Hz for sub-ROIs of the 

IFG, illustrating the sub-ROIs that contributed the most to the group difference in Z-

coherence. (c) PLS contrast demonstrating group differences in Z-coherence between the 

right FFA and sub-ROIs of the left IFG. (d) PLS z-scores distribution associated with a 

group contrast
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FIGURE 5. 
Correlation between normalized PAC and IFG-FFA Z-coherence. Correlations between the 

magnitude of normalized PAC and of Z-coherence scores for the ASD group (red) and the 

TD group (blue), each separately, as well as the correlation when both groups were 

combined (purple). The correlation trended towards significance for each group separately, 

and was significant when both groups were combined
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FIGURE 6. 
Correlations between age and IFG-FFA Z-coherence. The correlation between age and IFG-

FFA Z-coherence was significant for the TD group (blue), and not significant in the ASD 

group (red)
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FIGURE 7. 
Correlations between ASD phenotype and IFG-FFA Z-coherence, and group classification. 

(a) Correlation between IFG-FFA Z-coherence and SRS Total t-score in the ASD group. (b) 

Correlation between IFG-FFA Z-coherence and ADOSSA score in the ASD group. (c) A 

linear classifier using the PAC and Z-coherence values from the inverted faces condition had 

an accuracy of 81% in classifying participants by diagnosis
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TABLE 1

Demographic information and behavioral score of the participants

ASD TD

Sample size (females) 21(2) 27 (4)

Age, years 12.3 ± 2.42 11.8 ± 3.45

Nonverbal IQ 109.0 ± 19.23 106.9 ± 11.42

Verbal IQ 108.2 ± 15.88 110.4 ± 15.03

SRS total t-score 84.9 ± 8.96

ADOS social-affective (SA) sub-score 9.5 ± 4.59
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