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Whole-genome doubling, tripling or replicating to a greater degree, due to
fixation of polyploidization events, is attested in almost all lineages of the
flowering plants, recurring in the ancestry of some plants two, three or
more times in retracing their history to the earliest angiosperm. This major
mechanism in plant genome evolution, which generally appears as instan-
taneous on the evolutionary time scale, sets in operation a compensatory
process called fractionation, the loss of duplicate genes, initially rapid, but
continuing at a diminishing rate over millions and tens of millions of
years. We study this process by statistically comparing the distribution of
duplicate gene pairs as a function of their time of creation through polyploi-
dization, as measured by sequence similarity. The stochastic model that
accounts for this distribution, though exceedingly simple, still has too
many parameters to be estimated based only on the similarity distribution,
while the computational procedures for compiling the distribution from
annotated genomic data is heavily biased against earlier polyploidization
events—syntenic ‘crumble’. Other parameters, such as the size of the initial
gene complement and the ploidy of the various events giving rise to dupli-
cate gene pairs, are even more inaccessible to estimation. Here, we show how
the frequency of unpaired genes, identified via their embedding in stretches
of duplicate pairs, together with previously established constraints among
some parameters, adds enormously to the range of successive polyploidization
events that can be analysed. This also allows us to estimate the initial gene
complement and to correct for the bias due to crumble. We explore the appli-
cability of our methodology to four flowering plant genomes covering a range
of different polyploidization histories.
1. Introduction
Two orthogonal approaches to the study of fractionation—duplicate gene loss
after polyploidization—focus on one hand on the decrease over time of the
number of surviving duplicate pairs [1–7] and, on the other hand, the number
of syntenically consecutive pairs lost after the event [8–12]. In this paper, we
integrate the two in a single model, enabling for the first time inference of all
parameters, with wide application to flowering plant genomes.

The basic model of the cycle between whole-genome replication (the result
of polyploidization) and fractionation is a discrete-time branching process,
reviewed in §2. Each branching event represents a polyploidization, at which
time every member of the population gives rise to a variable number of off-
spring, interpreted as survivors of the fractionation process. Only the current
(final) state of the process is observed.

The main theoretical construct is the prediction of the expected number of
gene pairs (paralogs) generated at each branching event, but only observed at
the current time. Grafted onto the branching process model is a way of identi-
fying which of the events gave rise to each gene pair. This is based on a
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Figure 1. Event with ploidy ri = 4, showing population of mi = 5 genes at
time ti, each giving rise to 4 progeny, of which 1≤ j≤ 4 survive until time
ti+1. a

(i)
j is the number of times j progeny survive. Black lines represent indi-

vidual progeny that survive, and grey lines represent the total progeny of a
gene that do not survive. Here, a(i)1 ¼ 2, a(i)2 ¼ a(i)3 ¼ a(i)4 ¼ 1. From [2].
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(k2) ti pairs at time ti+1

Figure 2. Counting ti-pairs. The three unfractionated progeny of gene g
define three ti-pairs, as indicated by three ovals. We follow the pair contained
in the uppermost oval, as the two members at time ti+1 independently
(shaded triangles) evolve into mn0 and mn00 genes, respectively, defining
m0

nm00
n ti-pairs at time tn. From [2].

chromosome A
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Figure 3. Synteny block on homologous fragments of two chromosomes.
Dark circles indicate retained genes, white circles deleted genes. There are
five retained gene pairs, four singletons on chromosome B and one singleton
on chromosome A.
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mutational model of gene sequence divergence, causing a
decay over time in the similarity between the genes in a pair.

The model enables us to quantitatively account for a major
type of comparative genomic data, discussed in §6, the distri-
bution of gene pair similarities in ‘synteny blocks’ (collinear
runs of genes on two chromosomes) either within a genome
or between two genomes, as can be compiled by methods
like SYNMAP on the COGE platform [13,14]. For example,
based on the parameters of the branching process, we can cal-
culate rates of fractionation after each polyploidization, and
examine the extent it varies from species to species, and on
whether it is clocklike within genera, families or orders. We
have previously applied this approach to flowering plant
families that have been affected by more than one polyploidi-
zation event over many tens of millions of years: the
Brassicaceae [2,3,6], Solanaceae [4], Malvaceae [5,6] and others.

A major limitation, not of the model, but of the previous
analyses based on it, is that the distribution of gene pair simi-
larities contains only enough information to estimate one
fractionation parameter per branching event, which is not
sufficient for most uses. The model, however, also predicts
the number of unpaired genes, or singletons, generated by
the process at each branching event, which can also be
observed in the very same SYNMAP synteny blocks defined
by the gene pairs. As the first novel contribution of this
paper presented in §3, we show how these additional data
on syntenic structure greatly expand the scope of the analyses
based on the branching process model.

The parameters used in syntenyblock construction are set to
control the trade-off between accidental short runs of collinear
gene pairs arising through coincidental tandem duplication,
non-homologous recombination, gene movement, common
domain structure, assembly errors and other factors, on one
hand, versus runs genuinely associated with polyploidization
events, on the other hand, but shortened over time due to
chromosomal rearrangements, individual gene movements
and loss of both members of non-essential gene pairs.

These latter processes of erosion over evolutionary time of
the number of gene pairs (and, proportionately, of singletons)
belonging to blocks, summarized in §5,whichmaybe subsumed
under the term ‘block crumble’, can result in severe downward
biases in the estimated number of genes affected by early
polyploidizations and in the estimation of fractionation rates.
To correct this bias, the second innovation of this paper is the
introduction of a set of multiplicative constants—crumble
coefficients—and a demonstration of how to estimate them.

The archetypical whole gene doubling arises from a
tetraploidization event. However, there are many instances
of whole-genome tripling and some of higher ‘ploidy’, or
multiplicity, in the evolution of the flowering plants.
Modelling these cases requires extra parameters. Instead of
a single retention probability per event, there will now be
two or more. As our third contribution, we reduce the
number of parameters to be estimated by elaborating a
previous model of retention [15,16] where the number of
retained offspring is binomially distributed, conditioned on
non-extinction.

With the branching process model in hand, complete with:

— a new calculation of syntenically validated singletons,
— a way of taking into account block crumble, and
— a reduction in parameter number for tripling under a

conditioned binomial constraint,
in §6, we illustrate with four flowering plant genomes: poplar
(Populus trichocarpa), scarlet sage (Salvia splendens), durian
(Durio zibethinus) and black pepper (Piper nigrum). Each of
these genomes exemplifies a different history of two or
three stages of ancient tetraploidy and/or hexaploidy.

2. The branching process model
The model, expounded most completely in [4,5], consists of
successive branching events at times t1 , � � � , tn�1, and
observation time tn > tn−1. The population size, ‘gene comp-
lement’, at ti is mi but only mn is observed. At each
branching time ti, every member of the population gives
rise to some number j of offspring, where 1≤ j≤ ri, with
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Figure 5. Distribution of sequence similarity of duplicate gene pairs in the
black pepper genome.

Table 1. Equations for rates u and v, initial population m1 and crumble c
for two successive doublings.

event observed expected number

t1 pairs cm1u(1 + v)2

t2 pairs m1(1 + u)v

t1 singletons cm1(1− u)

t2 singletons m1(1 + u)(1− v)
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probability distribution u( · ). (In biologically more meaning-
ful terms, every member has exactly ri offspring and ri− j
of these are lost to fractionation.) The replication process
corresponds to the concept of ‘2ri-ploidization’, as in tetra-
ploidization (ri = 2) or hexaploidization (ri = 3). (Note that
while ancient hexaploidy can be inferred for many flowering
plants, the process of engendering this state is understood to
involve a succession of events, not a single ‘hexaploidization
event’.)

The trajectory of the branching process is in effect a
sample point from the n− 1 probability distributions
u1(i), . . . , uri (i) for i ¼ 1, . . . , n� 1. There is no provision
for u0(i) > 0, for reasons of inference—any model with one
or more non-zero u0(i) is the same as some model with all
u0(i) = 0 that has the same probability structure on the obser-
vations at tn. (For purposes of modelling alone, forgoing
empirical application, allowing non-zero u0(i) may be inter-
esting, e.g. for studying limit behaviour. For example, the
existing branching/fractionation process is supercritical, but
allowing non-zero u0(i) can change this to critical or
subcritical.)

Let a(i) ¼ (a1(i), . . . , ari (i)) represent the numbers of genes
at time ti, with 1, . . . , ri offspring, so that

mi ¼
Xri
j¼1

aj(i) and miþ1 ¼
Xri
j¼1

jaj(i), (2:1)

as in figure 1. Given mi, the probability of a(i) is

Pri (a(i)) ¼ mia1(i), . . . , ari (i)ð Þu1(i)a1(i) . . . uri (i)ari (i)), (2:2)

and the probability of an entire trajectory, defining a paralog
gene tree is

Pr1 (a(1)) . . .Prn�1 (a(n� 1)), (2:3)

withm1≥ 1 given and the othermi determined by equation (2.1).
Once we know how to calculate these probabilities, it is

possible to calculate the E(mi). And using the independence
of the trajectories starting at any two sibling genes existing
at time ti, and their independence from the trajectory between
time t1 and ti, we can calculate E(Ni) the expected number of
pairs of genes at time tn originating at time ti, as summarized
in figure 2.

The accumulation of multinomial coefficients in
equations (2.2) and (2.3), and the potentially high degree
polynomials might seem computationally formidable. In
practice, however, the ri are generally 2 or 3. Thus individual
instances of the model are generally computationally
tractable.

For example, suppose there is just m1 = 1 gene at time
t1, and suppose all ri = 2. We can write u(i) ¼ u2(i),
i ¼ 1, . . . , n� 1 for the probability that both progeny of a
gene at time ti survive until time ti+1. We have previously
shown [4] the expected number Ni of duplicate pairs of
genes born at time ti and observed at tn is

E(N1) ¼ m1u(1)Pn�1
j¼2 (1þ u(j))2

E(Ni) ¼ Pi�1
j¼1(1þ u(j))m1u(i)Pn�1

j¼iþ1(1þ u(j))2

and E(Nn�1) ¼ Pn�2
j¼1 (1þ u(j))m1u(n� 1):

9>>>=
>>>;
(2:4)

There are n− 1 parameters in the vector u( · ), and n− 1
equations in equation (2.4). The presence of an nth
variable, namely m1, means that simply solving the system
in equation (2.4) by substituting the observed number of
pairs for the expectations of the model can only provide rela-
tive values for the parameters in u( · ), and not absolute
values. There is one kind of observable quantity, however,
that cannot be derived from the distribution of gene pair
similarities, but are nevertheless predicted by the branching
process model, namely the number of singleton genes Si
present at each ti:

E(S1) ¼ m1(1� u(1))

and E(Si) ¼ m1P
i�1
j¼1(1þ u(j))(1� u(i)):

9=
; (2:5)



Table 2. Statistics and parameter estimates for the black pepper genome.

block t1 t2 t1 t2

length cutoff pairs pairs singles singles c u v m1

≥3 89.4% 18 898 15 646 23 637 23 206 1.09 0.29 0.40 30 446

≥4 89.3% 13 593 14 244 19 875 22 773 0.92 0.26 0.38 29 311

≥5 89.1% 11 067 13 711 19 995 23 657 0.85 0.23 0.37 30 417

Table 3. Equations for rates, initial population and crumble for a tripling
followed by a doubling.

event observed expected number

t1 pairs cm1(u + 3u0)(1 + v)2

t2 pairs m1(1 + 2u0 + u)v

t1 singletons cm1(1− u− u0)
t2 singletons m1(1 + 2u0 + u)(1− v)
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Figure 6. Distribution of sequence similarity of duplicate gene pairs in the
poplar genome.
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Figure 7. Distribution of sequence similarity of duplicate gene pairs in the
durian genome.
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3. Singletons in synteny blocks
The estimation of the fractionation rates, total gene comp-
lement sizes and crumble coefficients associated with the ti
depends on accurate values for the means of the Ni and Si to
substitute in equations such as (2.4) and (2.5). For the Ni, this
is ensured by the analysis of counting the gene pairs in synteny
blocks (cf. §6), and calculating the sequence similarity of each
pair to determine the appropriate ti. Singletons, on the other
hand, by their nature are not comparable to any other gene,
and thus would not seem to be directly associated with any ti.

One way to approach the number of singleton genes
might be to subtract the number of genes in all ti pairs
from the total number of genes in the genome. Since a gene
may be in several pairs, in synteny blocks corresponding to
different ti, however, this calculation requires a more detailed
data analysis than is possible from the distribution of gene
pair similarities alone. More important, relying on the total
number of genes in the genome is very misleading, since
many or most of these will have been generated in the time
elapsed between tn−1 and tn by gene family expansion,
tandem duplications and other processes.

It is the singletons in the synteny blocks, not the genome
total minus the paired genes, that we will use here in the
inference of retention rates. Because of their association
with the pairs in the blocks, we can pinpoint when a single-
ton was created, from a pair arising at a specific ti. This
results in additional independent observations to help in
parameter estimation.

In the simplest model of fractionation [9], at each step, a
random gene pair is selected to lose one member. In a com-
peting class of models [8], gene loss is effected by excision
of a variable length fragment of a chromosome, often formu-
lated in terms of a gamma distribution. The study of the
internal structure of syntenic blocks, illustrated in figure 3,
arose as an indirect way of determining whether fractionation
is basically ‘functional’ or ‘structural’. The former posits that
fractionation targets specific gene pairs, inactivating or delet-
ing one member of one pair, to redress dosage imbalances or
other problems with synthetic or metabolic processes created
by whole-genome doubling. The latter, structural explanation
represents fractionation as a process of random excision of
excess DNA with, say, geometrically distributed length, and
which may involve one or more genes, as long as this is
not lethal.

Empirically, both types of process play a substantive
role [12]. Whatever their relative importance, the expected
number of singletons in a synteny block is the sum of the
expectations of number of singletons caused by either or
both processes.

The number of singletons in a synteny block produced at ti
constitutes the appropriate comparison for the number of
pairs in that block, because the singletons were produced by
the same branching process as the pairs (or, in the alternative
interpretation, during the period between ti and ti+1).



Table 4. Statistics and parameter estimates for the poplar genome.

block t1 t2 t1 t2

length cutoff pairs pairs singles singles c u u0 v m1

≥3 84.4% 6410 9474 7776 12 810 0.60 0.23 0.02 0.43 17 422

≥4 84.4% 4918 9073 6689 12 749 0.50 0.20 0.03 0.42 17 316

≥5 84.5% 3999 8840 5912 12 726 0.44 0.21 0.02 0.41 17 332

Table 5. Equations for rates, initial population and crumble for a tripling
followed by a another tripling.

event observed expected number

t1 pairs cm1(u + 3u0)(1 + 2v0 + v)2

t2 pairs m1(1 + 2u0 + u)(v + 3v0)
t1 singletons cm1(1− u− u0)
t2 singletons m1(1 + 2u0 + u)(1− v− v0)
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3.1. Synteny and fractionation
Fractionationmayaffect several duplicate genepairs in a synteny
block at the same time. If this is the case, the loss of one copy or
the retention of both is not statistically independent from one
genepair to a neighbouring pair. Since ourmodel only calculates
expected values, such non-independence does not matter to the
results. However, for future work, such as statistical testing, it is
important to understand the relationship between neighbouring
gene pairs in their susceptibility to fractionation.

The simplest model would involve each gene pair having
the same probability of fractionation, so that one intact pair is
chosen at random among the remaining pairs at each step.

Consider the following process. We have an array of q 1’s,
representing q intact duplicate gene pairs. At the first step
(T = 1), and every subsequent step until T = q, we pick a 1 at
random and transform it to 0, representing the loss by
fractionation of one member of that pair.

In [17], we proved the following recurrence for R(T, x), the
expected number of runs of 1’s (more precisely, maximal
runs) of length x at time T:

R(0, q) ¼ 1

and R(0, x) ¼ 0, for x = q:

)
(3:1)

Thereafter, for 1≤ T≤ q− 1 and 1≤ x < q− T + 1

R(T, x) ¼ R(T � 1, x)� xR(T � 1, x)� 2
Pq

i.x R(T � 1, i)
q� T þ 1

:

(3:2)

This process bears much resemblance to the theory of
runs [18] in random binary sequences. Given q Bernoulli
trials with a probability of success p = T/q, the expected
number of successes is T, and the expected number of runs
of length x is R(T, x). However, the variance of the number
of successes is non-negligible, whereas it is zero for our pro-
cess, and the variance of the number of runs of a given length
is also greater than our process. Thus our interest in the frac-
tionation process, where the probability of success at each
position depends on the total number of successes already
achieved.

In [17], we showed how this model was deficient in pre-
dicting longer run and gap lengths in the Coffea arabica
tetraploid genome. We estimated this one gene pair at a
time model accounted for about 70% of fractionation
events, while a geometric distribution of deletion lengths
with mean 3.5 accounted for the remaining 30%.
4. Constraints on rates
Under the assumption that the event that each offspring gene
is deleted, or survives, is an independent binomial trial, con-
ditioned on at least one such gene surviving, we avoid having
to estimate more than one parameter in u( · ) for each replica-
tion event. The S(ri � 1) ploidy parameters tend to be too
numerous when the ri are larger than 2. As first suggested
in [15] and verified in [16], we can circumvent this by assum-
ing gene loss is independent among all the copies,
conditional on at least one surviving. For ri = 3, if p is the
probability one gene is lost, the probability that

— all three genes survive is (1− p)3/(1− p3) = u0

— two of the three survive is 3p(1− p)2/(1− p3) = u
— only one survives is 3p2(1− p)/(1− p3) = 1− u− u0.

Let

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(3� 6u� u2)

p
: (4:1)

Then

u0 ¼ u2 � (uþ 1)Eþ 3
12þ 2E

or u0 ¼ u2 þ (uþ 1)Eþ 3
12� 2E

: (4:2)

As can be seen in figure 4, this relationship—the left-hand
formula in (4.2)—is indistinguishable for practical purposes
from u0 = u2.5 as long as u < 0.37. While we will not incorpor-
ate this constraint into our estimation procedures directly, we
will use it to choose among alternative analyses when there
are too many parameters compared to equations in the
branching process.
5. A model for the erosion of synteny blocks
over time

The fractionation process has the effect of eroding and com-
pletely losing synteny groups over long periods of time,
partly because of biological processes like chromosomal
rearrangement and gene pair divergence, and partly because
of necessary technical limitations on the software detecting



Table 6. Statistics and parameter estimates for the durian genome.

block t1 t2 t1 t2

length cutoff pairs pairs singles singles c u u0 v v0 m1

≥3 85.8% 11 472 14 854 7876 10 109 0.75 0.27 0.04 0.40 0.11 15 200

≥4 85.5% 8081 14 538 6965 10 602 0.60 0.25 0.03 0.39 0.10 16 000

≥5 85.5% 6704 14 242 6419 10 691 0.53 0.23 0.03 0.39 0.10 16 300

Table 7. Equations for rates, initial population and crumble for two
successive triplings followed by a doubling.

event observed expected number

t1 pairs c1m1(u + 3u0)(1 + 2v0 + v)2(1 + w)2

t2 pairs c2m1(1 + 2u0 + u)(v + 2v0)(1 + w)2

t3 pairs m1(1 + 2u0 + u)(1 + 2v0 + v)w

t1 singletons c1m1(1− u− u0)
t2 singletons c2m1(1 + 2u0 + u)(1− v− v0)
t3 singletons m1(1 + 2u0 + u)(1 + 2v0 + v)(1− w)
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Figure 8. Distribution of sequence similarity of duplicate gene pairs in the
scarlet sage genome. Table 8. Equations for rates, initial population and crumble for a tripling

followed by two doublings.

event observed expected number

t1 pairs c1m1(u + 3u0)(1 + v)2(1 + w)2

t2 pairs c2m1(1 + 2u0 + u)v(1 + w)2

t3 pairs m1(1 + 2u0 + u)(1 + v)w

t1 singletons c1m1(1− u− u0)
t2 singletons c2m1(1 + 2u0 + u)(1− v)

t3 singletons m1(1 + 2u0 + u)(1 + v)(1− w)
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the blocks, such as thresholds on minimum amount of colli-
nearity to avoid being swamped by noise.

These latter processes of erosion over evolutionary time of
the number of gene pairs (and singletons) belonging to
blocks, which may be subsumed under the term ‘block
crumble’, can have severe consequences for the inference of
retention rates under fractionation. In particular, estimates
of mi are increasingly biased downwards for earlier events,
leading to upward biases in the retention rates. In some
cases, the estimate of mi may even be too low to account
for all the pairs and singletons observed at ti=1. This rep-
resents a weakness of the model that must be corrected,
especially for genomes with multiple replication events. To
do this we introduce the notion of ‘syntenic cohort’ and a
set of multiplicative constants—crumble coefficients—c1,…,
cn−1 for adjusting the mi, and show how to estimate them.

The consequence of this loss is that the gene complement mi

predicted for ti is underestimated compared with the numbers
reconstructed from the synteny blocks at ti+1. The retention
probability is thus overestimated. We find that the introduction
of a new parameter allows us to estimate the ‘erosion’ rate and
hence to make the gene complement at each ti comparable.
6. Four plant genomes
We explore four genomes with various histories of genome
replication. We assume that the historical polyploidy events
were correctly established for each species, although we
could also find them using the method in [6]. The history
determines a number of equations similar to (2.4) linking
the fractionation rates to the expected values of singletons
and pairs observed from each event.
The construction of datasets for our analysis, embodied
in software such as SYNMAP applied to genomes available
on the COGE platform [13,14], involves scanning a
genome for pairs of similar genes, then searching for
runs of collinear such pairs in two different genome
locations. Each run, or ‘synteny block’, must contain a
preset minimum number of pairs and have no more than a
certain number of consecutive unpaired genes. That the
level of similarity of the pairs is relatively uniform in a
block, together with the collinearity, lends credence to the
conclusion that the pairs were all created simultaneously at
one of the replication (branching) times ti, both locations
inheriting the pre-replication gene order, and that the
interspersed singletons are the remnants of fractionated
contemporaneous pairs.

In each case, we

— compare the genome to itself, using SYNMAP with default
parameters,

— construct the distribution of similarities of gene pairs in
the synteny blocks,

— find the singleton genes embedded in each synteny block,



Table 9. Statistics for the scarlet sage genome.

block t1 t2 t3 t1 t2 t3

length cutoff 1 cutoff 2 pairs pairs pairs singles singles singles

≥3 85% 94% 27 837 15 640 16 801 9941 8632 7726

≥4 84% 94% 18 826 15 628 15 515 9576 9303 8288

≥5 84% 94% 15 265 14 864 14 786 8942 9342 8441

Table 10. Parameter estimates for the scarlet sage genome according to the tripling–tripling–doubling model.

block

length c1 c2 u u0 v v0 w m1

≥3 1.1 0.7 0.31 0.02 0.24 0.07 0.69 13 333

≥4 0.9 0.8 0.19 0.03 0.29 0.04 0.65 13 760

≥5 0.8 0.8 0.15 0.04 0.27 0.05 0.64 13 821
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— decompose the similarity distribution into its component
normal distributions, using [19] or similar method, giving
means and proportion of data in each component,

— use maximum likelihood to find a cutoff point between
the component distributions,

— assign each synteny block to one of the components
according to the mean similarity of the pairs in the block,

— count the total number of pairs and singletons in the two
components,

— substitute these numbers for their expected values in the
equations for the history of the genome, and solve these
to estimate the rates in the model.

In our analyses, we use u, u0, v, v0, c and m1 to refer to the sur-
vival of two or three (if pertinent) copies instead of one after
the first polyploidization event, the survival of two or three
(if pertinent) copies instead of one after the second polyploi-
dization event, the crumble constant and the initial gene
complement size, respectively.

Note that although our theoretical discussions in §§2, 3
and 5 were phrased in terms of the branching times ti, the
equations describing the individual models involved only
the u( · ), which are really retention probabilities, not fraction-
ation rates. In the following examples, the term ti serves
basically as a label for the ith branching event.

6.1. Black pepper (Piper nigrum)
We choose to analyse the black pepper genome (COGE ID
56158) since it has undergone the simplest series of whole-
genome replications, namely two successive doublings. As
a magnoliid, it diverged from the eudicots before the
‘gamma’ whole-genome tripling common to our four other
examples in this section. The original report [20] only
suggested one doubling event, but the distribution of dupli-
cate genes in synteny blocks in figure 5 is indicative of two,
with mean values around 78% and 94%. Additional duplicate
pairs closer to 100% similarity may reflect the segmental
duplications or high heterozygosity mentioned by the
authors, or simply local assembly issues.
The equations where we substitute observed values for
expected ones in expressions deriving from the branching
process model include those for pairs (cf. equation (2.4))
plus those for singletons (cf. equation (2.5)), as in table 1.

To take into account the syntenic crumble process, we
repeated the SYNMAP search for synteny blocks with three
different values of the minimum block size parameter: 5
(the default), 4 and 3. The results in table 2 confirm this
effect, with over 70% more t1 pairs and 18% more singletons
when the block size criterion is relaxed from 5 to 3. This is
substantial, even allowing for some noise with the less strin-
gent criterion. The crumble constant, which estimates the loss
of synteny due solely to the block size criterion, is moderate
for size 5 and 4, and undetectable for size 3 (c≈ 1).

Of note is the stability of the estimates of m1, the number
of genes in the genome before t1. Also, the cutoff between the
two components of the distribution does not vary, suggesting
that the additional gene pairs generated by the less stringent
criterion come from the same two events as with the default
configuration.
6.2. Poplar (Populus trichocarpa)
Poplar (COGE ID 25127) descends from the important whole-
genome tripling (known as ‘gamma’) at the origin of the
core eudicots. As a member of the Salicaceae family, it has
undergone a further whole-genome doubling [21] (the
‘Salicoid’ doubling). The equations for a tripling followed
by a doubling are given in table 3.

Figure 6 shows a clear separation between the gene pairs
created by the two events.

In contrast to the black pepper analysis, we now have
more parameters (five) to determine, with only four
equations. Here, we make use of the constraint derived
from the conditioned binomial analysis developed in §4.
Rather than enter the constraint as an additional equation,
which would lend it too much weight in simultaneously
solving for the other parameters, we simply solved the four
equations for a range of values of c, namely each value



Table 11. Parameter estimates for the scarlet sage genome according to the tripling–doubling–doubling model.

block

length c1 c2 u u0 v w m1

≥3 1.06 0.80 0.26 0.03 0.39 0.69 13 297

≥4 0.93 0.87 0.22 0.02 0.38 0.65 13 626

≥5 0.85 0.88 0.21 0.02 0.37 0.64 13 601

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20200059

8

between 0 and 1, in steps of 0.01. Then we picked out the
value of c that resulted in the closest match to equation (4.2).

Table 4 again shows the stability of m1 and the cutoff
between the two components, despite the 60% increase in
the number of t1 pairs and 32% increase in the singletons
when the block stringency is reduced, due to the use of the
crumble constant.

6.3. Durian (Durio zibethinus)
When first sequenced the durian genome (COGE ID 51764)
was thought to have undergone a further doubling after the
gamma tripling [22]. Subsequent work by ourselves [5] and
others [23] showed that the second event was clearly also a
tripling (figure 7).

In the case of two triplings, there are still only four
equations based on the similarity distribution, two for the
pairs, and two for the singletons. But now there are six par-
ameters to find: u, u0, v, v0, c and m1. Again, we relied on
the conditioned binomial model for the relationship between
the two-copy and three-copy survival parameters. We
defined a two-dimensional grid for m1 from 10 000 to
30 000 in steps of 100, and c from 0 to 1 in steps of 0.01,
and solved the equations for each point on the grid. We
then retained all the combinations that closely approximated
the constraint in equation (4.2) between u and u0. Among
these solutions, we then chose the one for which v and v0

also best satisfied this constraint.
In the results in tables 5 and 6, we see stability in the sur-

vival rates and m1, despite the 71% increase in the number of
pairs and 23% rise in the number of singletons as the bar is
lowered for minimum block length.

6.4. Scarlet sage (Salvia splendens)
The original report [24] on the scarlet sage genome sequence
(COGE ID 55705) noted a relatively recent whole-genome
duplication. Figure 8 shows an earlier event with similarity
levels in around 90%, as well as the still earlier gamma tri-
pling event. It is even possible that the apparent gamma
component consists of two overlapping parts, but we will
not explore the idea of four scarlet sage polyploidization
events here (table 9).

For the three events, the first is gamma, a tripling and the
third is likely a doubling. The ploidy of the middle event is
not clear, and we could not resolve it by the methods of [6].
Thus we will analyse the data in terms of both types of his-
tory, two triplings followed by a doubling, represented in
table 7, and one tripling followed by two doublings, rep-
resented in table 8. In each case, there are two crumble
constants, c1 and c2, the first covering the period from t1 to
t2 and the second for the period from t2 to t3.
For the first version of the history of scarlet sage, there are
eight parameters, and for the second there are seven. In both
cases, there are only six equations. Thus, as in the study of
poplar and durian, we recruit the conditioned binomial con-
straints in §4 to choose among an array of solutions, each a
combination of trial values of c1 and c2 in a grid array for
the first history, and a linear array of c2 values for the
second version. The trial values ranged from 0 to 1 in steps
of 0.01.

In the first history, two triplings and a doubling, the sol-
utions were assessed to find the combinations of c1 and c2
where u and u0 were close to the predictions of equation
(4.2). Among these solutions, we then chose the one where
v and v0 most closely satisfied the same constraint.

For the second history, a tripling and two doublings, the
search array involved only c2, there being enough equations
to directly solve the six equations for u, u0, v, w, m1 and c1.

In tables 10 and 11, we note consistency throughout in the
values of m1, though these are about 15% lower than the
values for durian and 22% lower than those for poplar.
Given that these are estimates of gene complement before
gamma, 120 Ma, the discrepancy is not alarming!

Also of note are the identical w survival rates in the two
histories, and the crumble constants c1, which are similar.
7. Conclusion
We have described a comprehensive account of the similarity
distribution of duplicate gene pairs as a function of the time
since their creation by whole-genome doubling, as measured
by sequence similarity. A branching process model for gener-
ating this distribution has too many rate parameters to be
estimated based only on the distribution itself. We mitigate
this problem by using the frequency of unpaired genes,
distinguished from other single-copy genes by their embed-
ding in paralogous synteny blocks, stretches made up
largely of duplicate pairs. However, the computational pro-
cedures for constructing synteny blocks from annotated
genomic data are heavily biased against earlier polyploidiza-
tion events. We have shown here how to quantify this
syntenic ‘crumble’, and how to correct the bias caused by
it. Other parameters, such as the size of the initial gene comp-
lement, are less accessible. We showed how previously
established constraints among some parameters add substan-
tially to the range of successive polyploidization events that
can be analysed. In particular, this also allows us to estimate
the initial gene complement and helps correct for the bias due
to crumble. Finally, we demonstrated the applicability of our
methodology to four flowering plant genomes with various
doubling and tripling histories.
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The importance of singletons in our analysis prompts
concerns of whether they may originate, not from fraction-
ation of their paralogs, but from their insertion into one of
the homologous chromosomes, such as through the transpo-
son activity rife in plant genomes [25]. However, the major
plant transposon families are all well characterized, and
transposons are routinely not annotated as genes, and
would not show up in the synteny blocks detected by
SYNMAP. Even if the annotation were faulty, masking routines
would eliminate transposons, but the genomes we have ver-
ified, such as the Populus we studied in §6.2, as well as linen
(Linum usitatissimum) that have unmasked and masked ver-
sions of the same assembly in COGE, show no fewer genes
after masking than before. Thus we can be confident in the
origin of our singletons in the fractionation process.

Even if we can estimate the retention rates and the gene
complement at each event, one critical model parameter
cannot be derived from the frequency distribution of gene
pair similarities and the number of singletons, namely the
ploidy level r. Though we may sometimes be able to guess
r by visual inspection of the output of SYNMAP, this is not
usually the case for earlier events. We have previously
shown how to derive additional information from the raw
gene pair data in order to construct informative gene triples
[6]. Statistics on the configurations of similarities within
these triples can then be used to deduce r.
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