VIROLOGICA SINICA 2016, 31 (2): 110-117
DOI: 10.1007/s12250-015-3691-3

REVIEW

Recent advances in synthetic carbohydrate-based human
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An effective vaccine for human immunodeficiency virus (HIV) is urgently needed to prevent HIV
infection and progression to acquired immune deficiency syndrome (AIDS). As glycosylation of
viral proteins becomes better understood, carbohydrate-based antiviral vaccines against special
viruses have attracted much attention. Significant efforts in carbohydrate synthesis and
immunogenicity research have resulted in the development of multiple carbohydrate-based HIV
vaccines. This review summarizes recent advances in synthetic carbohydrate-based vaccines

design strategies and the applications of these vaccines in the prevention of HIV.
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INTRODUCTION

Human immunodeficiency virus (HIV) continues to be a
major global public health issue, with more than 1.2 mil-
lion acquired immune deficiency syndrome (AIDS)-re-
lated deaths occurring yearly (UNAIDS, 2015). In 2014,
2 million individuals were newly infected with HIV-1,
and 36.9 million people were living with HIV-1 (UN-
AIDS, 2015). Combination antiretroviral therapy (cART)
or highly active antiretroviral therapy (HAART) has
been shown to reduce AIDS-related mortality and mor-
bidity (de Goede et al., 2015). Although cART has the
potential to dramatically prolong the life expectancy of
HIV-infected individuals, it does not provide a cure;
therefore, individuals receiving cART must continue
therapy for their entire lives and must overcome issues
associated with the side effects and high costs of therapy
(Tongo and Burgers, 2014; de Goede et al., 2015).
Moreover, cART may lead to the emergence of resistant
mutants. Therefore, an effective HIV vaccine is still ur-
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gently needed to prevent HIV infection and progression
to AIDS.

Since the first use of a vaccine by Edward Jenner in
1796, the development of cell culture and recombinant
DNA technologies has revolutionized vaccine design
(Rodrigues et al., 2015). In the middle of the 20th cen-
tury, attenuated and inactivated vaccines developed
through animal cell culture became the most commonly
used form of vaccination against viral infection. In the
late 20th century, recombinant DNA technologies facilit-
ated the development of subunit antiviral vaccines com-
prised of protein and/or DNA (Rodrigues et al., 2015).
To date, vaccines have been successfully applied for
eradication of several acute viral diseases, such as small-
pox, poliomyelitis, and measles (Minor, 2015). However,
the development of an HIV vaccine is more challenging
for several reasons, including the absence of a single
case of natural immunological protection against HIV in-
fection and the marked genetic variability of HIV-1 (de
Goede et al., 2015). Moreover, live attenuated forms of
viruses and inactivated viruses, which are typically used
in the development of many traditional vaccines, are not
suitable for developing HIV vaccines for safety reasons
(Tongo and Burgers, 2014).

Different HIV vaccine candidates have been tested in
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human clinical trials, including virus-like particles, pep-
tides, naked DNA, and viral vectors (Ensoli et al., 2014).
Ideally, a highly effective HIV vaccine would elicit
broadly neutralizing antibodies (bnAbs) to prevent infec-
tion and/or stimulate effective cytotoxic T lymphocyte
(CTL) responses to slow disease progression (Mann and
Ndung'u, 2015). To date, most vaccination trials have
failed to provide suppression of HIV replication and pre-
vention of AIDS progression (de Goede et al., 2015).
Moreover, human vaccination studies have failed to in-
duce bnAbs that target the envelope glycoprotein of
HIV, suggesting that antibody-dependent cellular virus
inhibition may play a key role (de Goede et al., 2015). A
useful focus for HIV vaccine development is the reverse
vaccinology approach, in which vaccines are designed
based on epitopes recognized by biologically active
monoclonal antibodies (mAbs) (Mayr and Zolla-Pazner,
2015).

To date, dozens of bnAbs have been isolated from pa-
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tients exhibiting chronic HIV-1 infection (Figure 1)
(McLellan et al., 2011; Pejchal et al., 2011; Walker et al.,
2011; Julien et al., 2013; Kong et al., 2013; Blattner et
al., 2014; Liu et al., 2015). HIV-1 envelope glycoprotein,
which plays a key role in viral tropism and the mem-
brane fusion process, is the only antigen accessible to
bnAbs (Moulard and Decroly, 2000; Burton and Mascola,
2015). HIV-1 envelope glycoprotein, consisting of the
exterior gp120 and the transmembrane gp41, can be
presented to the human immune system in many forms:
functional envelope trimers, nonfunctional and conform-
ationally rearranged envelope protein, and envelope tri-
mer after shedding of one gp120 and the gp41 stump
(Burton and Mascola, 2015). Importantly, only function-
al envelope trimers can be available to elicit neutralizing
antibody (nAb) response (Burton and Mascola, 2015).
The five general targets of isolated bnAbs are 1) the
gp120 variable loop1/2 (V1/V2) glycan (bnAbs: PG9,
PG16), 2) the gp120 variable loop 3 (V3) glycan (bnAbs:

PGS, PG16

Functional
envelope trimey
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Figure 1. Schematic of the forms of HIV-1 envelope protein and the binding sites of broadly HIV-1-specific neutralizing
antibodies. Below each bnAb site, the prototype antibodies that can bind at each site are listed.
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PGTI121, PGT125, PGT135, PGT128, 447-52D, B48E),
3) the CD4-binding site on gp120 (bnAbs: VRCO1,
VRC-PG04, 3BNC117/60, 3BC176/315, NIH45-46,
1P7), 4) the gp41 membrane proximal external region
(bnAbs: 18D3, 2F5, 4E10, Z13el, 10ES8), and 5) the
gp41-gp120 bridging region glycan (bnAbs: PGT151,
35022) (Crispin and Doores, 2015; Fernandez-Tejada et
al., 2015b; Haynes, 2015; Liu et al., 2015). Thus, most
bnAbs are directed toward HIV-1 envelope glycans,
which have previously been considered a “glycan shield”
that masks vulnerable epitopes on the surface of HIV
(Fernandez-Tejada et al., 2015b). Although envelope
glycans are added by the host cell machinery, the cluster-
ing of glycans can be arranged in a “non-self” pattern
(Crispin and Doores, 2015). As glycosylation of viral
proteins becomes better understood, the development of
carbohydrate-based antiviral vaccines against special vir-
uses has been considered as a potential strategy (Swarts
and Guo, 2009).

All cells are thought to be coated with different forms
of carbohydrates, including glycoproteins and glycol-
ipids in eukaryotic cells and capsular polysaccharides
and lipopolysaccharides in bacterial cells (Haji-
Ghassemi et al., 2015). The exposure of cell-surface car-
bohydrates and their unique structures on diverse patho-
gens make them attractive vaccine targets (Morelli et al.,
2011). Polysaccharides and glycoconjugates isolated
from pathogens have been referred to as valuable anti-
gens for vaccine development and have been used clinic-
ally against a range of infectious diseases, including
Neisseria meningitidis, Streptococcus pneumoniae, and
Haemophilus influenzae (Astronomo and Burton, 2010;
Fernandez-Tejada et al., 2015a). However, the isolation
of carbohydrates from biological material is a tedious
process often resulting in low yields of oligosaccharide
mixtures and is limited to organisms that can be cultured
(Hecht et al., 2009). Thus, many researchers have fo-
cused on chemical synthesis of structurally well-defined
oligosaccharides, which have been widely used in pre-
paring vaccines designed to target bacteria, virus, para-
sites, and cancer (Nikolaev and Sizova, 2011; Cai et al.,
2012; Alama et al., 2013; Anish et al., 2014; Cavallari et
al., 2014; Deng et al., 2014; Horiya et al., 2014b; Qin et
al., 2014; Danishefsky et al., 2015; Thompson et al.,
2015). One of the most successful examples of synthetic
carbohydrate-based vaccines is the Cuban vaccine
against Haemophilus influenza type b (Hib), which
provides protection comparable to that of licensed vac-
cines comprised of natural capsular polysaccharides (Hsu
etal., 2011).

In this review, we focus on recent carbohydrate-based
vaccine design strategies and their applications in HIV
vaccination.

ACCELARATION OF CARBOHYDRATE
SYNTHESIS

Regioselectivity and stereoselectivity are two major
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obstacles associated with approaching structurally well-
defined oligosaccharides (Hsu et al., 2011). Despite on-
going challenges, tremendous progress in the prepara-
tion of chemically synthesized oligosaccharides has been
achieved. Importantly, advances in glycochemistry, in-
cluding protecting groups, linkers, solid supports, and
glycosylation methods, have triggered the development
of methods for automated carbohydrate synthesis (See-
berger, 2015). Over the past few decades, tremendous
advances in automated oligosaccharide synthesis have
facilitated the preparation of biologically important
glycans (Seeberger and Werz, 2005; Hsu et al., 2011;
Krock et al., 2012; Eller et al., 2013; Seeberger, 2015).
Plante and coworkers introduced an automated solid-
phase oligosaccharide synthesizer, which was initially
adapted from a peptide synthesizer by addition of a reac-
tion vessel allowing for temperature adjustments (Plante
et al., 2001). Over the past 13 years, several generations
of home-built systems have been refined, resulting in a
commercial system, the Glyconeer 2.1 (Figure 2) (See-
berger, 2015). This synthesizer was found to increase the
efficiency of glycosylation reactions, as shown by the
synthesis of chains as long as 30-mers (Calin et al.,
2013), and could produce a variety of carbohydrates, in-
cluding glycosaminoglycans (GAGs) (Eller et al., 2013;
Kandasamy et al., 2014) and glycopeptides (Hurevich
and Seeberger, 2014). Recently, preparation of bacterial
(Kandasamy et al., 2013) and plant glycans (Schmidt et
al., 2015) has also been achieved using an automated oli-
gosaccharide synthesizer. Thus, most techniques now
available for solution-phase glycan synthesis can be car-
ried out with an automated solid-phase oligosaccharide
synthesizer (Seeberger, 2015).

Figure 2. The first commercial “automated oligosac-
charide synthesizer,” Glyconeer 2.1. The first Glycon-
eer 2.1 in China was placed in Jiangnan University in
2015.
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ENHANCMENT OF CARBOHYDRATE
IMMUNOGENICITY

The poor immunogenic response to carbohydrates is a
major challenge encountered in the development of car-
bohydrate-based vaccines (Astronomo and Burton,
2010). Various methods have now been developed to
overcome this serious problem. Major advances have
been triggered by the discovery that protein-conjugated
polysaccharides serve as T-cell dependent epitopes to ac-
quire the requisite immunochemical ability (Roy and
Chieh Shiao, 2011). These conjugates of B cell sugar
epitopes and nonhomogeneous T-cell protein epitopes
are considered semisynthetic carbohydrate vaccines
(Peri, 2013). Recently, completely synthetic carbo-
hydrate vaccines have been developed by replacing the
nonhomogeneous protein with a homogeneous T-cell
peptide epitope. Moreover, a single molecule assembled
using different chemical units with various functions can
be fully characterized by nuclear magnetic resonance
(NMR) and mass and infrared (IR) spectroscopy (Peri,
2013).

Recently, the advantages of nanoparticle vaccines, in-
cluding simultaneous antigen-loading, adjuvant codeliv-
ery, targeting properties, and increased circulation times,
have triggered the development of glycosylated nano-
particle vaccines (Peri, 2013). Liposomes have been
shown to be promising nanoparticles for multivalent dis-
play of synthetic carbohydrate epitopes, T-helper (Th)
peptide epitopes, and adjuvants (Ingale et al., 2007; Said
Hassane et al., 2009; Deng et al., 2014; Hu et al., 2015).
Gold nanoparticles (GNPs) have also been intensively
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studied as carriers of carbohydrate vaccines (Safari et al.,
2012).

DESIGN AND APPLICATION OF
CARBOHYDRATE-BASED HIV VACCINES

In addition to the “self” pattern feature of viral glycans,
variable glycosylation sites due to the constant mutation
of the viral genome is another obstacle in the application
of antiviral vaccines (Morelli et al., 2011). Despite this
challenge, tremendous advances in the characterization
of viral glycosylation have promoted the development of
carbohydrate-based HIV vaccines. The first broadly
neutralizing antibody isolated from infected individuals
is IgG 2G12, which targets high-mannose glycans of
gp120 (Hsu et al., 2011). Thus, the highly conserved
high-mannose-type N-glycan clusters (Figure 3) of
gp120 have become attractive targets in the develop-
ment of HIV-1 vaccines to induce a robust immune re-
sponse (Horiya et al., 2014b).

2G12-targeted vaccine design

Biochemical studies have proposed that ManyGIcNAc,
and Man, are two favorable targets of 2G12 (Adams et
al., 2004; Wang et al., 2004; Calarese et al., 2005); thus,
various new 2G12-targeted immunogens have been de-
signed and constructed through the regioselective coup-
ling of synthetic oligomannose with multivalent scaf-
folds (Wang, 2006). Some of these glycoconjugates are
further attached to rationally designed peptide (Li et al.,
2005; Krauss et al., 2007; Wang et al., 2007; Joyce et al.,
2008; Yang et al., 2010), carbohydrate (Wang et al.,

P
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Figure 3. Chemical structure of high-mannose-type N-glycan Mang(GIcNAc), and its branches D1, D2, and D3.
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2004; Ni et al., 2006), steroid (Li and Wang, 2004), pep-
tide nucleic acid (Gorska et al., 2009; Ciobanu et al.,
2011), dendrimer (Wang et al., 2008; Kabanova et al.,
2010), and gold nanoparticle (Astronomo et al., 2008;
Astronomo et al., 2010; Marradi et al., 2011) backbones
and on biomacromolecules, such as Qp phage particles
(Astronomo et al., 2010) and bovine serum albumin
(BSA) protein (Astronomo et al., 2008). Most glycocon-
jugates have been shown to have weaker (at least 50-
fold) 2G12 affinity compared to gp120. High 2G12 af-
finity can be obtained through presentation of a higher
number of oligomannoses compared with the natural
2G12-gp120 interaction involving three or four glycans
(Horiya et al., 2014b). In some cases, robust mannose-
binding antibody responses were detected; however,
none of these antibodies can bind to gp120 or neutralize
HIV (Ni et al., 2006; Astronomo et al., 2008; Joyce et
al., 2008; Astronomo et al., 2010; Kabanova et al.,
2010). One possible explanation is that none of the tested
glycoconjugates exactly mimic the epitope of 2G12.
Thus, a particular arrangement of oligomannoses is ne-
cessary to construct gp120-like immunogens (Horiya et
al., 2014b).

Directed evolution of 2G12 epitope mimics
Because there are just 3—4 oligomannoses in the 2G12
epitope of gp120 (Sanders et al., 2002; Scanlan et al.,
2002; Calarese et al., 2003), it is necessary to synthesize
constructs containing a similar number of oligoman-
noses. One new strategy is directed evolution of numer-
ous random arrangements to highly antigenic glycocon-
jugates. Recently, both DNAs and peptides have been
used as evolving scaffolds to develop oligomannose
clusters (MacPherson et al., 2011; Temme et al., 2013;
Horiya et al., 2014a; Temme et al., 2014). A library of
~10" multivalent Man, presentations is created by chem-
ically attaching glycans to ~10"> DNA scaffolds con-
tained alkyne. These sequences are then subjected to
2G12 affinity tests and polymerase chain reaction (PCR)
amplification. Using this method, highly antigenic struc-
tures were obtained through several rounds of glycosyla-
tion and selection. DNA libraries provided selection of
3—4 glycan-containing structures that had gp120-like af-
finity for 2G12. In further studies (Horiya et al., 2014a),
a system for multivalent glycopeptide evolution yielded
glycopeptides with comparable 2G12 affinity to natural
gp120. Although no immunological studies of these
evolved constructs have been reported, the directed evol-
ution method may provide a helpful basis for developing
highly antigenic glycoconjugates.

PG9- and PG16-targeted vaccine design
PG9 and PG16, which show greater efficacy against HIV
than 2G12 (Walker et al., 2009), are considered poten-
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tial targets for anti-HIV vaccine design. Recent synthet-
ic studies have demonstrated that glycoconjugates con-
taining complex glycans at N173 or N156 exhibit tight
binding with PG9 (Horiya et al., 2014b). In another
study, dimers of synthetic glycopeptides bearing only
high-mannose (Man;GlcNAc,) structures at both N156
and N160 positions were found to exhibit relatively tight
binding with PG9. Notably, the dimeric Man; construct
also recognized the germline precursor of PG9, thereby
showing the potential to initiate a PG9-like response
(Alama et al., 2013). Saturation transfer difference
(STD)-NMR and crystallographic studies of PG16 have
shown that the sialic acid residues of complex glycans
are important contributors to the overall binding strength
(Pancera et al., 2013).

Non-self sugar mimic vaccine

D-Fructose has been reported to exhibit stronger 2G12-
gp120 complex inhibition than mannose. Doores and
coworkers (2010) created a library of non-self sugars by
modifying different positions of the terminal sugar of
Man, with different substitutions. They found that virus-
like particles bearing these non-self sugars showed
nanomolar affinities for 2G12. Although high titers of
antibodies were elicited by non-self sugars containing
constructs, no HIV-neutralizing antibody was observed
(Doores et al., 2010).

CONCLUSION

In recent years, the biological role of N-glycosylation of
viral proteins has become better understood (Swarts and
Guo, 2009). Although highly variable glycans are cru-
cial for virus survival, some glycans with highly con-
served structures are also essential for virulence, indicat-
ing that these highly conserved glycans may be utilized
as targets for the development of vaccines and drugs
(Swarts and Guo, 2009). To date, studies on synthetic
carbohydrate-based antiviral vaccines have focused
mainly on anti-HIV vaccines. The key challenges for
achieving effective immunity using carbohydrate-based
HIV vaccines are the design and construction of multi-
valent presentations of glycans for induction of several
bnAbs and achieving a significant breadth of protection.
Although much work is still needed to obtain effective
carbohydrate-based HIV vaccines, the success of carbo-
hydrate-based HIV vaccines can be forecasted on the
basis of several facts, as follows: 1) the exposure of car-
bohydrates on the outer side of the HIV envelope gly-
coprotein enables these molecules to be accessible to the
immune system; 2) a significant proportion of these
glycans are highly conserved; 3) dozens of glycan-de-
pendent HIV-1 bnAbs have been isolated; and 4) ad-
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vances in carbohydrate synthesis are expected to facilit-
ate the development of vaccines free of contaminants.
The latest attempts at developing a carbohydrate-based
HIV vaccine utilizing reverse vaccinology approaches
may also provide important insights into the develop-
ment of carbohydrate-based vaccines against other vir-
uses.
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