Table 7.
A comparison between CoMB-Deep and related studies using the same dataset.
| Classification category | |||||
|---|---|---|---|---|---|
| Method | Sensitivity (%) | Precision (%) | Specificity (%) | Accuracy (%) | |
| Das et al. (2019) | HOG, GLCM, Tamura, and LBP features + GRLN + SVM | 100 | 100 | 100 | 100 |
| Das et al. (2020c) | AlexNet + SVM VGG-16 + SVM | – | – | – | 99.44 99.62 |
| Das et al. (2018b) | (Shape + Color) features + PCA + SVM | 100 | 100 | 100 | 100 |
| Das et al. (2020c) | AlexNet sVGG-16 | – | – | – | 98.5 98.12 |
| Das et al. (2020a) | HOG, GLCM, Tamura, and LBP features + GRLN + MANOVA + SVM | 100 | 100 | 100 | 100 |
| Proposed CoMB-Deep | Inception-ResNet + DWT + Information gain + LSTM | 100 | 100 | 100 | 100 |
| Classification (multi-class category) | |||||
| Sensitivity (%) | Precision (%) | Specificity (%) | Accuracy (%) | ||
| Das et al. (2018b) | (Shape + Color) features + PCA + SVM | – | – | – | 84.9 |
| Das et al. (2020a) | HOG, GLCM, Tamura, and LBP features + GRLN + MANOVA + SVM | 72 | 66.6 | – | 65.21 |
| Das et al. (2020c) | AlexNet VGG-16 s | – | – | – | 79.33 65.4 |
| Das et al. (2020b) | GLCM + Tamura + LBP + GRLN + SVM | 91.3 | 91.3 | 97 | 91.3 |
| Das et al. (2020b) | GLCM + Tamura + LBP + GRLN + PCA + SVM | – | – | – | 96.7 |
| Das et al. (2020c) | AlexNet + SVM VGG-16 + SVM | – | – | – | 93.21 93.38 |
| Proposed CoMB-Deep | Deep features of (DenseNet-201 + ShuffleNet) + Relief-F + Bi-LSTM | 98.1 | 98.1 | 99.3 | 98.05 |
| Deep features of (DenseNet-201 + Inception + Resnet-50 + Darknet-53 + MobileNet + ShuffleNet + SqueezeNet + NasNetMobile) + Relief-F + Bi-LSTM | 99.8 | 99.4 | 99.4 | 99.35 | |