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BRAF'6°°F melanoma patients, despite initially responding to the clinically prescribed anti-BRAFY®?% therapy, often relapse, and

their tumors develop drug resistance. While it is widely accepted that these tumors are originally driven by the BRA

FY600E mtation,

they often eventually diverge and become supported by various signaling networks. Therefore, patient-specific altered signaling
signatures should be deciphered and treated individually. In this study, we design individualized melanoma combination
treatments based on personalized network alterations. Using an information-theoretic approach, we compute high-resolution
patient-specific altered signaling signatures. These altered signaling signatures each consist of several co-expressed subnetworks,
which should all be targeted to optimally inhibit the entire altered signaling flux. Based on these data, we design smart,
personalized drug combinations, often consisting of FDA-approved drugs. We validate our approach in vitro and in vivo showing
that individualized drug combinations that are rationally based on patient-specific altered signaling signatures are more efficient
than the clinically used anti-BRAFY5%°F or BRAFY6°°/MEK targeted therapy. Furthermore, these drug combinations are highly

selective, as a drug combination efficient for one BRAF/?%

tumor is significantly less efficient for another, and vice versa. The

approach presented herein can be broadly applicable to aid clinicians to rationally design patient-specific anti-melanoma drug

combinations.
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INTRODUCTION

The rates of melanoma have been rapidly increasing (NIH, www.
cancer.org). Melanoma is one of the most common cancers in
young adults, and the risk for melanoma increases with age (NIH,
www.cancer.org). However, alongside the rapid increase in
incidence, there has also been rapid clinical advancement over
the past decade, with targeted therapy and immunotherapy that
have become available to melanoma patients’.

Melanoma is associated with a great burden of somatic genetic
alterations?, with the primary actionable genomic data being an
activating mutation in the BRAF gene, BRAFY®°®, occurring in
~50% of all melanomas®>. Nearly a dozen new treatments have
been approved by the Food and Drug Administration (FDA) for
unresectable or metastatic melanoma harboring the BRAF'6%¢
mutation, among them vemurafenib (a BRAFY®°°F inhibitor),
cobimetinib (a MEKMAPX inhibitor), or a combination of dabrafenib
and trametinib (a BRAFY®®E inhibitor and a MEKMA"K inhibitor,
respectively)'.

While targeted therapy revolutionized melanoma treatment,
the high hopes shortly met a disappointment, as it became
evident that most patients treated with BRAF'®°F inhibitors
eventually relapse and their tumors become resistant to the
treatment®, Various combination treatments were suggested to
overcome the acquired resistance to BRAFY®®F inhibitors*>7?,
Nevertheless, BRAF'®°® and MEK inhibitors remain the only
targeted agents approved by the FDA for melanoma. In this study,
we design patient-specific targeted treatments for melanoma
based on individualized alterations in signaling protein networks,

rather than on genomic/protein biomarkers. Attempting to treat
patients based on the identification of single biomarkers or
signaling pathways may overlook tumor-specific molecular altera-
tions that have evolved during the course of the disease, and the
consequently selected therapeutic regimen may lack long-term
efficacy resulting from partial targeting of the tumor imbalance.
We have shown that different patients may display similar
oncogene expression levels, albeit carrying biologically distinct
tumors that harbor different sets of unbalanced molecular
processes’. Therefore, we suggest exploring the cancer data
space utilizing an information-theoretic approach that is based on
surprisal analysis®'", to unbiasedly identify the altered signaling
network structure that has emerged in every single tumor”'®.
Our thermodynamic-like viewpoint grasps that tumors are
altered biological entities, which deviate from their steady-state
due to patient-specific alterations. Those alterations can manifest
in various manners that are dependent on environmental or
genomic cues (e.g., carcinogens, altered cell-cell communication,
mutations, etc.) and give rise to one or more distinct groups of co-
expressed oncoproteins in each tumor, named unbalanced
processes” ', A patient-specific set of unbalanced processes
constitutes a unique signaling signature and provides critical
information regarding the elements in this signature that should
be targeted. Each tumor can harbor several distinct unbalanced
processes, and therefore all of them should be targeted in order to
collapse the altered signaling flux in the tumor'®''. We have
demonstrated that with comprehensive knowledge about the
patient-specific altered signaling signature (PaSSS) in hand, we

"The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel. *These authors contributed equally: S. Vasudevan, E. Flashner-Abramson.

HMemail: natalyk@ekmd.huji.ac.il

Published in partnership with The Hormel Institute, University of Minnesota

n I nature partner
pJ journals

HP THE HORMEL INSTITUTE

UNIVERSITY OF MINNESOTA


http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-021-00190-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-021-00190-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-021-00190-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41698-021-00190-3&domain=pdf
http://orcid.org/0000-0001-6943-7479
http://orcid.org/0000-0001-6943-7479
http://orcid.org/0000-0001-6943-7479
http://orcid.org/0000-0001-6943-7479
http://orcid.org/0000-0001-6943-7479
https://doi.org/10.1038/s41698-021-00190-3
http://www.cancer.org
http://www.cancer.org
http://www.cancer.org
mailto:natalyk@ekmd.huji.ac.il
www.nature.com/npjprecisiononcology

npj

S. Vasudevan et al.

Genetic/protein biomarker
analysis
)

Q)
IR
Xsie

@ upregulated gene/protein biomarker
o unchanged gene/protein biomarker

Identification of common cancer
associated biomarkers, and selection of
treatment that is based on
previously known signaling pathways

Fig. 1

VS.

Patient-specific signaling
signature (PaSSS) analysis

2
S

«% ., altered subnetworks

«+ balanced proteins and

melanoma connections

tumor
Unbiased identification of
unbalanced processes and rational design
of a drug combination that is tailored
to the tumor-specific rewired
signaling network

Conventional biomarker analysis vs. patient-specific signaling signature analysis. Genetic/protein biomarker analysis relies on the

evaluation of the expression levels of common cancer-type-associated genes or proteins (left). The design of a drug combination is done
according to an inference of the state of the surrounding signaling network, based on previous knowledge (left). In contrast, patient-specific
signaling signature (PaSSS) analysis involves proteomic analysis of hundreds of cancer-associated proteins, and unbiased identification of the
altered signaling signature in every sample, i.e., that does not depend on previous knowledge of melanoma-related signaling pathways. This
enables rationally designing personalized combinations of targeted drugs that are based on the patient-specific uniquely rewired signaling

network (right).

can predict efficacious personalized combinations of targeted
drugs in breast cancer'®.

Herein, we decipher the accurate network structure of co-
expressed functional proteins in melanoma tumors, hypothesizing
that the PaSSS identified will guide us on how to improve the
clinically used BRAF'6®-targeted drug combinations. Our aim
was to examine the ability of PaSSS-based drug combinations to
reduce the development of drug resistance, which frequently
develops following BRAFY®°°E inhibition in melanoma.

To this end, we studied a dataset consisting of 353 BRAF'6°%¢
and BRAFT skin cutaneous melanoma (SKCM) samples, aiming to
gain insights into the altered signaling signatures that have
emerged in these tumors. A set of 372 thyroid carcinoma (THCA)
samples was added to the dataset, as these tumors frequently
harbor BRAFY%E 35 well, therefore enabling studying the
commonalities and differences between tumor types that
frequently acquire the BRAF®°°F mutation.

We show that 17 distinct unbalanced processes are repetitive
among the 725 SKCM and THCA patient-derived cancer tissues.
Each tumor is characterized by a specific subset of typically 1-3
unbalanced processes. Interestingly, we demonstrate that the
PaSSS does not necessarily correlate with the existence of the
BRAFY®%°€ namely different tumors can harbor different signatures
while both carrying the mutated BRAF, and vice versa—tumors
can harbor the same altered signali\r)\g signature regardless of
whether they carry BRAFY®°°F or BRAFV'. These data suggest that
examination of the BRAF gene alone does not suffice to tailor
effective medicine to the patient. SKCM and THCA patients
harboring BRAF'®°® can respond differently to the same
therapeutic regimen or rather benefit from the same treatment
even though their BRAF mutation status differs.

We experimentally demonstrate our ability to predict effective
personalized therapy by analyzing a cell line dataset and tailoring
efficacious personalized combination treatments to BRAFY6°%E
harboring melanoma cell lines. The predicted PaSSS-based drug
combinations were shown to have an efficacy superior to drug
combinations that were not predicted to target the individualized
altered signaling signatures, and combinations used in clinics,
both in vitro and in vivo. We show that an in-depth resolution of
individualized signaling signatures allows inhibiting the develop-
ment of drug resistance and melanoma regrowth, by demonstrat-
ing that while melanoma models develop drug resistance several
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weeks following initial administration of the clinically used
combination, dabrafenib+trametinib, individualized PaSSS-based
drug combinations gain a longer-lasting effect and show high
selectivity.

RESULTS
An overview of the experimental-computational approach
Biomarker analysis in melanoma relies mainly on the identification
of mutations in the BRAF gene'?. If mutation/upregulation of the
mutant BRAFY5%F is identified (Fig. 1, left), the patient will likely be
treated with a BRAFY®°® inhibitor (e.g, vemurafenib'® or
dabrafenib'®), possibly concurrently with an inhibitor of MEKMAPX
(e.g., trametinib'). The combination of BRAF'®°° and MEKMAPK
inhibitors was shown to be superior to BRAFY6%°F inhibition alone
and to delay or prevent the development of drug resistance’.
However, the biomarker analysis utilized in clinics lacks informa-
tion about the altered signaling network, and, for example, may
overlook additional or alternative protein targets that, if targeted
by drugs, may enhance the efficacy of the treatment (Fig. 1, left).
We utilize an information-theoretic approach that is based on
surprisal analysis (see “Methods” section)®™"" to gain information
regarding the patient-specific signaling signature (PaSSS) that has
emerged in every individual tumor (Fig. 1, right). Based on
proteomic analysis of the samples, we identify the set of altered
protein-protein co-expressed subnetworks, or unbalanced signal-
ing processes, that has arisen as a result of constraints (environ-
mental or genomic) that operate on the tumor, and then design a
combination of targeted drugs that are predicted to collapse the
tumor-specific altered signaling signature (Fig. 1, right and see
“Methods” section)’™'". We obtained from the TCPA database (The
Cancer Proteome Atlas Portal, http://tcpaportal.org) a dataset
containing 353 skin cutaneous melanoma (SKCM) and 372 thyroid
cancer (THCA) samples (725 samples in total). The thyroid cancer
samples were added to the dataset for two main reasons: (1) to
increase the number of samples in the dataset, thereby increasing
the resolution of the analysis; (2) THCA tumors frequently harbor
the BRAFY®%E mutation, and we were therefore interested in
examining the commonalities and differences between the
altered signaling signatures that emerged in SKCM and THCA
tumors.
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17 unbalanced processes repeat themselves throughout 725
SKCM and THCA tumors

The analysis of the dataset revealed that the 725 SKCM and THCA
tumors can be described by 17 unbalanced processes (Supp. Fig.
1; the amplitudes for each process in each patient and the
importance of each protein in the different processes can be
found in Supp. Data 1; the protein composition of each process is
presented in Supp. Data 2), i.e,, 17 distinct unbalanced processes
suffice to reproduce the experimental data (Supp. Fig. 2 and
“Methods” section).

Unbalanced processes 1 and 2, the two most significant
unbalanced processes, which appear in the largest number of
tumors, distinguish well between SKCM and THCA tumors, as can
be seen by the 2D plots of A,(k) values (i.e., amplitudes of each
process in every tumor; Fig. 23, ¢, e). Unbalanced process 1 (Supp.
Data 2) appears almost exclusively in THCA tumors (372 THCA
tumors harbor unbalanced process 1, vs. 46 SKCM tumors; Fig. 2a,
e), while unbalanced process 2 characterizes almost exclusively
SKCM tumors (331 SKCM tumors harbor unbalanced process 2 vs.
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only 4 THCA tumors; Fig. 2¢, e). Unbalanced process 1 involves
upregulation of proteins that have been previously linked to
THCA: LKB1'S, fibronectin'”'®, Bcl-2'°, claudin 7%° (Fig. 2b).
Unbalanced process 2 is characterized by the upregulation of
proteins that have been implicated in melanoma, such as Stat5a®',
Akt?, cKit?®, Her3%*, and ATM?® (Fig. 2d). As can be seen in the
graph in Fig. 2¢, unbalanced process 2 was assigned a positive
amplitude in all 331 SKCM tumors in which it appears, while in 4
THCA tumors it was assigned a negative amplitude (see also Supp.
Data 1). This means that the proteins that participate in this
unbalanced process deviate to opposite directions in the two
types of tumors (importantly, this remark denotes only the partial
deviation that occurred in these proteins due to unbalanced
process 2; some of these proteins may have undergone additional
deviations due to the activity of other unbalanced processes. See
Supp. Data 2 and “Methods” section). Although unbalanced
process 2 appears in a significant number of BRAFY6°°E SKCM
patients (Fig. 2¢, d), it does not include pS(445)BRAF and
downstream signaling. This finding corresponds to a recent
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Fig.2 Unbalanced processes 1 and 2 distinguish well between SKCM and THCA tumors when plotted in 2D. The majority of THCA tumors
harbor unbalanced process 1 (a), while the majority of SKCM tumors harbor unbalanced process 2 (c). Unbalanced processes 1 and 2 are
shown in panels b and d. Note that red proteins are upregulated, and blue proteins are downregulated given that the amplitude of the
process is positive. In tumors where the amplitude is negative, the direction of change is opposite. e A 2D plot showing A,(k) against A, (k) for
all SKCM and THCA patients. The plot shows nicely the separation between SKCM and THCA patients in this 2D space. Note, however, that
every tumor is characterized by a set of unbalanced processes (a PaSSS), and that unbalanced processes 1 and 2 alone do not suffice to

describe the complete tumor-specific altered signaling signatures.
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Patient index L 1 L l 1
146 545 203 208 2
Case ID TCGA-YG-AA3P | TCGA-DJ-A1QD | TCGA-GF-A2C7 | TCGA-EB-A851 | TCGA-EB-A5UM
Cancer type SKCM THCA SKCM SKCM SKCM
Active
unbalanced 2" 1*,4* 2+ 4+ 1+,6%,10* 1*
processes
# of SKCM patients with
the same signature 181 0 5 1 3
(BRAFVG0E. [BRAFVG0E+) (107/74) (0/5) (0/1) (3/0)
# of THCA patients with
the same signature 0 38 [1] 0 142
(BRAFV60E [BRAFV600E+) (16/22) (65/77)

Fig. 3 Examples for patient-specific sets of active unbalanced processes. Each patient typically harbors a set of 1-3 active unbalanced
processes. Our results show that a specific set of active processes does not necessarily distinguish between BRAFV600E— and BRAFV600E-+

patients, or between SKCM and THCA patients.

characterization of melanoma tissues® and suggests that the
signaling signatures of BRAFY®°F tissues may diverge over time
and acquire additional signaling routs which are not necessarily
related to the original driver mutations, such as BRAF'®%% or its
downstream MEKYAPX signaling.

Unbalanced process 2 can also be found in BRAF"T patients
(Fig. 2c). See, for example, patient TCGA-YG-AA3P (Fig. 3). The
signature of this patient did not include additional processes. A
total of 181 SKCM patients harbor this signaling signature,
consisting only of unbalanced process 2: 107 of them harbor
BRAFYT, and 74 of them harbor BRAFV?°E (Fig. 3). In contrast, no
THCA patients harbor this signature (Fig. 3). The finding that
BRAF™" and BRAFY6°%E SKCM patients can, in some cases, harbor
the same altered signature suggests that these patients can also
benefit from the same combination of targeted drugs.

Although unbalanced processes 1 and 2 distinguish well
between SKCM and THCA patients (Fig. 2a, ¢, e), these processes
alone do not suffice to describe the PaSSS of all patients. Our
analysis suggests that to decipher the altered signaling signature
in every patient, 17 unbalanced processes should be considered.
Hence, 2D plots may overlook important therapeutic information.
When we inspect the patients in the context of a 17-dimensional
space, where each dimension represents an unbalanced process,
we find that not all SKCM patients harbor unbalanced process 2
and that those who do harbor this process may harbor additional
unbalanced processes as well (Fig. 3, Supp. Fig. 3 and Supp. Data
1). We have shown that mapping the patients into a multi-
dimensional space (a 17D space in our case) allows deciphering
the set of unbalanced processes, namely the PaSSS, in every tumor.
This mapping is crucial for the design of efficacious treatments'®.

The SKCM patient TCGA-GF-A2C7, for example, is characterized
by a PaSSS consisting of unbalanced processes 2 and 4 (Fig. 3).
Only 5 SKCM patients were found to be characterized by this set of
unbalanced processes, all of which harbor BRAFY®%% (Fig. 3).

The SKCM patient TCGA-EB-A85I was found to harbor a PaSSS
consisting of unbalanced processes 1, 6, and 10 (Fig. 3). This
patient harbors a one-of-a-kind tumor, as no other patients in the
dataset harbor this altered signaling signature (Fig. 3).

The PaSSS of THCA patient TCGA-DJ-A1QD includes unbalanced
processes 1 and 4 (Fig. 3). This signature characterizes 38 THCA
patients, 16 of them BRAF"' and 22 of them BRAFY®° (Fig. 3).
These THCA patients may benefit from a combination of drugs
that target central protein nodes in unbalanced processes 1 and 4,
regardless of whether they harbor BRAF'®°°F or not. No SKCM
patients harbor this altered signaling signature (Fig. 3).

Another interesting finding is that SKCM and THCA patients
may harbor the same PaSSS, as is the case of the signature
consisting of unbalanced process 1, shared by 3 SKCM patients
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and 142 THCA patients (Fig. 3 and Supp. Data 1). All these patients
may be treated with the same drug combination, targeting key
proteins in unbalanced process 1, e.g., LKB1 and fibronectin (Fig.
2b).

The altered signaling signatures identified in SKCM and THCA
are almost mutually exclusive

To explore the entire dataset in terms of the set of unbalanced
processes that each patient harbors, we assigned to each patient a
patient-specific barcode, denoting the PaSSSs, i.e., the set of active
unbalanced processes in the specific tumor (Fig. 4, Supp. Data 3).
These barcodes represent the mapping of every patient to a 17-
dimensional space where each dimension denotes a specific
unbalanced process®'®. We found that 138 distinct barcodes
repeated themselves in the dataset (Supp. Data 4). Interestingly,
the barcodes are almost mutually exclusive: 87 of the barcodes
characterize SKCM tumors; 84 of them characterize only SKCM
tumors and are not harbored by any THCA tumor (Supp. Data 4).
54 barcodes characterize THCA tumors; of them, 51 characterize
solely THCA tumors (Supp. Data 4). Most of the barcodes are rare:
81 barcodes are shared by only 5 SKCM tumors or less; 56 of them
describe single, one-of-a-kind SKCM tumors (Supp. Data 4). 47
barcodes are shared by only 5 THCA tumors or less; 36 of them
describe single THCA tumors (Supp. Data 4). This finding
corroborates with our previous studies of signaling signatures in
cancer'® and underscores the need for personalized cancer
diagnosis that is not biased by, e.g., the anatomical origin of the
tumor.

Patient-specific barcodes guide the rational design of
personalized targeted combination therapy

We have previously shown the predictive power of our analysis in
determining effective patient-tailored combinations of drugs that
target key proteins in every unbalanced process'®"". Utilizing the
maps of the unbalanced processes identified in the dataset herein
(Supp. Fig. 1), we predicted process-specific protein targets for
each process (Supp. Data 5). Each individual patient is predicted to
benefit from a therapy that combines drugs against all the
unbalanced processes active in the specific tumor (Fig. 4, Supp.
Data 5).

As mentioned above, SKCM patients can in some cases benefit
from the same combination therapy, regardless of their BRAF
mutational status. This is the case for patients TCGA-EB-A553
(carrying BRAFY®°%%) and TCGA-BF-AAOX (carrying BRAF"T), that
were found to harbor tumors characterized by the same barcode
of unbalanced processes and were therefore predicted to benefit
from the same treatment, where pMAPK and cKit are targeted

Published in partnership with The Hormel Institute, University of Minnesota
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Patient index L L L
23 79 210
Case ID TCGA-BF-AAOX | TCGA-EB-A97M | TCGA-EB-A553
Cancer type SKCM SKCM SKCM
BRAF status BRAFWT BRAF"T BRAFVe0oe
Disease stage lic lIc lIc
immune immune VBO0E 4
Clinical treatment checkpoint checkpoint BRAF i MEK
A A inhibitors
inhibitors inhibitors
17| 17 17|
16| 16 16|
15| 15 15|
14| 14| 14|
13| 13| 13|
12| 12| 12
SA-identified barcode of b 0 0
unbalanced processes* . 9 .
p : p
5| 5| 5|
4 4 4|
3 3 3|
2 2 2
1 1 1
. . Stat5a., cKit,
SA-prt:dlctetd*grote'" PMAPK, cKit Her2/BRAF, PMAPK, cKit
argets pS(473)Akt

* Il Active process - positive amplitude [Z] Active process - negative amplitude [ ] Inactive process
** See the full list of process-specific protein targets in Supplementary Data 5

Fig. 4 Patient-specific altered signaling signatures, or barcodes, can guide the design of personalized combination therapies. For each
tumor, processes with amplitudes exceeding the threshold values (see “Methods” section) were selected and included in patient-specific sets
of unbalanced processes. Those sets were converted into schematic barcodes. The sign of the amplitude denotes the direction of the
imbalance, i.e., the same unbalanced process can deviate to opposite directions in different patients. Central upregulated proteins from each
process were suggested as potential targets for personalized drug combinations.

simultaneously (Fig. 4). Patient TCGA-EB-A97M carries BRAF", as
does patient TCGA-BF-AAOX (Fig. 4). However, unbalanced
process 6, which is active in patient TCGA-BF-AAQX, is inactive
in patient TCGA-EB-A97M (Fig. 4). In addition, patient TCGA-EB-
A97M harbors three active unbalanced processes that are not
active in the tumor of patient TCGA-BF-AAOX-processes 3, 4, and
8 (Fig. 4). Therefore, the list of proteins that should be targeted in
order to collapse the tumor differs in these patients (Fig. 4).

We obtained from the GDC Data Portal (https://portal.gdc.
cancer.gov/) data regarding genomic mutations that often occur
in SKCM?® (Supp. Data 6). We selected 6 mutually exclusive
mutations (including BRAFY®°%, Supp. Fig. 4). We found that SKCM
patients harboring the same genomic mutations were character-
ized by various barcodes according to PaSSS analysis (Supp. Fig. 4)
and may thus demand distinct treatments. This result supports the
notion that analysis of genomic biomarkers alone may overlook
patient-specific aberrations.

A375 and G361 BRAF-mutated melanoma cell lines harbor
distinct altered signaling signatures
To experimentally validate our hypothesis that BRAF*°°® harbor-
ing cells may benefit from drug combinations that are designed
based on the PaSSS identified at the time of diagnosis, we turned
to analyze a different dataset containing 290 cell lines originating
from 16 types of cancer, including blood, bone, breast, colon, skin,
uterus, and more (see “Methods” section). The cell lines were each
profiled for the expression levels of 216 proteins and phospho-
proteins using a reverse-phase protein assay (RPPA).

PaSSS analysis of this cell line dataset revealed that 17
unbalanced processes were repetitive in the 291 cell lines (Supp.
Data 7, Supp. Data 8, Supp. Fig. 5 and “Methods” section).

Published in partnership with The Hormel Institute, University of Minnesota

We randomly selected two melanoma cell lines, A375 and G361,
for experimental validation. Both cell lines harbor the mutated
BRAFY®°E, |n the clinic, patients bearing tumors with BRAF'6%°F
would all be treated similarly, with BRAF inhibitors alone or in
combination with MEK inhibitors”'>.

Our analysis, however, shows that A375 and G361 each harbor a
distinct PaSSS (Figs. 5 and 6). The PaSSS of A375 consisted of three
unbalanced processes, 1, 3, and 6 (Fig. 5a). G361, on the other
hand, was found to harbor a PaSSS consisting of unbalanced
processes 1 and 6 (Fig. 6a).

Since all of the proteins that participate in a certain unbalanced
process undergo coordinated changes and the vast majority of
them are functionally connected based on STRING (STRING
database) (Supp. Fig. 5), we assumed that targeting one or two
central nodes in a process should suffice to inhibit the altered
signaling flux through the specific unbalanced process. We further
hypothesized that an effective drug combination should consist of
drugs that, together, target all the unbalanced processes that are
active in the tumor. We have recently demonstrated that targeting
one central node leads to reduced flux through the process in
which it participates, while leaving other processes essentially
unaffected'". Therefore, we searched unbalanced processes 1, 3,
and 6 for upregulated central nodes that can be targeted by
drugs, preferably FDA-approved (The full lists of proteins that
participate in the different unbalanced processes are presented in
Supp. Data 8, and the images of the unbalanced processes,
including the functional connections according to STRING can be
found in Supp. Fig. 5). An upregulation of pMEK1/2, GAPDH, and
PKM2 was attributed to unbalanced process 6 (Fig. 5b, Fig. 6b),
while unbalanced process 3 was characterized by an upregulation
of PDGFRB (Fig. 5b), and unbalanced process 1 involved
upregulation of pS6K and pS6 (Fig. 5b, Fig. 6b). We, therefore,
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Fig. 5 A375 melanoma cells altered signaling signature and SA-based treatment. Even though A375 cells harbor BRAFV®?%, as do
G361 cells, they were found to be characterized by a different set of active unbalanced processes, or PaSSS. a Barcode representing the PaSSS
of A375 cells, namely the set of active unbalanced processes based on PaSSS analysis. b Zoom-in images of the unbalanced processes active in
A375 cells, and the drugs targeting the central proteins in each process. The upregulated proteins are colored red and the downregulated
proteins are colored blue. ¢, d Survival rates of cells in response to different therapies. The cells were treated with the predicted combination
(*) to target A375, the treatments used in the clinics for BRAF mutated melanoma malignancies, monotherapies of each treatment and the
predicted combination used to target BRAF mutated melanoma cell line G361. The combination predicted to target A375 was more efficient
than any other treatment. e Results of the survival assay (shown in panels ¢ and d) are shown as a heatmap. f Western blot results after
treatment with different therapies. The predicted combination depletes the signaling in A375 cells as represented by a decrease in
phosphorylation levels of pS6, pERK, pAkt, pPKM2, and pPDGFRf. Akt remains active when the cells are treated with monotherapies-
trametinib or dabrafenib, and the combination therapies-dabrafenib + trametinib or trametinib + 2-deoxyglucose, the predicted combination

of G361. g A375 cells were treated as indicated for 72 h and then the

viability of the cells was measured in an MTT assay. The effect of the

predicted combinations (marked in the figure with asterisk signs) was superior to combinations and single drugs expected to partially inhibit

the cell line-specific altered signaling signature.

predicted for A375 cells that a combination of trametinib (a
PMEK1/2 inhibitor, commonly used for melanoma in clinics; also
inhibits pS627-%%) and dasatinib (a multi-kinase inhibitor targeting
also PDGFRP) should effectively target the three unbalanced
processes that constitute the PaSSS of these cells (Fig. 5b). The
selection of a multi-kinase inhibitor, dasatinib, to inhibit PDGFRB
instead of a more specific kinase inhibitor was motivated by
reports showing that induced expression of certain biomarkers,
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such as PRKCA and CAV1, was associated with the efficient activity
of dasatanib in tissues®®*°, PKC and CAV1 were associated with
unbalanced process 3 along with PDGFRB, and therefore we
selected dasatinib to target this unbalanced process.

Based on the PaSSS of G361, trametinib should effectively
target both unbalanced processes, 1 and 6 (Fig. 6b). However,
unbalanced process 6 was assigned a relatively high amplitude in
G361 cells (Supp. Data 7). Thus, we decided to combine trametinib
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Fig. 6 G361 melanoma cells altered signaling signature and treatment. a Barcode representing the PaSSS of G361 cells, namely the set of
active unbalanced processes identified by PaSSS analysis. b Zoom-in images of the unbalanced processes active in G361 cells, and the drugs
targeting the central proteins in each process. The upregulated proteins are colored red and the downregulated proteins are colored blue. ¢, d
Survival rates of cells in response to different therapies. The cells were treated with the predicted combination (*) to target G361, the
treatments used in the clinics for BRAF mutated melanoma malignancies, monotherapies of each treatment and the predicted combination
used to target BRAF mutated melanoma cell line A375. The combination predicted to target G361 was more efficient than any other
treatment. e Results of the survival assay (shown in panels ¢ and d) are shown as a heatmap. f Western blot results after treatment with
different therapies. The predicted combination depletes the signaling in G361 cells as represented by a decrease in phosphorylation levels of
pS6, pERK, and pAkt. Akt remains active when the cells are treated with dabrafenib or dabrafenib + trametinib. g G361 cells were treated as
indicated for 72 h and then the viability of the cells was measured in an MTT assay. The effect of the predicted combination (marked in with an
asterisk sign) was superior to combinations and single drugs expected to partially inhibit the cell line-specific altered signaling signature.

with another inhibitor that will target additional central nodes in
unbalanced process 6: 2-deoxy-D-glucose (2-DG; a glycolysis
inhibitor, therefore affecting GAPDH and PKM2; Fig. 6b).

The predicted drug combinations are cell line-specific and
highly efficacious

In A375 cells, trametinib, dabrafenib, and dasatinib killed up to
~80% of the cells, when administered as monotherapies in a range
of concentrations between 1nM and 1uM (Fig. 5¢, e). Erlotinib
was used as a negative control, as it was predicted not to target
any major node in the PaSSS of A375 cells, and indeed killed only
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up to ~15% of the cells (Fig. 5¢, e). 2-DG, which was predicted to
only partially target the unbalanced flux, namely one of the three
unbalanced processes active in A375 cells (unbalanced process 6;
Fig. 5a, b), killed up to ~30% of the cells when administered as
monotherapy (Fig. 5¢, e). The clinically used drug combination,
trametinib and dabrafenib, was more effective than each drug
alone and killed up to ~85% of the cells (Fig. 5d, e). However, we
predicted that the clinically used combination would not be
optimal in A375 cells, because neither trametinib nor dabrafenib
was predicted to target unbalanced process 3 (Fig. 5a, b). Indeed,
when trametinib and dabrafenib were administered to the cells,
pPDGFRPB was not inhibited (Fig. 5f), suggesting that unbalanced
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process 3 remained active in A375 cells (Fig. 5b). Interestingly, the
combination of trametinib and dabrafenib, or trametinib alone,
also invoked an upregulation of pAkt (Fig. 5f). We hypothesize that
this can be explained by the fact that pAkt is anti-correlated to
PMEK in unbalanced process 6 (Fig. 5b), and therefore in cases
where the unbalanced flux is only partially inhibited, the levels of
pAkt can increase when pMEK is inhibited. This result corresponds
to the previous findings showing that MEK inhibitors may induce
Akt activation®'. Dasatinib, however, abolished the functional
activity of PDGFRp, but did not decrease the levels of pS6 and
pS6K from process 1, pERK2 (MEK substrate that participates in
process 6; Supp. Data 8) and pPKM2 from process 6 (Fig. 5f),
suggesting that only unbalanced process 3 was inhibited by
dasatinib (Fig. 5b). p53 is anti-correlated to pMEK in unbalanced
process 6 (Fig. 5b) and was upregulated as well when trametinib
was added to A375 cells (Fig. 5f).

Overall, these results strengthen the notion of the indepen-
dence of the unbalanced processes in A375 cells and underscore
the need for concurrent inhibition of patient-specific active
unbalanced processes in cancer. Indeed, our predicted combina-
tion for A375, trametinib, and dasatinib (Fig. 5b), was highly
efficacious and killed up to ~95% of the cells (Fig. 5d, e).
Trametinib and dasatinib, when combined, diminished pS6, pERK,
pS6K, and pPKM2 signaling, lowered the levels of pPDGFRf{, and
increased p53 levels (Fig. 5f).

We tested the effect of the combination predicted for
G361 cells, trametinib and 2-DG, on A375 cells, and found that it
was less effective in inhibiting the intracellular signaling (Fig. 5f),
and in inhibiting cell survival (Fig. 5d, e) as compared with the
drug combination predicted specifically for the PaSSS of A375. We
assume that leaving certain elements in the unbalanced signaling
untargeted may not only enrich the cells/subpopulations harbor-
ing the untargeted processes but also invoke other, previously
undetected pathways (e.g., subpopulations that were initially
small and undetectable, and increased during treatment, or rather
formed anew during treatment), thereby leading to a switch from
one signaling state to another.

In G361 cells, trametinib and 2-DG, both predicted by PaSSS
analysis to target the unbalanced signaling flux in G361 cells,
demonstrated efficient killing of G361 cells, achieving up to ~65%
and ~75% killing, respectively, when administered to the cells as
monotherapies at 1 uM (trametinib) and 1 mM (2-DG) (Fig. 6¢, e).
Dasatinib, which was highly effective in A375 cells, demonstrated
a very weak effect in G361 cells, killing only ~20% of the cells
when administered at 1 pM (Fig. 6¢,e). Erlotinib was used as a
negative control, as it was not expected to target any of the
unbalanced processes active in G361 cells (Fig. 6b), and indeed
killed only up to ~10% of the cells (Fig. 6¢, e).

When we tested combinations of drugs, we found that when
G361 cells were treated with a combination of trametinib and
dabrafenib, the combination was superior to each drug adminis-
tered alone, and reached ~90% killing of the cells when both
drugs were administered at 1 uM (Fig. 6d, e). However, despite the
relatively strong effect, this combination evoked pAkt (Fig. 6f),
suggesting that some altered signaling pathways remained active
in the cells. The results of our analysis denoted that unbalanced
process 6 was active with a relatively high amplitude in G361 cells
(Supp. Data 7). We, therefore, assumed that the reason that the
combination of trametinib and dabrafenib did not abolish the
unbalanced signaling flux entirely is that unbalanced process 6
was not effectively shut off, allowing some metabolic activity, and
possibly signaling rearrangements. We predicted that the addition
of 2-DG to trametinib will more effectively collapse the PaSSS that
emerged in G361 cells, because of 2-DG targets GAPDH and PKM2,
two additional central upregulated nodes in unbalanced process 6
(Fig. 6b). We indeed found that the combination of trametinib and
2-DG abolished the cells almost completely when trametinib and
2-DG were added at 1 uM and 2 mM, respectively (Fig. 6d, e). The
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combination of trametinib and 2-DG also effectively turned off the
cellular signaling, as represented by the inhibition of pS6, pAkt,
pS6K, and pERK, while each drug alone or other combinations we
tested failed to do so, leaving some of the elements of the
signaling active (Fig. 6f). For example, 2-DG alone reduced pPKM2
levels but did not influence the levels of pS6 and pERK (Fig. 6f),
suggesting that process 1 remained active and process 6 was only
partially inhibited (Fig. 6b).

When tested in an MTT assay (assessing metabolic activity of
the cells), the predicted combinations demonstrated higher
efficacy and selectivity and were superior to other drug
combinations or to each inhibitor alone (Figs. 5g, 69). Interestingly,
note that while the survival assay shows that treatment of
G361 cells with dabrafenib+trametinib resulted in ~90% killing of
the cells (Fig. 6d, e), the results of the MTT assay showed that the
treated cells remained highly metabolically active (Fig. 6f),
suggesting that the treatment with dabrafenib + trametinib
leaves the living cells viable. The PaSSS-based prediction,
trametinib + 2-DG, however, led to significant inhibition of G361
cell survival, as well as viability (Fig. 6d,e,9).

As opposed to common therapies used in clinics, the
rationally designed cell line-specific drug combinations
prevented the development of drug resistance in vitro

We hypothesized that since our predicted drug combinations
target the main altered processes simultaneously, they may delay
or prevent the development of drug resistance (Fig. 7a). To test
this hypothesis, G361 and A375 cells were treated twice a week
with single inhibitors or with different combinations of inhibitors,
for 4 weeks.

In G361 cells, 1 nM of trametinib demonstrated little to no effect
on the survival of the cells (Fig. 7b). 1 uM of dabrafenib killed up to
~92% of the cells at day 21, and then the cells began to regrow,
even though the drug was still administered to the cells twice a
week (Fig. 7b). 2 mM of 2-DG killed up to ~78% of the cells at day 7,
and then the cells began to regrow regardless of the presence of
the drug (Fig. 7b). Combined treatment with trametinib and
dabrafenib, a combination expected to partially target the altered
signaling signature (Fig. 6a, b), effectively killed up to ~96% of the
cells at day 21, but then the cells began to regrow at day 28 in the
presence of the drugs (Fig. 7b). However, when the cells were
treated with the G361 PaSSS-based combination, trametinib, and 2-
DG (Fig. 6a, b), the cells continued to die until they reached a
plateau at day 14, and no regrowth of the cells was evident (Fig.
7b).

Similar results were obtained in A375 cells - all monotherapies
led to cellular regrowth after several weeks of treatment (Fig. 7c).
Combined treatment with trametinib and dabrafenib achieved
88% killing at day 3, but then the cells grew until they reached
~20% survival at day 28 (Fig. 7c). Trametinib and 2-DG killed 55%
of the cells at day 3 with an increase in effect over time, reaching
~18% survival at day 28 (Fig. 7c). The A375 PaSSS-based
combination, trametinib, and dasatinib (Fig. 5a, b), demonstrated
a significant killing effect that became stronger with time, reaching
near complete killing of the cells at 28 days (Fig. 7c).

These results clearly show that the PaSSS-based combinations
predicted for each melanoma cell line prevent cellular regrowth
in-vitro. Thus, targeting the actual altered signaling state,
identified in the melanoma cells, and not necessarily the primary
driver mutations, can be especially effective in disturbing the
signaling flux and preventing cellular regrowth.

The predicted drug combinations were superior to clinically
used therapies in vivo

We turned to examine the effect of the PaSSS-predicted drug
combination in murine models. The cells were injected subcuta-
neously into NSG mice, and then treated 6 times a week for up to
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4 weeks (Fig. 8; Supp. Fig. 7 shows that the mice demonstrated no
significant weight loss during treatment).

A375 tumors that were treated with trametinib alone or with
the combination trametinib 4+ 2-DG (predicted to be efficient for
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G361 but not for A375 cells (Figs. 5, 6)) demonstrated slightly
reduced growth relative to vehicle-treated tumors (Fig. 8a). When
A375 tumors were treated with the clinically used combination,
trametinib + dabrafenib, a stronger effect was observed (Fig. 8a).
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PaSSS analysis predicted that trametinib + dabrafenib would
achieve partial inhibition of the altered signaling in A375 cells
(Fig. 5a, b) and that adding dasatinib to trametinib should achieve
a more efficient inhibition of intracellular signaling that have
emerged in A375 cells (Fig. 5a, b). Indeed, the combination
trametinib + dasatinib demonstrated an effect superior to all
other treatments and significantly inhibited the growth of A375
tumors (Fig. 8a, Supp. Fig. 6e).

Trametinib alone, or in combination with dasatinib or dabrafe-
nib, was predicted to partially target the PaSSS of G361 cells (Fig.
6a, b). And indeed, these treatments demonstrated a reduction in
tumor growth relative to vehicle treatment (Fig. 8b). However, the
PaSSS-based combination, trametinib + 2-DG, demonstrated the
strongest effect, achieved significant inhibition of G361 tumor
growth (Fig. 8b), and reduced the signaling flux (Supp. Fig. 6c).

To further validate the PaSSS-based concept presented in this
study we selected an additional BRAFY®?% cell line, A2058. The
signaling signature of A2058 consists of a single unbalanced
process, unbalanced process 1 (Supp. Data 7, 9), which is active in
A375 and G361 as well (unbalanced process 1 is represented by
the level of the central node, pS6K, in Supp. Fig. 6a). In contrast,
process 6 (active in G361 and A375; represented by pMEK) and
process 3 (active in A375; represented by PDGFR) were not found
to be active in A2058 (Supp. Fig. 6a, Supp. Data 7 and 9). Thus, we
predicted that A2058 malignancy should be treated with
trametinib monotherapy. Figure 8c demonstrates that a low
concentration of trametinib (0.5 mg/kg) was most effective (also
Supp. Fig. 6d), and intriguingly more effective than a higher
concentration of trametinib (1 mg/kg, Fig. 8c), corresponding to
previously published results showing that high concentrations of
trametinib were ineffective in A2058 melanoma®2. We hypothesize
that the administration of higher concentrations of trametinib
may be followed by activation of anti-apoptotic pathways as was
reported earlier®. Adding 2-DG did not significantly change the
growth rate of the tumor while adding dabrafenib decreased the
success of the treatment (Fig. 8c). Interestingly, adding either 2-DG
or dabrafenib to trametinib led to increased pAkt and pS6 levels
(Supp. Fig. 6d), suggesting again that random addition of drugs
(i.e., not based on personalized signatures) to the treatment may
evoke different, sometimes undesired, signaling feedback
responses.

These results point to the significantly higher efficiency of the
PaSSS-predicted combinations relative to drug combinations used
in clinics. Moreover, we demonstrated the selectivity of the
individualized treatments. The predicted and very effective
combination for one BRAF'®°*® melanoma malignancy was
significantly less effective for the other, and vice versa (Fig. 8).
Our results underscore the need for personalized treatment for
each melanoma patient.

Although the predicted combinations achieved an effect
superior to the combination used in clinics, they did not flatten
the tumor growth curves in all cases. This raises the possibility that
certain subpopulations in the tumors were overlooked. This can
result from the growth of subpopulations that were initially very
small and were therefore undetected in bulk proteomics.
Alternatively, such subpopulations may form during the course
of treatment due to new unbalanced processes that are induced
in response to environmental changes (e.g, communication
between cancer cells and stroma, which cannot be detected in
in-vitro assays)**. Taking several biopsies during treatment may
resolve such expanded, initially undetected, cellular subpopula-
tions and help to adjust the personalized treatment accordingly.

DISCUSSION

With the accelerated gain of knowledge in the field of melanoma
therapy and cancer research, it is becoming clear that tumors
evolving from the same anatomical origins cannot necessarily be
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treated the same way>. Inter tumor heterogeneity results in
various response rates of patients to therapy>®~%. Herein we
extend this notion and show that even tumors that were initially
driven by the same oncogenes, specifically BRAF'®°-driven
melanoma tumors, often evolve in different molecular manners®?,
giving rise to distinct altered signaling signatures, or PaSSS
(patient-specific altered signaling signature), at the time of biopsy.
We show that 17 altered molecular processes are repetitive
among the 725 SKCM and THCA tumors. Each tumor is
characterized by a specific PaSSS, i.e,, a subset of ~1-3 unbalanced
processes. Accordingly, each patient is assigned a unique barcode,
denoting this PaSSS. We show that the collection of 725 tumors is
described by 138 distinct barcodes, suggesting that the cohort of
patients consists of 138 types of cancer, rather than only 4 types
(SKCM or THCA; BRAFYT or BRAFY5%%F), These 138 types of tumors,
each representing a barcode, or a sub-combination of 17
unbalanced processes, are mapped into a multi-dimensional
space, consisting of 17 dimensions. Once the tumor-specific
information is transformed into a multi-dimensional space,
treating these thousands of tumors becomes at an arm’s reach.
The specific barcode assigned to each patient allows the rational
design of patient-tailored combinations of drugs, many of which
already exist in clinics.

We found that 353 BRAFY®°°® and BRAF"T melanoma tumors
are described by 87 distinct barcodes of unbalanced processes
and that 372 BRAFY%°°F and BRAFT THCA tumors are described by
54 barcodes. Interestingly, the barcodes appeared to be almost
mutually exclusive between SKCM and THCA tumors (Supp. Data
4). While this finding suggests that the molecular processes
underlying SKCM and THCA tumor evolution may have organ-
specific differences, a large number of cancer type-specific
barcodes and the large number of barcodes describing single
patients underscore the need for personalized diagnosis and
treatment.

We show that tumors harboring BRAFY6%°F can harbor distinct
PaSSSs, and in contrast, that tumors can harbor the same PaSSS
regardless of whether they carry BRAFY®°E or BRAF"'. We
therefore deduce that profiling melanoma patients according
to their BRAF mutational status is insufficient to assign effective
therapy to the patient. Since the unbalanced processes each
harbor a specific group of co-expressed altered proteins, they
should all be targeted simultaneously to reduce the altered
signaling flux in the tumor.

We demonstrate this concept experimentally by analyzing a cell
line dataset and predicting efficiently targeted drug combinations
for three selected BRAFY®°F melanoma cell lines, G361, A375, and
A2058. We show that although all cell lines contain the mutated
BRAFY®°®E they harbor distinct barcodes, and demand different
combinations of drugs (Figs. 5-8). We demonstrate that our
PaSSS-based combinations were significantly more efficient than
the drug combination often prescribed clinically to BRAFY6%°F
patients, dabrafenib+trametinib (Figs. 5-8). Moreover, we demon-
strated the selectivity of the PaSSS-based drug combinations. The
highly efficient PaSSS-based drug combination for one melanoma
malignancy can be significantly less efficient for another
melanoma and vice versa.

We note, however, that the PaSSS-based drug combinations did
not achieve complete flattening of the tumor growth curves
in vivo in some of the cases (Fig. 8). We hypothesize that an
approach that, for example, tests the tumor several times during
the treatment to examine whether small, previously undetected
cellular subpopulations have expanded due to, for example,
stroma-tumor communication, might be required®*’. A more
holistic approach that combines immunotherapy might be
beneficial as well. This is a highly interesting topic that is currently
under study in our laboratory.

The results reported here highlight the urgent need for the
design of personalized treatments for melanoma patients based
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on individualized alterations in signaling networks rather than on
initial mutational events. Furthermore, the study establishes PaSSS
analysis as an effective approach for the design of personalized
cocktails comprising FDA-approved drugs. Personalized targeted
cocktails, which may be further combined with immunotherapy
strategies, are expected to provide long-term efficacy for
melanoma patients.

METHODS
Datasets

This study utilized a protein expression dataset consisting of 353 skin
cutaneous melanoma (SKCM) samples and 372 thyroid carcinoma (THCA)
samples. The samples were selected from a large TCPA dataset containing
7694 cancer tissues from various anatomical origins (PANCAN32, level 4
(The Cancer Proteome Atlas Portal, http://tcpaportal.org)). Each cancer
tissue was profiled on a reverse-phase protein array (RPPA) for 258 cancer-
associated proteins. After filtering out proteins that had NA values for a
significant number of patients, 216 proteins remained for further analysis.

The dataset for the cancer cell lines was downloaded from the TCPA
portal (The Cancer Proteome Atlas Portal, http://tcpaportal.org). The data
was already published by Li et al.*®. A part of the original dataset
containing 290 cell lines from 16 types of cancers was selected, including
breast, melanoma, ovarian, brain, blood, lung, colon, head and neck,
kidney, liver, pancreas, bone, and different types of sarcomas, stomach-
esophagus, uterus and thyroid cancers. The cell lines in the dataset were
profiled for 224 phospho-proteins and total proteins using RPPA.

Surprisal analysis

Surprisal analysis is a thermodynamic-based information-theoretic
approach®' ™, The analysis is based on the premise that biological
systems reach a balanced state when the system is free of constraints**,
However, when under the influence of environmental and genomic
constraints, the system is prevented from reaching the state of minimal
free energy, and instead reaches a state which is higher in free energy (in
biological systems, which are normally under constant temperature and
constant pressure, minimal free energy equals maximal entropy).

Surprisal analysis can take as input the expression levels of various
macromolecules, e.g., genes, transcripts, or proteins. However, be it
environmental or genomic alterations, it is the proteins that constitute the
functional output in living systems, therefore we base our analysis on
proteomic data. The varying forces or constraints, that act upon living cells
ultimately manifest as alterations in the cellular protein network. Each
constraint induces a change in a specific part of the protein network in the
cells. The subnetwork that is altered due to the specific constraint is
termed an unbalanced process. The system can be influenced by several
constraints thus leading to the emergence of several unbalanced
processes. When tumor systems are characterized, the specific set of
unbalanced processes is what constitutes the tumor-specific signaling
signature.

Surprisal analysis discovers the complete set of constraints operating on
the system in any given tumor, k, by utilizing the following equation:*” In
Xi(k) = In X2 (k) — £GigAq(k), where i is the protein of interest, X? is the
expected expression level of the protein when the system is at the steady-
state and free of constraints, and XGjA,(k) represents the sum of
deviations in the expression level of the protein i due to the various
constraints, or unbalanced processes, that exist in the tumor k.

The term G;, denotes the degree of participation of protein i in the
unbalanced process a, and its sign indicates the correlation or anti-
correlation between proteins in the same process (Supp. Data 1). Proteins
with significant G;, values are grouped into unbalanced processes (Supp.
Fig. 1, Supp. Data 2) that are active in the dataset'®.

The term A4(k) represents the importance of the unbalanced process a in
the tumor k (Supp. Data 1).

The partial deviations in the expression level of the protein i due to the
different constraints sum up to the total change in expression level
(relative to the balance state level), £GjgAq(k).

For complete details regarding the analysis please refer to the Sl of
reference'".
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Determination of the number of significant unbalanced
processes

The analysis of the 725 patients provided a 725 x 216 matrix of A,(k) values,
such that every row in the matrix contained 216 values of A4(k) for 725
patients, and each row corresponding to an unbalanced process (Supp.
Data 1). However, not all unbalanced processes are significant. Our goal is
to determine how many unbalanced processes are needed to reconstruct
the experimental data, i.e., for which value of n: In (Xj(k)/M) = —32G;aAq(k). To
find n, we performed the following two steps:

Reproduction of the experimental data by the unbalanced processes was
verified. We plotted XG;Aq(k) for a =1, 2, ..., n against In X;(k) for different
proteins, i, and for different values of n, and examined the correlation
between them as n was increased. An unbalanced process, a =n, was
considered significant if it improved the correlation significantly relative to
a=n-1 (Supp. Fig. 2) (see reference 9 for more details).

Processes with significant amplitudes were selected. To calculate threshold
limits for Aq4(k) values (presented in Supp. Data 1 and Supp. Fig. 3) the
standard deviations of the levels of the 10 most stable proteins in this
dataset were calculated (e.g., those with the smallest standard deviations
values). Those fluctuations were considered as baseline fluctuations in the
population of the patients which are not influenced by the unbalanced
processes. Using standard deviation values of these proteins the threshold
limits were calculated as described previously*®. The analysis revealed that
from a = 18, the importance values, A,(k), become insignificant (i.e., do not
exceed the noise threshold), suggesting that 17 unbalanced processes are
enough to describe the system.

For more details see references'®’.

Generation of functional subnetworks

The functional sub-networks presented in Figs. 2, 5, 6, and Supp. Figs. 1
and 5 were generated using a python script as described previously'®.
Briefly, the goal was to generate a functional network according to the
STRING database, where proteins with negative G values are marked blue
and proteins with positive G values are marked red, to easily identify the
correlations and anti-correlations between the proteins in the network. The
script takes as an input the names of the genes in the network and their G
values, obtain the functional connections and their weights from the
STRING database (string-db.org), and then plots the functional network
(using matplotlib library).

Barcode calculation

The barcodes of unbalanced processes were generated using a python
script. For each patient, A,(k) (a=1, 2, 3, ..., 17) values were normalized as
follows: If Aq(k)>2 (and is, therefore, significant according to the
calculation of threshold values) then it was normalized to 1; if Ay (k) < —2
(significant according to threshold values as well) then it was normalized to
—1; and if —2 <A4(k) <2 then it was normalized to 0.

Cell culture

The BRAF mutated melanoma cell lines, A375, G361, and A2058 were
obtained from the ATCC and grown in DMEM (G361 and A2058) or RPMI
(A375) medium. The cells were supplemented with 10% fetal calf serum
(FCS), L-glutamine (2 mM), 100 U/ml penicillin, and 100 mg/ml streptomy-
cin and incubated at 37" °C in 5% CO,. The cell lines were authenticated at
the Biomedical Core Facility of the Technion, Haifa, Israel.

Antibodies and western blot analysis

The cells were seeded into 6 well plates (~1.5 x 10° cells/well) and grown
under complete growth media. A375 cells were treated the next day as
indicated for 48 h in a partial starvation medium (RPMI medium with 1.2%
FCS). G361 and A2058 cells were treated in a complete growth medium for
24 h. The dead cells were collected from the medium. The adherent cells
were then treated with IGF for 15 min. The cells were then lysed using hot
sample buffer (10% glycerol, 50 mmol/L Tris-HCI pH 6.8, 2% SDS, and 5% 2-
mercaptoethanol) and western blot analysis was carried out. The lysates
were fractionated by SDS-PAGE and transferred to nitrocellulose mem-
branes using a transfer apparatus according to the manufacturer’s
protocols (Bio-Rad). Blots were developed with an ECL system according
to the manufacturer's protocols (Bio-Rad).
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Anti-p-PKM2 (Tyr105) (cat. no. 3827S; 1:1000), anti-p-S6 (Ser235/236)
(cat. no. 4858S; 1:1000), anti-p-PDGFRP (Y751) (cat. no. 4549S; 1:1000), anti-
p-AKT (Ser473) (cat. no. 4060S; 1:1000), anti-p-p70S6K (Tyr389) (cat. no.
9205L; 1:1000), anti-p-Mek (Ser217/221) (cat. no. 9154S; 1:1000) and anti-
total -PARP (cat. no. 9542S; 1:1000) antibodies were purchased from Cell
Signaling Technology, Inc. Anti-p-ERK2 (E4) (cat. no. SC7383; 1:200), anti-
total-P53 (cat. no. SC126; 1:200) and anti-total-GAPDH (cat. no. SC47724;
1:200) antibodies were purchased from Santa Cruz Biotechnology.

In each of the figures, all blots were derived from the same experiment
and were processed in parallel.

Methylene blue assay

In a 96 well plate, the cells were seeded and treated as indicated for 72 h.
The cells were fixed with 4% paraformaldehyde and then stained with
methylene blue. To calculate the number of surviving cells, the color was
extracted by adding 0.1 M Hydrochloric acid and the absorbance was read
at 630 nm.

MTT assay

Cells were seeded and treated as indicated in a 96 well plate for 72 h. Cell
viability was checked using an MTT assay kit (Abcam). Equal volumes of
MTT solution and culture media were added to each well and incubated
for 3 h at 37" °C. MTT solvent was added to each well, and then the plate
was covered in aluminum foil and put on the orbital shaker for 15 min.
Absorbance was read at 590 nm within 1 h.

Resistance assay

Cells were seeded in multiple 96 well plates and treated as needed in
various time points (3, 7, 14, 21, 28 days). At every time point, the cells
were fixed with 4% paraformaldehyde and then stained with methylene
blue. The number of cells that survived at each time point was quantified
by adding 0.1 M Hydrochloric acid and reading the absorbance at 630 nm.

Animal studies

The cells—A375 (0.25 x 10° cells/mouse), G361 (0.5 x 10° cells/mouse), or
A2058 (0.5 x 10° cells/mouse)—were inoculated subcutaneously into NSG
mice (n=7-8 mice per group), and once the volume of the tumors
reached 50 mm?3, treatments were initiated 6 times a week for up to
4 weeks. Tumor volume was measured twice a week. Trametinib (0.5 mg/
kg), dasatinib (35 mg/kg) and dabrafenib (35 mg/kg) were suspended in an
aqueous mixture of 0.5% hydroxypropyl methylcellulose + 0.2% tween 80
and administered by oral gavage. 2-deoxy-D-glucose (500 mg/kg) was
suspended in saline and injected intraperitoneally. All the drugs were
purchased from Cayman chemicals (Enco, Israel). The Hebrew University is
an AAALAC International accredited institute. All experiments were
conducted with approval from the Hebrew University Animal Care and
Use Committee. Ethical accreditation number: Md-17-15174-4.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The human tumor dataset that supports the findings of this study is publicly available
for download from the TCPA portal (The Cancer Proteome Atlas Portal, http://
tcpaportal.org), https://tcpaportal.org/tcpa/download.html Pan-Can 32. The cell line
dataset that supports the findings of this study is publicly available for download
from the TCPA portal (The Cancer Proteome Atlas Portal, http://tcpaportal.org),
https://tcpaportal.org/mclp/#/datasets.
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