Skip to main content
. 2021 May 28;15:663592. doi: 10.3389/fninf.2021.663592

Table 7.

A comparison between CoMB-Deep and related studies using the same dataset.

Classification category
Method Sensitivity (%) Precision (%) Specificity (%) Accuracy (%)
Das et al. (2019) HOG, GLCM, Tamura, and LBP features + GRLN + SVM 100 100 100 100
Das et al. (2020c) AlexNet + SVM VGG-16 + SVM 99.44 99.62
Das et al. (2018b) (Shape + Color) features + PCA + SVM 100 100 100 100
Das et al. (2020c) AlexNet sVGG-16 98.5 98.12
Das et al. (2020a) HOG, GLCM, Tamura, and LBP features + GRLN + MANOVA + SVM 100 100 100 100
Proposed CoMB-Deep Inception-ResNet + DWT + Information gain + LSTM 100 100 100 100
Classification (multi-class category)
Sensitivity (%) Precision (%) Specificity (%) Accuracy (%)
Das et al. (2018b) (Shape + Color) features + PCA + SVM 84.9
Das et al. (2020a) HOG, GLCM, Tamura, and LBP features + GRLN + MANOVA + SVM 72 66.6 65.21
Das et al. (2020c) AlexNet VGG-16 s 79.33 65.4
Das et al. (2020b) GLCM + Tamura + LBP + GRLN + SVM 91.3 91.3 97 91.3
Das et al. (2020b) GLCM + Tamura + LBP + GRLN + PCA + SVM 96.7
Das et al. (2020c) AlexNet + SVM VGG-16 + SVM 93.21 93.38
Proposed CoMB-Deep Deep features of (DenseNet-201 + ShuffleNet) + Relief-F + Bi-LSTM 98.1 98.1 99.3 98.05
Deep features of (DenseNet-201 + Inception + Resnet-50 + Darknet-53 + MobileNet + ShuffleNet + SqueezeNet + NasNetMobile) + Relief-F + Bi-LSTM 99.8 99.4 99.4 99.35