Skip to main content
. Author manuscript; available in PMC: 2022 May 1.
Published in final edited form as: Tuberculosis (Edinb). 2021 Apr 10;128:102082. doi: 10.1016/j.tube.2021.102082

Table 5.

Multi-marker models for responder classification prediction at diagnosis.

Responder Classification Resubstitution classification matrix
Markers (all unstimulated) AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV NPV
sgp130Nil
SAP PNil
IFN-α2Nil*
sIL-1R2Nil*
EGFNil
0.97 (0.93 – 1.00) 87.5% (67.6 – 97.3%) 100.0% (79.4 – 100.0%) 1.00 0.81
Leave-one-out crossvalidation
Sensitivity (95% CI) Specificity (95% CI) PPV NPV
79.2% (57.8 – 92.9%) 92.3% (64.0 – 99.8%) 0.95 0.71
Resubstitution classification matrix
Markers (all stimulated) AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV NPV
EGFAg-Nil
MCP-3Ag-Nil*
MIP-1βAg-Nil*
IFN-γAg-Nil*
CRPAg-Nil*
0.89 (0.79 – 0.99) 70.8% (48.9 – 87.4%) 84.6% (54.6 – 98.1%) 0.89 0.61
Leave-one-out crossvalidation
Sensitivity (95% CI) Specificity (95% CI) PPV NPV
66.7% (44.7 – 84.4%) 76.9% (46.2 – 95.0%) 0.84 0.56
*

Winsorized