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Abstract
Study Objectives:  The purpose of this study was to examine how rest-activity (RA) rhythm stability may be associated with 
white matter microstructure across the lifespan in healthy adults free of significant cardiovascular risk.

Methods:  We analyzed multi-shell diffusion tensor images from 103 healthy young and older adults using tract-based 
spatial statistics (TBSS) to examine relationships between white matter microstructure and RA rhythm stability. RA 
measures were computed using both cosinor and non-parametric methods derived from 7 days of actigraphy data. 
Fractional anisotropy (FA) and mean diffusivity (MD) were examined in this analysis. Because prior studies have suggested 
that the corpus callosum (CC) is sensitive to sleep physiology and RA rhythms, we also conducted a focused region of 
interest analysis on the CC.

Results:  Greater rest-activity rhythm stability was associated with greater FA across both young and older adults, primarily 
in the CC and anterior corona radiata. This effect was not moderated by age group. While RA measures were associated 
with sleep metrics, RA rhythm measures uniquely accounted for the variance in white matter integrity.

Conclusions:  This study strengthens existing evidence for a relationship between brain white matter structure and RA 
rhythm stability in the absence of health risk factors. While there are differences in RA stability between age groups, 
the relationship with brain white matter was present across both young and older adults. RA rhythms may be a useful 
biomarker of brain health across both periods of adult development.
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Statement of Significance

Our study investigated the relationship between rest-activity rhythm stability and white matter integrity in healthy aging. 
We addressed three primary limitations of previous studies on this topic. (1) We used actigraphy recordings in addition to 
self-reported questionnaire data to assess rest-activity patterns. (2) We enrolled healthy adults free of significant disease 
burden to reduce the mediation effect of cardiovascular disease and sub-threshold cardiovascular pathology. (3) We in-
cluded a young adult group to evaluate whether the association between rest-activity rhythm stability and white matter 
changes with age. Our results support the importance of day-to-day stability in rest-activity rhythms as a biomarker of 
white matter integrity not only within older adults, but across the healthy adult lifespan.
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Introduction

Circadian rhythms are endogenously generated patterns re-
sponsible for controlling cyclical physiological processes, such 
as thermoregulation, metabolism, and rest-activity patterns. 
In healthy aging, older adults often report changes in their 
rest-activity rhythms, for example, increased morningness 
preference, earlier wake times, increased sleep latency, and 
decreased total sleep time [1]. Rest-activity rhythms can be 
assessed through self-report questionnaires, which can be a 
useful clinical tool but remain subject to a high level of recall 
bias [2]. Wearable electronics, such as wrist-based actigraphy 
devices, offer an attractive alternative for acquiring objective, 
non-invasive, real-world data about individuals’ rest-activity be-
haviors [3]. Wrist-based actigraphy has enabled both researchers 
and clinicians to passively collect activity data with less partici-
pant burden and high ecological validity [4, 5].

Measures of rest-activity patterns can be calculated from 
actigraphy data to provide a quantitative snapshot of an 
individual’s rest-activity behavior. Actigraphy studies of devel-
opmental changes in rest-activity patterns show increased vari-
ability with aging. In general, compared to young adults, older 
adults demonstrate increased interdaily stability, or greater 
day-to-day activity stability indicating coupling of activity 
patterns to fixed markers such as sunlight, as well as earlier 
acrophase, or time of peak activity [6]. However, within-group 
studies of older adults have shown that increased age is as-
sociated with increased fragmentation within a 24-h period 
and decreased rhythm amplitude [7, 8]. The extent to which 
such age-related changes occur as a result of alterations in the 
biological clock mechanism and associated neurobiological 
pathways, increased disease burden, or as a result of lifestyle 
changes remains an important question, and likely varies across 
individuals [9]. Nevertheless, numerous studies point to rest-
activity rhythm changes as useful clinical markers of various 
health-related outcomes. Disturbances in rest-activity cycles 
have been linked to cognitive dysfunction [10–12], dementia [7, 
13], cerebrovascular changes [14, 15], and depression [16] inde-
pendent of the contribution of total sleep time. Developing a 
greater knowledge base around changes in rest-activity profiles 
and their neurobehavioral correlates in healthy aging may re-
veal an important biomarker for distinguishing healthy aging 
from those with increased risk for illness and cognitive dysfunc-
tion, facilitating the earlier detection of health changes.

Aging is associated with a number of structural and func-
tional brain changes [17]. One domain that has been examined 
is white matter. White matter microstructure can be examined 
using diffusion tensor MRI (DTI), which measures the diffusion 
of water molecules to characterize brain white matter. From DTI, 
scalar metrics reflecting the underlying micro-architecture of 
white matter have been developed. These metrics, fractional an-
isotropy (FA), which reflects the level of directionality associated 
with the diffusion, and mean diffusivity (MD), which indicates 
the degree of diffusion, offer quantitative information about the 
structural integrity of the white matter. Higher FA is typically 
associated with greater white matter integrity, such that water 
diffusion is constrained along the direction of the white matter 
tract. Studies in non-human animals have indicated that FA is 
relatively non-specific in that it is sensitive to multiple aspects 
of white matter integrity, including local differences in myelin-
ation, axonal density, and crossing fiber orientation [18]. MD is 

typically associated with lower white matter integrity, specific-
ally tissue degeneration [19]. Aging is commonly characterized 
by widespread decreases in FA [20–23] and increases in MD [22–
24], with some studies (but not all: see Barrick et al. [25]) noting 
greater susceptibility in more anterior brain regions to white 
matter microstructural changes [26].

Some studies suggest that regional patterns of age-related 
changes in white matter may show distinct relationships with 
cognitive abilities. In a cross-sectional study, Kennedy and Raz 
[27] found age-related degradation in anterior white matter 
corresponded to less efficient processing speed and working 
memory, whereas posterior changes were associated with worse 
performance on task switching and inhibition. Intervention 
studies have also found white matter diffusion metrics to cor-
respond to changes in cognitive performance over time. Engvig 
et  al. [28] found that healthy older adults randomly assigned 
to an 8-week memory training intervention showed greater 
memory performance related to controls, and that this improve-
ment in memory was associated with greater FA in the left an-
terior thalamic radiation, inferior fronto-occipital fasciculus, 
uncinate fasciculus, and superior longitudinal fasciculus.

Prior DTI studies have examined neural correlates of sleep 
behavior, and in general have found that white matter micro-
structure is sensitive to sleep quality. Using actigraphy to ob-
tain objective sleep assessments, Kocevska et al. [29] found that 
among middle-aged and older individuals, greater sleep onset 
latency, lower sleep efficiency, and shorter total sleep times 
were associated with differences in white matter microstruc-
ture, particularly in the projection and association tracts, the 
cingulum, and the anterior forceps of the corpus callosum (CC). 
However, studies regarding how the day-to-day stability of rest-
activity behaviors may be related to white matter integrity are 
relatively few. Existing studies have reported that disruptions in 
rest-activity cycles may be associated with a higher prevalence 
of white matter hyperintensities [30, 31] and widespread reduc-
tions in white matter integrity [32] in older adults. However, the 
extent to which these results may be accounted for by other fac-
tors, such as cardiovascular risk, remains an important area of 
inquiry.

In a recent study, Baillet et  al. [32] reported a significant 
correlation between 24-h rhythm amplitude and white matter 
microstructure among older adults, such that greater 24-h 
amplitude, or robustness, in rest-activity patterns was associ-
ated with greater FA and lower diffusivity (MD and radial dif-
fusivity) in a number of brain regions. While the study sample 
was relatively healthy, a majority endorsed cardiovascular risk 
factors, such as hypertension, diabetes, and/or showed ischemic 
lesions on the MRI. Furthermore, after removing four subjects 
with significant white matter hyperintensity burden from their 
dataset, the effect of 24-h rhythm amplitude on FA was sub-
stantially reduced from widespread non-localized clusters to 
a circumscribed effect in the CC and right frontal region. The 
inclusion of individuals with risk factors and hyperintensities 
in their sample infers significant limitations on the conclu-
sions that can be drawn about the link between rhythm amp-
litude and white matter microstructure, which rather than 
being a primary relationship, could be wholly a consequence of 
cardiovascular burden.

In this study, we aimed to remove the mediating influence 
of cardiovascular risk on the relationship between rest-activity 
rhythm stability and white matter integrity in older adults. We 
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hypothesized that greater rest-activity rhythm stability would 
correspond to greater white matter integrity. Our sample is 
comprised of healthy community-dwelling young adults and 
older adults free of uncontrolled hypertension, diabetes, and 
positive cardiovascular history to discern whether the rela-
tionship between rest-activity rhythm stability and white 
matter microstructure was present in older adults free of sig-
nificant cardiovascular risk. We explored different measures of 
rest-activity stability such as cosinor rhythm amplitude and fit 
(F-statistic), as well as non-parametric measures used in pre-
vious studies. Based on Baillet et  al.’s findings suggesting the 
sensitivity of the CC to rest-activity rhythms in healthy older 
adults without significant white matter hyperintensity burden, 
we conducted a focused analysis on the effect of rhythm sta-
bility in this region. Additionally, our study is the first to include 
a young adult comparison group. In doing so, we sought to better 
understand the rest-activity rhythm and white matter relation-
ships across the lifespan.

Methods

Participants

Participants included right-handed healthy older and younger 
adults from central Texas, in and around Austin. The study 
was advertised through posters, online forums, and recruit-
ment events at aging conferences and senior recreation cen-
ters. Candidate participants were invited to participate in the 
study if they met the following inclusion criteria: (1) were be-
tween the ages of 18–30 or 60–90, (2) endorsed fewer than eight 
items on the Pittsburgh Sleep Quality Inventory (PSQI), (3) en-
dorsed fewer than 16 items on the Center for Epidemiological 
Studies Depression Scale (CESD) or fewer than 15 items on the 
Geriatric Depression Scale (GDS). Participants were excluded 
if they (1) met criteria for significant sleep disturbance or dis-
order, neurological or psychiatric disorders, or cardiovascular 
disease, including uncontrolled hypertension and diabetes, (2) 
were currently taking sleep medication or psychoactive sub-
stances, or (3) scored below two standard deviations from the 
age-adjusted norm on an abbreviated neuropsychological bat-
tery assessing memory and executive functions. Participants 
who endorsed sleep apnea were considered eligible for the 
study if apnea was controlled with continuous positive airway 
pressure (CPAP) machine or behavioral therapy (e.g. cognitive 
behavioral therapy for insomnia). Participants were compen-
sated for their participation in the study. Ethical approval was 
received from The University of Texas at Austin Institutional 
Review Board and prior written consent was obtained from all 
participants.

Neuropsychological assessments

All participants were administered an abbreviated neuro-
psychological battery, including the following assessments: the 
Wechsler Adult Intelligence Scale IV (WAIS-IV) Vocabulary and 
Digit Span subtest, and Trail Making Test A and B. Older adults 
were additionally administered the California Verbal Learning 
Test-II (CVLT-II) and Controlled Oral Word Association Test 
(COWAT-FAS). Age-adjusted z-scores were retained for statis-
tical analysis.

Psychomotor vigilance test
Participants were administered the psychomotor vigilance 
test (PVT) on a Windows computer (Lenovo Intel® 2015 Core™ 
i5-2410M CPU 2.30 GHz 64-bit Windows 10)  using freely avail-
able PC-PVT 1.0 software [33]. The PVT is a widely used measure 
of alertness which is highly sensitive to sleep deprivation. 
Participants are asked to attend to a dark screen and respond 
by clicking a mouse as soon as a stimulus appears on the screen 
center. The stimulus appears at random inter-stimulus intervals 
over the course of ten minutes. We collected data on partici-
pants’ mean response times, number of false starts, and number 
of response lapses for analysis.

Actigraphy

Physical activity levels were continuously recorded for 
10–14 days from wrist-based actigraphs (Actiwatch 2.0, Philips 
Respironics, Bend, OR) in zero-crossings mode using 30-s epochs. 
Participants were instructed to maintain their normal routines 
to refrain from using any sleep medications. The most recent 
7 days of actigraphy data were used for all participants in order 
to maximize our study sample size while retaining sufficient 
data for computation of rest-activity measures. Activity counts 
were linearly interpolated for 5-min periods in which activity 
data was missing. Participants who removed the watch for more 
than 20% of the recording time or who had less than 7 days of 
actigraphy data were excluded from the analysis. Participants 
also completed daily sleep surveys through a REDCap [34] on-
line survey instrument to document bedtime, wake time, sleep 
quality, and any instances in which they removed the actigraph.

Rest-activity measures

Measures calculated from actigraphy data allow researchers to 
measure the timing and consistency of rest-activity patterns. 
Rest-activity measures can be derived using either variations on 
a cosinor model or non-parametric approaches. The extended 
cosinor model assumes either a sinusoidal or square-like shape 
for activity data and enables the computation of quantita-
tive, descriptive metrics summarizing global rest-activity pat-
terns [35]. These include measures of robustness (amplitude, 
F-statistic), phase (up-mesor, acrophase, down-mesor), rate of 
transition from low activity to high activity (beta), and relative 
duration of peak activity (width). While this model can offer im-
portant quantitative insights into one’s rest-activity behavior, it 
is not “one-size-fits-all.” Some individuals have rest-activity pat-
terns that deviate from the extended cosinor pattern resulting 
in poor model fit, which can limit the informativeness of these 
parameters.

Non-parametric approaches to rest-activity analysis offer 
an alternative for deriving useful measures that are not con-
tingent on assumptions about the shape of human activity be-
havior [36, 37]. We used the nparACT R package [37] to calculate 
non-parametric measures including interdaily stability, or how 
coupled an individual’s activity is to stable markers, such as 
sunlight; intradaily variability, or how much an individual’s ac-
tivity varies within a 24-h cycle regardless of the “shape” of that 
pattern; and relative amplitude, or a ratio of daytime activity 
to activity during rest. In this study, we examined rhythm sta-
bility measures derived from both the five-parameter extended 
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cosinor model (amplitude, F-statistic) and non-parametric 
approach similar to that used in Baillet et  al. [32] (interdaily 
stability, intradaily variability, relative amplitude) to assess rest-
activity relationships with white matter integrity in aging.

Sleep measures

Actiware 6.0.9 software (Philips Respironics, Bend, OR) was used 
for data retrieval and sleep scoring, in which each data point was 
coded as either sleep or wake based on adjacent activity values 
using a sensitivity threshold of 40 counts [38]. We retained total 
sleep duration, sleep efficiency, and physical activity during the 
active interval for correlation analyses with rest-activity rhythm 
measures. Sleep duration is given as the number of minutes 
scored as “sleep” by the algorithm between the estimated sleep 
onset time and wake onset time. Sleep efficiency is the ratio 
of minutes sleeping to minutes in bed given as a percentage. 
Physical activity is the total activity counts during the interval 
coded as “active” by the Actiware algorithm. These measures 
were averaged across the seven most recent days of actigraphy 
recording before being included in statistical analyses.

MRI acquisition

Imaging data were collected using a Siemens Skyra 3T scanner 
(TIM Systems, Siemens Medical Solutions, Erlangen, Germany) 
with a 32-channel head coil at the Biomedical Imaging Center 
at The University of Texas at Austin. Anatomical MRI volumes 
were acquired using a 3D MPRAGE T1-weighted (T1w) sequence 
with the following parameters: TR = 2530.0 ms, TE = 1.69, 3.55, 
5.41, and 7.27  ms, T1  =  1100  ms, FOV  =  256  mm2, 176 coronal 
slices, voxel size 1.0 mm3. Two diffusion-weighted images were 
acquired using a multi-echo EPI sequence with the following 
parameters: TR = 4836 ms, TE = 120.60 ms, 78 slices, voxel size 
of 1.8 mm3. Images were collected in an axial/horizontal orien-
tation with alignment to maximize brain coverage beginning 
at the dorsal surface. Two b0 images were acquired per image 
and diffusion gradients were applied in 71 directions within an 
interwoven b  =  1000 and b  =  3000 multi-shell acquisition. For 
each of the two scan protocols, an equivalent set was acquired 
with reversed phase-encode blips anterior to posterior (AP) and 
posterior to anterior (PA) separately, resulting in pairs of images 
with opposite direction distortions which when processed in-
crease SNR and allow for distortion correction.

Gray matter volume analysis

Anatomical preprocessing was conducted using fMRIPrep ver-
sion 1.5.0 [39]. The T1w MPRAGE image was corrected for intensity 
non-uniformity (INU) with N4BiasFieldCorrection [40], distrib-
uted with ANTs 2.2.0 [41], and used as T1w-reference throughout 
the workflow. The T1w-reference was then skull-stripped with 
a Nipype implementation of the antsBrainExtraction.sh work-
flow (from ANTs), using OASIS30ANTs as a target template. 
Brain tissue segmentation of cerebrospinal fluid, white matter, 
and gray matter was performed on the brain-extracted T1w 
using fast (FSL 5.0.9) [42]. Brain surfaces were reconstructed 
using recon-all (FreeSurfer 6.0.1) [43]. Volume-based spatial nor-
malization to fsaverage space, which is a standard coordinate 
system approximately registered to MNI space, was performed 

through nonlinear registration with antsRegistration (ANTs 
2.2.0) using brain-extracted versions of both T1w reference and 
the T1w template.

White matter microstructure analysis

Whole-brain voxelwise analysis
Diffusion tensor images were processed using the Functional 
Magnetic Resonance Imaging of the Brain (FMRIB) Software 
Library (http://www.fmrib.ox.au.uk/fsl), or FSL. Susceptibility-
induced off-resonance field was estimated using a method de-
scribed by Andersson [44] as implemented in FSL [45] and the 
two multi-direction, multi-B value images were combined into 
a single corrected one. FMRIB BET [46] was applied to eliminate 
nonbrain tissue. Images were corrected for eddy currents and 
registered to the b  =  0  s/mm2 volume using FMRIB FLIRT [47]. 
A  diffusion tensor model was constructed using the FMRIB 
DTIFIT algorithm to produce FA at each voxel, and data were 
visually inspected for model fit.

Tract-based spatial statistics (TBSS) was then used to con-
duct voxelwise statistical analysis. Images from all subjects 
were aligned to all other subject images within their age group 
to identify the best registration candidate for each group. That 
subject’s image was identified as the target image, and then was 
aligned to the standard MNI template. Every remaining sub-
ject was then aligned to MNI space by combining the nonlinear 
transform to the target FA image with the affine transform from 
that target to MNI152 space. FA images were then averaged to 
produce a group mean image. For each subject, an FA threshold 
of 0.20 was used before projecting the aligned FA map onto the 
skeleton [48]. MD maps were also generated using the same 
steps outlined above. TBSS analysis was conducted independ-
ently for both age groups to validate our results.

To assess the relationship between rest-activity rhythm 
amplitude and white matter microstructure, design matrices 
were constructed. Missing values (amplitude N  =  4) were in-
terpolated before de-meaning. FSL randomize was used to 
conduct threshold-free cluster enhancement (TFCE)-based 
nonparametric permutation inference (k  =  500) [49]. TFCE is a 
method to correct for multiple comparisons that enhance areas 
of signal with spatial contiguity which allows for improved dis-
crimination of voxels within-cluster regions from background 
noise. The mean FA image was used as a mask to restrict ana-
lyses to white matter regions. Clusters were assessed for signifi-
cance at p < 0.05. The same procedures were executed for MD.

TBSS analyses examining age group effects were conducted 
by first concatenating FA maps from the two age groups and 
generating a mask from FA averaged across all subjects. This 
was then used to generate a skeleton for all subjects before 
running voxelwise statistics. Using a skeleton-based approach 
reduces the number of statistical tests performed and ensures 
that only actual white matter voxels are included thereby re-
ducing the likelihood of Type I error. In addition, the skeleton-
based approach is less biased to volumetric differences, which 
are a known challenge to comparing white matter properties 
across age groups. By concatenating all participants’ FA maps 
after they had undergone within-age group registration, we were 
able to test for interaction effects while preserving the unique 
within-group registration results. For better visibility, areas of 
significant results were augmented using tbss_fill.

http://www.fmrib.ox.au.uk/fsl
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Region of interest analysis
Because the CC has previously been suggested as a region that 
may be sensitive to rest-activity rhythms, we conducted a fo-
cused ROI analysis to test for correlations between white matter 
diffusion metrics and rhythm amplitude in this region. The CC 
was defined using the Johns Hopkins University (JHU) atlas. Mean 
FA and MD values for the CC were extracted using fslmeants. 
Analyses were adjusted for age and CC volume. Volume meas-
urements were extracted from the FreeSurfer segmentation and 
adjusted for total intracranial volume (ICV) as follows: adjusted 
CC volume = raw CC volume – b × (ICV – average ICV), where b 
is the slope of the regression of the raw CC volume on ICV [50].

Statistical analyses

Statistical analyses were performed using R version 3.6.1. 
Welch’s t tests were conducted to compare group means for be-
havioral variables. Linear regression with leave-one-out cross-
validation was used to assess relationships among CC structural 
properties and rest-activity rhythm stability [51]. Separate 
models were used for non-parametric and cosinor rest-activity 
measures. Interaction analyses were performed using moder-
ated multiple regression for which the rest-activity measure, 
binary age group, and their cross-product were included in 
the model. We also included CC volume as a covariate. If the 
interaction was not significant, we evaluated the main effect 
of the rest-activity measure on CC FA, again covarying for CC 
volume. We performed leave-one-out cross-validation to esti-
mate the robustness of the model to changes in the subject pool. 
We retained the models with the most conservative estimated 
effect size of the rest-activity measure for this manuscript (see 
Supplementary Material for additional details). Correlations 
among rest-activity rhythm measures, sleep measures, and cog-
nitive assessment scores were evaluated using bootstrapped 
confidence intervals with a jackknife adjustment [52]. Data are 
available on request.

Results

Demographic and health information

Of the 124 participants enrolled in the study, we analyzed data 
from a total of 103 participants, including 57 older adults (45 fe-
males, age = 68.11 ± 5.64 years) and 46 younger adults (28 fe-
males, age = 21.39 ± 3.78 years; Table 1). The main reasons for 

excluding participants from the analysis were: issues with DTI 
preprocessing (N = 2), unable to collect MRI (N = 3), issues with 
MRI acquisition (N  =  10), issues with actigraphy acquisition 
(N = 3), failure to fit a cosinor rest-activity model (N = 4), unable 
to obtain non-parametric rest-activity values (N = 10), and vol-
untary withdrawal from the study (N = 5).

Age group differences in rest-activity rhythms

Correlations between rest-activity measures and mean sleep 
duration, sleep efficiency, mean daily physical activity, and 
global PSQI scores are presented in Table  2. To illustrate how 
rhythm amplitude manifests in terms of real-world behavior, a 
visual comparison of subjects with differing amplitude values 
is provided in Figure  1. Participants with a higher amplitude 
tend to exhibit greater day-to-day stability across the recording 
period, whereas participants with low amplitude exhibit more 
variability in activity across days. Comparison of sleep and ac-
tivity metrics derived from the Actiware program showed that 
participants with high rhythm amplitude determined by a me-
dian split had greater sleep efficiency (t = −2.161, p = 0.033) and 
shorter sleep onset latency (t = 2.863, p = 0.005), but no observ-
able differences in mean sleep duration or mean daily physical 
activity.

Within our study sample, there were a number of age group 
differences in sleep and rest-activity pattern characteristics 
(Table  3). Compared to young adults, older adults had signifi-
cantly reduced total activity during the active period, but no sig-
nificant differences in mean sleep duration, sleep efficiency, or 
sleep onset latency were observed. Older adults also had earlier 
phase onset, indicating earlier transitions from rest to active 
periods, and from active periods to rest (acrophase, up-mesor, 
and down-mesor). Using the extended cosinor model, we found 
that older adults showed a nonsignificant trend toward greater 
width values, indicating shorter durations of high activity 
periods (alpha), as well as greater slope values, meaning faster 
transitions between low and high activity periods. There was no 
significant difference in rest-activity rhythm amplitude across 
age groups. Non-parametric rest-activity analysis indicated that 
older adults had greater day-to-day stability in rest-activity pat-
terns (interdaily stability).

Rest-activity rhythms and cognitive performance

The results of the participants’ performance on neuropsycho-
logical measures are summarized in Table  4. In general, our 
study sample’s age-adjusted scores were above average relative 
to population norms, particularly with respect to performance 
on the WAIS-IV Vocabulary subtest. Older adults exhibited com-
paratively better performance on Trails Making Test (TMT) A and 
B for their age relative to young adults. Performance on other 
assessments was similar across age groups.

Results from a correlation analysis using standardized 
z-scores for neuropsychological test measures and PVT results 
with rhythm amplitude are shown in Table 5. There was a weak 
positive correlation between rhythm amplitude and performance 
on TMT B. No other correlations with cognitive measures were 
statistically significant. Due to the weak evidence for a relation-
ship between the selected rest-activity rhythm measures and 
cognitive performance in this sample, we did not further explore 
voxelwise white matter associations with cognitive measures.

Table 1.  Participant Demographics and Health Characteristics

Young adults Older adults

N 46 57
Age (mean [SD]) 21.39 (3.78) 68.11 (5.64)
Sex = female (%) 28 (60.9) 45 (78.9)
Education (mean [SD]) 14.64 (2.33) 17.06 (3.06)
Vascular disease = positive (%) 0 (0.0) 1 (1.8)
Diabetes = positive (%) 0 (0.0) 0 (0.0)
Cancer = positive (%) 0 (0.0) 3 (5.3)
Head injury = positive (%) 0 (0.0) 3 (5.3)
Neurological disorder = positive (%) 0 (0.0) 3 (5.3)
Stroke = positive (%) 0 (0.0) 0 (0.0)
Psychiatric disorder = positive (%) 0 (0.0) 3 (5.3)
Sleep disorder = positive (%) 0 (0.0) 6 (10.5)

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa266#supplementary-data
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Figure 1.  Calculation of rest-activity rhythm amplitude for two example older adult participants with high and low rhythm amplitudes. Subject 1. Examination of ac-

tivity level data for the high amplitude participant shows well-defined rest intervals (in blue). These rest and active intervals repeat in a similar way from day to day, 

indicating greater day-to-day stability in rest-activity rhythm, which results in a greater rhythm amplitude value. Subject 2. In contrast, the low amplitude participant 

shows less defined rest intervals with greater variation across in both rest interval duration and frequency, resulting in a lower rhythm amplitude value.

Table 2.  Correlations among Rest-Activity Rhythm Stability Measures and Sleep Duration, Sleep Efficiency, Physical Activity, and Global PSQI

Variable Correlate

Young adults Older adults

R 95% CI R 95% CI

Amplitude Sleep duration −0.04 [−0.61, 0.56] 0.20 [−0.14, 0.53]
Sleep efficiency 0.23 [−0.37, 0.65] 0.33 [0.15, 0.52]*
Physical activity −0.12 [−0.47, 0.59] 0.25 [−0.19, 0.56]
Global PSQI −0.16 [−0.51, 0.25] 0.14 [−0.11, 0.34]

F-statistic Sleep duration 0.21 [−0.41, 0.73] 0.15 [−0.18, 0.38]
Sleep efficiency 0.43 [−0.03, 0.68] 0.43 [0.24, 0.62]*
Physical activity −0.27 [−0.55, 0.30] 0.35 [0.00, −0.57]
Global PSQI −0.19 [−0.47, 0.07] −0.02 [−0.25, 0.22]

Interdaily stability Sleep duration 0.03 [−0.54, 0.59] 0.20 [−0.05, 0.44]
Sleep efficiency 0.23 [−0.25, 0.52] 0.30 [0.05, 0.53]*
Physical activity −0.11 [−0.33, 0.18] 0.17 [−0.16, 0.40]
Global PSQI −0.01 [−0.33, 0.21] 0.22 [−0.09, 0.43]

Intradaily variability Sleep duration −0.39 [−0.67, −0.06] −0.26 [−0.49, 0.02]
Sleep efficiency −0.11 [−0.48, 0.27] −0.22 [−0.49, 0.07]
Physical activity 0.00 [−0.25, 0.20] −0.11 [−0.33, 0.18]
Global PSQI 0.09 [−0.27, 0.45] −0.25 [−0.45, −0.04]*

Relative amplitude Sleep duration 0.62 [0.41, 0.81]* 0.56 [0.36, 0.70]*
Sleep efficiency 0.70 [0.49, 0.86]* 0.58 [0.28, 0.75]*
Physical activity −0.52 [−0.78, −0.06]* −0.13 [−0.47, 0.18]
Global PSQI −0.18 [−0.52, 0.16] −0.02 [−0.33, 0.27]

Correlations were performed using bootstrapped confidence intervals with jackknife adjustment. All neuropsychological measures were reported as standardized 

z-scores. * indicates p < 0.05.



McMahon et al.  |  7

Age group differences in white matter 
diffusion metrics

TBSS analyses showed widespread decreases in FA and increases 
in MD in older adults compared to younger adults (p < 0.05, TFCE 
corrected, Figure 2), a finding that is consistent with the existing 
literature [20–24].

Rest-activity rhythms and white matter 
microstructure

Whole-brain analysis
TBSS analysis showed significant clusters for a positive asso-
ciation between rest-activity rhythm amplitude and FA across 
both age groups (Figure  3). A  single significant cluster was 

observed spanning the CC and bilateral anterior corona radiata 
(Table 6). There was not a significant interaction with age group 
for the relationship between rhythm amplitude and FA. Given 
ongoing debate about the use of an FA skeleton in TBSS analysis, 
we sought to validate our results through statistical analysis of 
mean FA values extracted from 6 mm spherical ROIs selected 
from overlapping and non-overlapping regions from the skelet-
onized statistical map. Consistent with our TBSS analysis, we 
did not see evidence of an interaction effect of age group at any 
of the 12 ROIs. Some previous research [53] supports that there 
should be between group differences in this relationship, there-
fore because this study was of modest sample size, we explored 
some of these potential differences with less statistical rigor in 
order to generate hypotheses for future studies. These analyses 
are included in Supplementary Material.

Table 3.  Sleep and Rest-Activity Rhythm Characteristics of Young and Older Adults

Young adults Older adults p

N 46 57  
Sleep measures
Sleep time (mean [SD]) 400.33 (94.99) 403.49 (84.68) 0.860
Sleep efficiency (mean [SD]) 81.72 (6.78) 80.49 (8.91) 0.442
Onset latency (mean [SD]) 20.48 (13.59) 28.92 (20.20) 0.018*
Total activity (mean [SD]) 322,947.97 (183,583.88) 252,918.64 (89,505.82) 0.014*
Cosinor rest-activity measures
Amplitude (mean [SD]) 1.61 (0.29) 1.58 (0.34) 0.598
Width (alpha) (mean [SD]) −0.48 (0.16) −0.40 (0.26) 0.050
Slope (beta) (mean [SD]) 6.63 (2.74) 14.02 (26.63) 0.070
Mesor (mean [SD]) 0.94 (0.16) 0.95 (0.19) 0.768
Acrophase (phi) (mean [SD]) 16.45 (1.43) 14.76 (1.63) <0.001***
Up-mesor (mean [SD]) 8.58 (1.73) 7.10 (1.78) <0.001***
Down-mesor (mean [SD]) 24.31 (1.41) 22.43 (1.83) <0.001***
Minimum (mean [SD]) 0.14 (0.18) 0.16 (0.17) 0.444
F-statistic (mean [SD]) 3216.56 (1613.86) 3612.04 (1624.19) 0.230
Non-parametric rest-activity measures
Interdaily stability (IS) (mean [SD]) 0.42 (0.11) 0.54 (0.12) <0.001***
Intradaily variability (IV) (mean [SD]) 0.87 (0.25) 0.85 (0.27) 0.746
Relative amplitude (RA) (mean [SD]) 0.84 (0.14) 0.86 (0.11) 0.341
L5 (mean [SD]) 16.46 (16.77) 11.97 (12.07) 0.143
M10 (mean [SD]) 172.61 (46.04) 158.76 (49.12) 0.177

* indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.

Table 4.  Comparison of Performance on Cognitive Assessments by Age Group

Young adults Older adults p

N 46 57  
Neuropsychological assessments
Controlled Oral Word Association Test (mean [SD]) — 0.27 (1.00) —
California Verbal Learning Test (CVLT; mean [SD]) — 0.23 (0.73) —
CVLT Short Delay (mean [SD]) — 0.59 (1.05) —
CVLT Long Delay (mean [SD]) — 0.52 (0.95) —
Trails Making Test A (mean [SD]) —0.28 (1.10) 0.43 (1.33) 0.005**
Trails Making Test B (mean [SD]) −0.39 (1.43) 0.25 (1.40) 0.026*
WAIS-IV Digit Span (mean [SD]) 0.33 (1.07) 0.46 (1.03) 0.521
WAIS-IV Vocabulary (mean [SD]) 1.35 (1.00) 1.29 (0.98) 0.756
Psychomotor vigilance task
Mean response time (mean [SD]; ms) 284.65 (54.90) 328.51 (222.42) 0.195
False starts (mean [SD]) 1.59 (1.72) 4.19 (10.84) 0.110
Response lapses (mean [SD]) 0.00 (0.00) 0.04 (0.26) 0.372

All neuropsychological measures are reported as age-adjusted standardized z-scores. Young adults were not administered the Controlled Oral Word Association Test 

or the California Verbal Learning Test. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa266#supplementary-data
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No significant correlations with white matter FA were found 
for either the cosinor F-statistic or any non-parametric rest-
activity measures, including relative amplitude, interdaily sta-
bility, or intradaily variability.

Analysis of MD maps revealed no significant clusters as-
sociated with any of the selected rest-activity measures, 
including rhythm amplitude. T-statistic maps showed some 
evidence of a moderating effect of age group on the rela-
tionship between intradaily variability and MD. However, 
this effect did not reach statistical significance at p  <  0.05, 
TFCE-corrected (p = 0.058). Again, because we did not find ro-
bust between group differences in the relationship between 
intradaily variability and MD, we present these analyses in the 
Supplementary Material.

CC ROI analysis
Results of linear regression analyses were consistent with 
the whole brain analysis. There was no significant interaction 
with age group for the relationship between rhythm ampli-
tude and CC FA adjusting for CC volume. There was a signifi-
cant main effect of rhythm amplitude adjusting for age group 
and CC volume (Table 7, Figure 4). Neither CC MD nor volume 
showed a significant relationship with rhythm amplitude. 
Because of the significant correlation between sleep efficiency 
and rhythm amplitude, sleep efficiency was also examined 
as a candidate predictor of CC FA in separate models con-
trolling for age and CC volume, but was not significant (see 
Supplementary Material).

Figure 2.  Results of TBSS analyses examining age group differences in (A) FA and (B) MD between healthy young and older adults superimposed on the MNI standard. 

The average white-matter skeleton is presented in green. Red and blue colored areas indicate regions of the skeleton in which significant age group differences in 

diffusion metrics were observed at p < 0.05 (TFCE; corrected for multiple comparisons). Areas where younger adults showed greater values for diffusion metrics are 

shown in warm colors, whereas areas where younger adults showed lower values are shown in cool colors. Surrounding voxels were augmented for visual purposes.

Table 5.  Correlations between Rhythm Amplitude and Cognitive 
Measures

Variable

Amplitude

r 95% CI

Neuropsychological assessments
California Verbal Learning Test+ −0.16 [−0.4, 0.11]
Controlled Oral Word Association Test+ −0.15 [−0.45, 0.19]
Trails Making Test A −0.02 [−0.18, 0.13]
Trails Making Test B 0.29 [0.04, 0.47]
WAIS-IV Vocabulary 0.13 [−0.04, 0.29]
WAIS-IV Digit Span −0.01 [−0.19, 0.16]
Psychomotor vigilance task
Mean response time 0.08 [−0.05, 0.30]
False starts −0.04 [−0.19, 0.23]

Correlations were performed using bootstrapped confidence intervals with 

jackknife adjustment. All neuropsychological measures were reported as stand-

ardized z-scores. + indicates results from the older adult group only.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa266#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa266#supplementary-data
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Discussion
The goal of this study was to investigate the relationship be-
tween rest-activity rhythms and white matter microstructure in 
healthy young and older adults free of cardiovascular and other 
significant health risk factors. Up-to-date, this is the only study 
where this relationship has been examined in both a healthy 
young and older adult sample. Our results showed that rest-
activity rhythm amplitude was associated with brain white 
matter microstructure (FA) in both healthy young and older 
adults, primarily in the CC and anterior corona radiata. The CC 
is the predominant interhemispheric pathway in the brain, and 
in young adults CC diffusion metrics have been found to be sen-
sitive to acute sleep effects, such as sleep deprivation vulner-
ability [54] and sleep spindle power [55]. Our study suggests that 
white matter microstructure is not only associated with acute 
sleep effects, but that subtle, global patterns of rest and activity 
occurring over an extended period may also have an important 

relationship with white matter microstructure. The use of rest-
activity measures derived from non-intrusive, wearable tech-
nology may therefore be a useful biomarker of brain health.

Age-related differences in rest-activity rhythms

While many older adults report changes in rest-activity be-
havior, there is mixed evidence regarding associations between 
later life and rest-activity stability assessed through actigraphy 
[56]. In our study, we found that older adults exhibited signifi-
cantly greater coupling of rest-activity rhythms to stable  24-h 
makers (interdaily stability), as well as an earlier phase onset 
(acrophase, up-mesor, and down-mesor) compared to young 
adults. The latter finding is consistent with a number of other 
studies documenting increased rigidity in rest-activity rhythms 
as well as earlier chronotypes, including earlier waketimes and 
bedtimes, among older adults [6, 56–58].

Figure 3.  Results of TBSS analyses examining correlations between rhythm amplitude and FA superimposed on the MNI standard. The average white-matter skeleton 

is presented in green. Warm colors indicate areas of the white matter skeleton for which there was a positive correlation between rhythm amplitude and FA across all 

subjects at p < 0.05 (TFCE; corrected for multiple comparisons). Surrounding voxels were augmented for visual purposes.

Table 6.  Clusters Showing Significant Association between Rhythm Amplitude and FA

Cluster index Voxels 1–p MAX MAX X (mm) MAX Y (mm) MAX Z (mm) Locations (>2% probability)

1 57,839 0.998 13 43 -14 Genu of corpus callosum: 2.82
Body of corpus callosum: 3.94
Splenium of corpus callosum: 2.50
Anterior corona radiata L: 2.07

Table 7.  Results of Regression Analyses Predicting Corpus Callosum FA

β coef 95% CI p F df p R2 CV R2

Interaction model    10.15 4.92 <0.001*** 0.306 0.246
Age group −0.28 [−0.34, −0.22] 0.571  
Amplitude 0.34 [0.32, 0.37] 0.020*
CC volume 0.23 [0.23, 0.23] 0.040*
Age group * amplitude 0.01 [−0.02, 0.05] 0.978 ns
Main effect model    13.69 3.93 <0.001*** 0.306 0.254
Age group −0.26 [−0.28, −0.25] 0.015*  
Amplitude 0.35 [0.33, 0.36] <0.001***
CC volume 0.23 [0.23, 0.23] 0.036*

Variance explained is given by R2 and cross-validated (CV) R2.

* indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.
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These age group differences in rest-activity rhythms may 
highlight the potential relative roles of age-related changes in 
both biological function and lifestyle factors which contribute 
to rest-activity profiles. Age-related decreases in rest-activity 
rhythm stability are often attributed to the degradation of the 
biological clock, or the suprachiasmatic nucleus (SCN), and its 
associated pathways. The extent to which rest-activity disturb-
ances in these populations are attributable to direct interference 
with the SCN or indirect interference through either upstream 
or downstream effects remains an important area of investiga-
tion. Other health-related concerns can also significantly impact 
rest-activity patterns. Studies in clinical samples have found 
that compared to healthy older adult controls, individuals with 
Alzheimer’s disease [7, 36], Parkinson’s disease [59, 60], depres-
sion [16, 61], and schizophrenia [62], show greater disruption in 
rhythm stability. Additionally, lifestyle factors, such as employ-
ment status, are another important contributor to age-related 
differences in rest-activity rhythm behaviors [57].

Rest-activity rhythms and cognition

Prior studies suggest that brain regions underlying important 
aspects of learning and memory are sensitive to aspects of sleep 
physiology [53, 63]. However, in our study, while we did find 
brain white matter correlates of rest-activity rhythm stability, 
we did not find significant correlations between brain white 
matter and cognitive performance. This contrasts with research 
showing correspondence between greater fragmentation of the 
rest-activity rhythm and poorer executive function [10, 64]. Our 
selective enrollment criteria limiting our study sample to very 
healthy older adults is consistent with the skewed distribution 
of neuropsychological assessment scores we observed, with the 
mean scores for the older adult group in the average to high 
average range. While the participants’ relatively high scores on 
these standardized tests are evidence for the integrity of our 
healthy sample, this may have limited the sensitivity of our 
analysis to detecting cognitive associations with rest-activity 
rhythms. Therefore, the extent to which rest-activity measures 
could provide important measures associated with cognitive 

decline will require future work in an older adult sample with 
greater functional variability.

Rest-activity rhythms and white matter in 
healthy aging

This study disambiguates the role of cardiovascular risk in a 
prior study [32] showing a positive effect of 24-h rhythm ampli-
tude on white matter integrity in older adults. This is important 
because cardiovascular risk, comprising chronic hyperten-
sion, diabetes, and ischemic lesions, has been associated with 
greater fragmentation of rest-activity rhythms [14, 15], as well as 
age-related changes in white matter integrity [65]. Older adults 
with chronic hypertension are at greater risk for white matter 
lesions [66, 67], and demonstrate reduced FA and increased MD 
compared to healthy controls [68]. Here, in a sample of healthy 
young and older adults free of significant cardiovascular risk, we 
sought to clarify whether rest-activity rhythms have a unique 
relationship with white matter independent of cardiovascular 
risk factors. In our study, greater rhythm amplitude was associ-
ated with greater FA, but was not associated with MD. Greater FA 
is generally reflective of greater myelination, although it can also 
reflect the degree of fiber crossing, axonal density, and average 
axonal diameter [69–71]. In compact white matter structures, 
such as the CC, greater FA may better reflect a higher degree 
of fiber organization, or a greater number of axons involved in 
interhemispheric communication, rather than myelin content 
[72]. In contrast, MD reflects the rate of diffusion independent 
of directionality [73]. With this in mind, is interesting that in 
our study rhythm amplitude was associated with CC FA inde-
pendent of CC volume, suggesting that rhythm amplitude may 
account for unique variance in the fiber organization of the CC.

Our study also examined whether the relationship between 
rhythm stability and white matter is moderated by age group. 
We did not find a significant interaction effect with age group on 
the relationship between rhythm amplitude and white matter 
integrity. These findings align with findings from Kocevska et al. 
[74] which showed that poor sleep quality predicted lower FA 
in middle-age and older adults up to 7 years later but was not 

Figure 4.  Scatter plots showing relationships between (A) rhythm amplitude and corpus callosum (CC) FA, (B) rhythm amplitude and CC volume, and (C) CC volume 

and CC FA.
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associated with changes in white matter over time. In line with 
these findings, our results suggest that individual differences 
in rest-activity rhythm stability appear to be an important as-
sociate of brain white matter irrespective of age. This conclu-
sion remains based on our relatively modest sample size. For 
that reason, we have explored some of the less robust findings 
of potential age group differences in the relationship between 
rest-activity rhythms and white matter in the Supplementary 
Material.

It is important to draw attention to the fact that while we 
did not find evidence of an interaction effect of age group on the 
relationship between rhythm stability and white matter integ-
rity, the manner in which this relationship unfolds with aging 
will vary across individuals depending on other lifestyle and 
health-related factors. Given the cross-sectional nature of our 
study, it is possible that due to cohort effects, we were unable to 
detect a true interaction effect of age group. Because our older 
adult participants were selected to represent healthy aging, the 
way the relationship between rest-activity rhythms and white 
matter unfolds in this group may differ from how it is expressed 
in typical aging. For example, it is likely that participants in our 
healthy young adult group will go on to develop various health 
and lifestyle changes as they age. These changes are likely to 
impact rest-activity behaviors and consequently brain health, or 
vice versa. The causal sequence of how changes in either white 
matter integrity or rest-activity rhythms may produce changes 
in the other remains an important area of inquiry. However, it 
is interesting that even the young adult group, which likely had 
a greater variety of lifestyle and sub-clinical health risk factors, 
showed a robust relationship between rhythm amplitude and 
FA in multiple brain regions. This suggests that rest-activity 
rhythm stability may be expected a similarly important role in 
white matter integrity in older adults with health profiles more 
typical of “normal” aging.

Cosinor rhythm amplitude as a unique predictor of 
white matter microstructure

Among the rest-activity rhythm measures we explored, cosinor 
rhythm amplitude was uniquely important for white matter 
integrity across age groups. Rhythm amplitude was correlated 
with greater sleep efficiency, but was not related to sleep dur-
ation, daily physical activity, or global PSQI scores. In contrast, 
relative amplitude derived from the non-parametric method 
was associated with sleep duration and daily physical activity 
in addition to sleep efficiency. Of particular interest, follow-up 
regression analyses focusing on the CC did not reveal a signifi-
cant relationship between sleep efficiency and white matter in-
tegrity. This indicates that the stability of daily activity patterns, 
comprised of not only rest but also active periods, is as a whole 
important for white matter integrity in this region. Furthermore, 
in accordance with Kocevska et al. [75], we did not find a rela-
tionship between white matter and subjective sleep complaints 
ascertained from participants’ global PSQI scores. However, we 
restricted our eligibility criteria to only include participants who 
endorsed eight or fewer items on the PSQI, so we were unable 
to test this relationship with a sample that expressed a fuller 
range of sleep complaints. Rest-activity measures derived from 
objective actigraphic assessments may therefore offer greater 
sensitivity to the state of an organism, thereby providing greater 

utility beyond that of subjective sleep assessments as bio-
markers of brain health.

Strengths and limitations of the study

This study advanced the existing literature on this topic by ad-
dressing three main limitations: We enrolled healthy adults 
selected to be free of significant disease burden to reduce the 
mediation effect of cardiovascular disease and sub-threshold 
cardiovascular pathology, included a young adult group to 
evaluate whether the association between rest-activity rhythm 
stability and white matter changes with age, and used actigraphy 
recordings in addition to self-reported questionnaire data to as-
sess rest-activity patterns. However, our study is not without its 
limitations. A priori power analysis on the question of circadian 
rhythm–white matter relationships was not performed, which 
hindered our ability to understand whether the sample size 
used in this study was sufficient to detect a true effect. While the 
TBSS approach to analyzing DTI data offers several methodo-
logical advantages over other approaches, including increased 
statistical power from dimensionality reduction and removing 
the need for spatial smoothing, there is ongoing debate about 
the FA skeleton’s effects on anatomical localizability and inter-
pretability of effects, as well as its sensitivity to the quality of 
image registration [76]. In order to address this limitation, we 
conducted follow-up ROI analyses which reconfirmed our TBSS 
findings. Finally, while many cross-sectional studies report 
white matter microstructure is an important neurobiological 
marker of age-related cognitive changes, longitudinal studies 
allowing for evaluation of a causal relationship between white 
matter and cognition are somewhat more sparse [77]. Given the 
observational nature of our study, future longitudinal work is 
needed to clarify whether the current findings are reflective of 
microstructure alterations arising as a consequence of lifelong 
rest-activity behaviors as opposed to a non-causal relationship 
driven by other age-related processes.

Conclusion
In summary, this study examined how subtle differences in 
rest-activity rhythms are associated with brain white matter 
and whether those relationships are reflected in cognitive func-
tioning. We found that greater rest-activity rhythm stability as 
indicated by cosinor rhythm amplitude was associated with 
greater FA across both young and older adults. This effect was 
primarily observed in the CC and anterior corona radiata, and 
is consistent with prior literature documenting associations be-
tween diffusion metrics in these regions and acute sleep effects. 
Given that we now understand that there are relationships in 
healthy elderly adults, future studies can better examine how 
the relationship between rhythm amplitude and white matter 
microstructure is affected in older adults with significant health 
risk factors, such as cardiovascular risk.
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