Table 5.
Multi-marker models for responder classification prediction at diagnosis.
| Responder Classification | Resubstitution classification matrix | ||||
|---|---|---|---|---|---|
| Markers (all unstimulated) | AUC (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | PPV | NPV |
| sgp130Nil SAP PNil IFN-α2Nil* sIL-1R2Nil* EGFNil |
0.97 (0.93 – 1.00) | 87.5% (67.6 – 97.3%) | 100.0% (79.4 – 100.0%) | 1.00 | 0.81 |
| Leave-one-out crossvalidation | |||||
| Sensitivity (95% CI) | Specificity (95% CI) | PPV | NPV | ||
| 79.2% (57.8 – 92.9%) | 92.3% (64.0 – 99.8%) | 0.95 | 0.71 | ||
| Resubstitution classification matrix | |||||
| Markers (all stimulated) | AUC (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | PPV | NPV |
| EGFAg-Nil MCP-3Ag-Nil* MIP-1βAg-Nil* IFN-γAg-Nil* CRPAg-Nil* |
0.89 (0.79 – 0.99) | 70.8% (48.9 – 87.4%) | 84.6% (54.6 – 98.1%) | 0.89 | 0.61 |
| Leave-one-out crossvalidation | |||||
| Sensitivity (95% CI) | Specificity (95% CI) | PPV | NPV | ||
| 66.7% (44.7 – 84.4%) | 76.9% (46.2 – 95.0%) | 0.84 | 0.56 | ||
Winsorized