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Palmitoylation of SARS-CoV-2 S protein is essential for viral

infectivity
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Dear Editor,

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is the causative agent of the unprecedented coronavirus disease
2019 (COVID-19). SARS-CoV-2 entry into host cells is mediated by
the viral transmembrane spike (S) glycoprotein that forms
homotrimers protruding from the viral surface. S protein
comprises two functional subunits S1 and S2, responsible for
binding to host receptor angiotensin-converting enzyme 2 (ACE2)
and the membrane fusion of SARS-CoV-2 with host cell
membranes, respectively. Membrane fusion is necessary for
release of viral genome RNA into the host cell cytoplasm. The
entry of SARS-CoV-2 is a complex process that requires the
concerted action of receptor-binding and proteolytic processing
of S protein to promote virus-cell fusion.' After cleavage, the
heptad repeat 1 (HR1) and 2 (HR2) domains in S2 subunit interact
with each other to form a six-helix bundle (6-HB) fusion core and
insert into the target cell membrane, thus bringing the viral and
cell membrane into close apposition for fusion and infection.?
However, regulatory mechanisms of S-mediated membrane fusion
are still less known.

Protein palmitoylation is a common covalent fatty acid
modification that occurs on cytoplasmic cysteine residues with a
16-carbon fatty acid palmitate, catalysed by a family of zinc finger
DHHC domain-containing protein palmitoyltransferases (ZDHHCs),
of which 24 members (ZDHHC1-24) have been identified in
mammals. Palmitoylation enhances protein hydrophobicity and
plays important roles in the regulation of protein subcellular
localization, trafficking, stability and interaction with other
proteins. Palmitoylation of viral proteins is known to be involved
in virus assembly and infection. The S protein of SARS-CoV-1 has
been shown to be palmitoylated that appear to be important for
cell-cell fusion,> whether S palmitoylation is critical for SARS-CoV-
2 infection and its regulatory mechanism are still elusive.

To explore the palmitoylation of SARS-CoV-2 S protein, we
performed an acyl-biotin exchange (ABE) assay.* As shown in Fig.
1a, ectopically expressed S protein was clearly acylated. The ABE
assay efficiency was verified by detection of NOD2 palmitoylation
as reported* (Supplementary Fig. S1a). ZDHHC5 and GOLGA?7, the
acyl-transferase complex mediates protein palmitoylation, are
reported to be physically associated with SARS-CoV-2 S protein.’
To confirm the interactions of S protein with ZDHHC5-GOLGA7,
Flag-S, HA-ZDHHC5 and Myc-GOLGA7 were coexpressed in
HEK293T cells. Co-immunoprecipitation (Co-IP) assays demon-
strated that S protein interacts with both ZHHHC5 and GOLGA?7,
vice versa (Fig. 1b). Further ABE assay found that ectopic ZDHHC5
obviously increased the palmitoylation level of S protein, which
was further enhanced by overexpression of GOLGA7 (Fig. 1c). By
contrast, a catalytically inactive ZDHHC5 mutant (ZDHHC5-C134S)
abolished ZDHHC5-induced upregulation of S palmitoylation (Fig.
1d). These data indicate that S protein is palmitoylated by the
ZDHHC5-GOLGA7 complex.

; https://doi.org/10.1038/s41392-021-00651-y

We employed the motif-based palmitoylation sites predicator
CSS-palm 4.0 (http://csspalm.biocuckoo.org/online.php) to identify
the palmitoylation site of S protein. A single palmitoylation site
(C15) at N terminus and nine Cys sites within cytosolic C-terminus
domain of S protein were predicted (Fig. 1e, left panel). Compared
to wild-type S protein (S-WT), substitution of Cys residues at C-
terminus by alanine (S-AC-Palm) completely abolished the
palmitoylation of S protein, while mutant with Cys to Ala at C15
(S-C15A) cannot affect the palmitoylation of S protein (Fig. 1e,
right panel).

To further investigate the role of S palmitoylation in SARS-CoV-2
infection, luciferase-expressing pseudoviruses bearing S-WT or
S-AC-Palm were generated in the envelope-defective HIV-1
backbone (Supplementary Fig. S1b). The pseudovirus entry
efficiencies were estimated by analysing the levels of luciferase
activities in human ACE2-expressing HEK293T cells (HEK293T-
ACE2). Compared to S-WT pseudovirus, S-AC-Palm pseudovirus
showed an approximate 25-fold decrease of luciferase activities in
HEK293T-ACE2 cells (Fig. 1f), suggesting that the entry of SARS-
CoV-2 pseudovirus is highly dependent on S protein palmitoyla-
tion. To investigate whether palmitoylation affects the abundance
of S protein in the SARS-CoV-2 pseudovirions, we purified
pseudovirions by sucrose density gradient ultracentrifugation. As
shown in Fig. 1G upper panel, SARS-CoV-2 S protein had been
cleaved during viral packaging and AC-Palm did not decrease the
abundance of total S protein packaged into the pseudovirions.
Interestingly, we detected more cleaved S2 subunits and less
dimeric/trimeric S proteins (>250 kD) in the pseudovirions with
S-AC-Palm than that of pseudovirions with S-WT. In accordance,
with native PAGE, significantly reduced trimer formation of
S protein was also detected in S-AC-Palm mutant expressing cells
than S-WT expressing cells (Fig. 1g, lower panel). Palmitoylation is
known to regulate protein trafficking and palmitoylation of SARS-
CoV-1 S protein is reported to promote its distribution in the
detergent-resistant membranes.® However, compared to S-WT, we
did not observe the reduction of S-AC-Palm partitioning into cell
membrane and lipid raft fractionations (Supplementary Fig. S1c),
excluding the possible involvement of palmitoylation in the
membrane trafficking of S protein.

The fusion between viral and cellular membrane is a critical
step for viral entry; thus, we further explored whether
palmitoylation of S protein determines the membrane fuso-
genic capacities of SARS-CoV-2 pseudovirus. S-mediated
cell-cell fusion assays were performed by incubating Flag-S
and GFP co-expressing HEK293T cells with Dil-labelled Huh7
target cells. Flow cytometric analysis showed that after 6 h
incubation, about 18% of Huh7 cells fused with S-WT/GFP
coexpressed HEK293T cells displaying as GFP positive signals in
Dil-labelled Huh7 cells. This cell-cell fusion was almost
completely destroyed in Huh7 cell incubating with S-AC-
Palm/GFP co-expressing HEK293T cells (Fig. Th). Similar results
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were obtained with fluorescent imaging in coculture of S/GFP
co-expressing HEK293T cells and Huh7 cells. At 6h post
coculture, cell-cell fusion verified as larger morphology and
weaker fluorescence intensity of GFP (white arrows) was
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observed in S-WT/GFP co-expressing HEK293T cells but not in
empty vector control and S-AC-Palm/GFP co-expressing
HEK293T cells (Fig. 1h). Even 48 h later, there were still no
fused cells in S-AC-Palm and empty vector cocultured groups,

Signal Transduction and Targeted Therapy (2021)6:231



Letter

Fig. 1 Palmitoylation of SARS-CoV-2 S protein contributes to membrane fusion and viral infection. a SARS-CoV-2 S protein is palmitoylated.
Flag-S was transfected into HEK293T cells, 48 h later, its palmitoylation was detected by ABE assay in the presence of hydroxylamine (HAM). b
ZDHHC5 and GOLGA?7 interact with S protein. Flag-S, HA-ZDHHC5 and Myc-GOLGA?7 constructs were cotransfected into HEK293T cells, 48 h
later, protein interactions were measured by Co-IP. ¢ ZDHHC5 and GOLGA7 contribute to S protein palmitoylation. Flag-S was coexpressed
with HA-ZDHHC5 or HA-ZDHHC5/Myc-GOLGA7 in HEK293T cells for 48 h, then the palmitoylation levels of S were detected. d The
palmitoyltransferases activity of ZDHHCS5 is essential for regulating S protein palmitoylation. Flag-S plasmid was cotransfected with HA-
ZDHHC5 or HA-ZDHHC5-C143S plasmids into HEK293T cells, 48 h later, the palmitoylation levels of S were measured by ABE assay. e The
palmitoylation sites of S protein are Cys residues at C-terminus. The palmitoylation sites of S were predicted by CSS-Palm tool. The blue fonts
indicated the predicated palmitoylation sites (left panel), and the palmitoylation levels of wild-type S, C-C15A and S-AC-Palm mutants were
measured by ABE assay (right panel). f Palmitoylation of S protein is required for the infectivity of SARS-CoV-2 pseudoviruses. HEK293T-ACE2
cells were infected with lentiviruses pseudotyped with S-WT or S-AC-Palm for 72 h, viral infection rate was analysed through detecting firefly
luciferase activity relative to the level (set as 100) at S-WT (n = 3). Unpaired t-test, *P < 0.05; **P < 0.01. g S-trimer formation depends on its
palmitoylation. Lentiviruses pseudotyped with S-WT or S-AC-Palm were packaged from HEK293T cells and purified through supercentrifuging
under 20% sucrose cushion, then S protein expression on pseudoviruses particles was detected by western blot, HIV-1 p24 antigen as loading
control (upper panel). S-WT and S-AC-Palm were overexpressed in HEK293T for 48 h, the relative S-trimer/monomer levels were detected by
western blot (lower panel). h Palmitoylation of S protein is essential for S-mediated cell-cell fusion. S/GFP and S-AC-Palm/GFP coexpressed
HEK293T cells were cocultured with Dil-labelled Huh7 cells, cell fusion was measured with flow cytometry (n = 3) and visualized by fluorescent
imaging at indicated time. The scale bar indicates 50 pm. One-way ANOVA, *P < 0.05; **P < 0.01. i ZDHHC5 knockdown inhibits SARS-CoV-2
pseudovirus infection. HEK293T cells were transfected with shZDHHC5 for 24 h, Flag-S plasmid alone or together with other packing plasmids
were transfected into these cells. Another 48 h later, the SARS-CoV-2 pseudoviruses were collected to infect HEK293T-ACE2 cells. S
palmitoylation levels were measured by ABE assay. S-mediated cell-cell fusion and SARS-CoV-2 pseudoviruses infection rate of HEK293T-ACE2
cells were detected as in 1Th and 1f (n=3). Unpaired t-test, *P < 0.05; **P < 0.01. j 2-BP represses SARS-CoV-2 pseudoviruses infection.
HEK293T cells were transfected with Flag-S alone or together with other packing plasmids for 12 h and subsequently treated with 2-BP at
25 pM for another 36 h. S protein palmitoylation levels were measured by ABE assay. S-mediated cell fusion and pseudovirus infection rate
were detected as in 1h and 1f (n = 3). Unpaired t-test, *P < 0.05; **P < 0.01

while big syncytia appeared in wild-type S expressing
HEK293T cells (Fig. 1h). Consistently, with Dil-labelled

It is worth noting that S-AC-Palm mutation led to no changes in
the membrane and lipid raft distribution of SARS-CoV-2 S

HEK293T-ACE2 as target cells, flow cytometry and fluorescent
imaging confirmed the deficiency of cell-cell fusion and
syncytia formation in S-AC-Palm mutant expressing cell—cell
cocultures (Supplementary Fig. S1d). Collectively, these data
suggest that
S palmitoylation is essential for SARS-CoV-2 infectivity by
controlling S protein trimer formation and subsequently
membrane fusion.

Since depalmitoylation displayed significant inhibition of
SARS-CoV-2 pseudovirus entry, we further asked whether
targeting palmitoylation of S protein is a potential therapeutic
strategy. To this end, we reduced ZDHHCS5 expression by shRNA
targeted knockdown. As predicted, ZDHHC5 knockdown
deceased the palmitoylation of S protein (Fig. 1i). Moreover,
ZDHHC5 knockdown caused significant defects in S-mediated
cell-cell fusion and pseudovirus entry (Fig. 1i). In accordance,
treatment of palmitate analog 2-brompalmitate (2-BP) (25 pM), a
general protein palmitoylation inhibitor, led to about half
decrease of palmitoylation levels of S protein (Fig. 1j) without
any cytotoxicity in HEK293T cells (Supplementary Fig. S1e). Also,
palmitoylation levels of S protein were reduced by 2-BP
treatment (Fig. 1j), which simultaneously repressed S-
medicated membrane fusion rate of HEK293T-Huh7 cells and
infectivity of SARS-CoV-2 pseudovirus (Fig. 1j). Together, these
results suggest that intervening palmitoylation of S protein
contributes to restricting SARS-CoV-2 transmission.

Our study reveals the critical role of palmitoylation of SARS-
CoV-2 S protein in controlling membrane fusion and virion
infectivity. ZDHHC5 and GOLGA?7 are found to enhance SARS-
CoV-2 S protein palmitoylation synergistically. More impor-
tantly, targeting palmitoylation of S protein by knockdown
ZDHHC5 or treatment with a protein palmitoylation inhibitor
2-BP suppresses S-mediated membrane fusion and the entry of
SARS-CoV-2 pseudovirus into host cells. Consistent with our
findings, two latest reports also found that Cys sites within
cytosolic C-terminus domain of S protein are required for
cell-cell fusion and palmitoylated by ZDHHC5,°’ which
together with our work strongly suggest a novel insight into
blocking S palmitoylation for controlling SARS-CoV-2 infection.
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protein, but this mutation resulted in obvious decrease of
S-trimer formation, which may explain the critical role of
palmitoylation in controlling S-mediated membrane fusion and
SARS-CoV-2 pseudovirus infection. However, how palmitoyla-
tion affects S protein trimerization is not clear, which needs to
be further investigated in future studies.
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