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Abstract

The toxicokinetic (TK) parameters fraction of the chemical unbound to plasma proteins and 

metabolic clearance are critical for relating exposure and internal dose when building in vitro-

based risk assessment models. However, experimental toxicokinetic studies have only been carried 

out on limited chemicals of environmental interest (~1000 chemicals with TK data relative to tens 

of thousands of chemicals of interest). This work evaluated the utility of chemical structure 

information to predict TK parameters in silico; development of cluster-based read-across and 

quantitative structure-activity relationship models of fraction unbound or fub (regression) and 

intrinsic clearance or Clint (classification and regression) using a dataset of 1487 chemicals; 

utilization of predicted TK parameters to estimate uncertainty in steady-state plasma concentration 

(Css); and subsequent in vitro–in vivo extrapolation analyses to derive bioactivity-exposure ratio 

(BER) plot to compare human oral equivalent doses and exposure predictions using androgen and 

estrogen receptor activity data for 233 chemicals as an example dataset. The results demonstrate 

that fub is structurally more predictable than Clint. The model with the highest observed 

performance for fub had an external test set RMSE/σ=0.62 and R2=0.61, for Clint classification 

had an external test set accuracy = 65.9%, and for intrinsic clearance regression had an external 

test set RMSE/σ=0.90 and R2=0.20. This relatively low performance is in part due to the large 

uncertainty in the underlying Clint data. We show that Css is relatively insensitive to uncertainty in 

Clint. The models were benchmarked against the ADMET Predictor software. Finally, the BER 

analysis allowed identification of 14 out of 136 chemicals for further risk assessment 

demonstrating the utility of these models in aiding risk-based chemical prioritization.
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1 Introduction

Human health risk assessment associated with environmental chemical exposure is limited 

by the tens of thousands of chemicals with little or no experimental in vivo toxicity data 1. 

The wealth of in vitro toxicity data generated over the last decade has emerged as a 

promising alternative to animal testing and has enabled better insight into potential 

mechanism(s) of toxicity 1-5. However, in vitro toxicity data suffers from a drawback in that 

it cannot account for the toxicokinetic (TK) factors such as bioavailability, plasma protein 

binding and intrinsic clearance which are required for the transformation of an in vitro active 

concentration to a relevant in vivo oral equivalent dose (OED) below which significant in 

vitro bioactivity is not expected to occur. However, these parameters can be measured, and 

TK models can be built using them, yielding estimates of steady-state plasma concentration 

(Css). The OED can then be calculated as the ratio of an in vitro potency value (e.g. an 

AC50) to the Css value 6-10.

Incorporation of toxicokinetic and exposure information can be used in chemical 

prioritization and can facilitate the addition of a risk context to high-throughput in vitro 
screening results 6-8, 11-13. Two key experimental TK parameters that are required for 

relating oral dose to an internal steady state plasma concentration are fraction unbound in 

plasma (fub) and intrinsic clearance (Clint). Although these parameters can be measured 

experimentally in vitro 7, 8, 14, the protocols are not high-throughput, primarily due to the 

need to develop chemical-specific analytical methods. As a result, in vitro TK data are 

available only for fraction of environmental chemicals of interest (~1000 to date), which in 

turn limit the ability to provide bioactivity exposure ratio (BER) estimates for most 

environmental chemicals.

In the absence of experimental data, in silico approaches such as read-across 15-20 and 

quantitative structure-activity relationship (QSAR) models 21, 22 can potentially be used to 

predict fub and Clint. Several in silico models that have been derived for predicting fub23-29 

as well as Clint
30-32. Some of these models have been published in the peer reviewed 

literature, whilst others have been implemented into commercial software tools, such as 

ADMET Predictor (Simulations Plus Inc., Lancaster, CA). Most of these models were 

derived using data generated for pharmaceutical chemicals and their relevance for 

environmental chemicals is unclear.

Here, we derive new in silico models for fub and Clint using data extracted from published 

literature collected for 1486 environmental chemicals 7-9, 33. This study aimed at (1) 

evaluating the suitability of chemical structure information for predicting these parameters in 
silico, (2) exploring the utility of read-across and QSAR modeling techniques for developing 

predictive models for the two in vitro TK parameters, (3) evaluating the implications of 

variability in experimental and predicted TK parameters, and physicochemical properties on 

the uncertainty in resultant OED estimates, and (4) integration of IVIVE methods along with 

high-throughput exposure predictions using the EPAs ExpoCast tool 34, 35 to facilitate rapid 

risk-assessment and chemical prioritization.
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2 Workflow

The overall workflow in this study comprised three main steps (Supplemental Figure S1). 

First, experimental data along with fingerprints and molecular descriptors were used to 

develop QSAR models. Second, the predictions from the models developed in this work 

were compared with the predictions from the commercially available ADMET Predictor 

package. Last, the predictions from this work were used to calculate OEDs using IVIVE 

methods implemented in the HTTK package and compared with the human exposure 

predictions from ExpoCast 34, 35 to facilitate high-throughput risk-assessment. The methods 

are described in detail in the following section. Additional analysis was performed where 

unsupervised clustering of chemicals with human in vitro TK parameters data was used to 

determine whether structurally related chemicals had similar TK parameters. The clusters 

derived using unsupervised clustering were used along with experimental data to derive 

cluster-based read-across predictions. These analyses do not directly impact the main 

findings of this study and are discussed in supplemental information (1-Supplemental-

Methods&Results.docx).

3 Methods

3.1 Dataset

The data used in this analysis was obtained from published literature and available through 

the high-throughput toxicokinetic (HTTK) R package 7, 33, 36-47. The dataset consists of 

1486 chemicals that span a variety of use classes including pharmaceuticals, food-use 

chemicals, pesticides and industrial chemicals 48 of which 1139 chemicals had experimental 

human in vitro fub data and 642 chemicals that had experimental human hepatic in vitro 
Clint data. An external dataset of 1,814 chemicals tested in a battery of 18 ER and 11 AR 

related assays 49, 50 was also utilized in this study for model validation. Before developing 

any models, the chemicals from this external ER-AR dataset were removed to ensure there is 

no training bias in the predictions for external validation on this set. All the structures were 

curated and the sdf file format was obtained from the DSSTox database 51, 52. The 

distribution of experimental values for fub and Clint are shown in Supplemental Figure S2. 

Since the data were non-normally distributed, they were appropriately transformed before 

any analysis was conducted. The details of the transformation and the transformed data 

distribution are presented in the results section and Supplemental Figures S2 and S3. A 

complete list of chemicals with CAS registry numbers (CASRN) and experimental data for 

both parameters and the chemical structure sdf file are included as supplemental information 

(2-fub_data.csv, 3-clint_data.csv, and 5-QSARreadyStructures.sdf).

3.2 Molecular descriptors

The chemicals used in this study were characterized using two structure-based fingerprints 

PubChem 53 and ToxPrint chemotypes 54; two physicochemical descriptors (acid 

dissociation constant, acidic and basic pKa and logarithm of water-octanol partition 

coefficient, logP) computed using the OPERA software 55; 12 molecular descriptors 

calculated using the Chemistry Development Kit (CDK) 56, 57 implemented in KNIME the 

KNIME analytics platform 58 (version 2.11.3); and 1875 descriptors (1444 1D, 2D and 431 
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3D descriptors) calculated using PaDEL software59. PubChem fingerprints were generated 

in the KNIME analytics platform 58 (version 2.11.3). ToxPrints were generated within the 

publicly available Chemotyper application (version1.0.r12976, https://chemotyper.org). The 

fingerprint and descriptor generation require an sdf file format which was obtained from the 

DSSTox database 60. The final descriptor selection and preparation for both fub and Clint 

datasets was done as follows:

1. PubChem fingerprints and ToxPrints were combined to generate one combined 

fingerprint. Feature selection was performed to remove features with less than 

80% variation across the chemical set, and only one feature from a pair of 

features was retained if the Pearson correlation coefficient between them was 

more than 80%,

2. The OPERA pKa acidic (pKa_a) and pKa basic (pKa_b) predictions were used 

to infer a pKa value as the lower of the 2 values. In case, only one them exists 

then that was used as the pKa,

3. All continuous descriptors were normalized to have mean = 0 and standard 

deviation = 1,

4. A supervised recursive feature elimination algorithm was used to select 10 

descriptors from PaDEL and CDK descriptors combined, and

5. All chemicals for which the fingerprints/descriptors could not be calculated were 

dropped from the analysis.

A complete list of all the fingerprints and descriptors used in the final models is provided in 

table S6 of supplementary information (1-Supplemental-Methods&Results.docx).

3.3 QSAR modeling

3.3.1 Data Preparation

Fraction unbound in plasma: Chemicals with a fub value equal to 0 (below limit of 

detection) were set at a default of 0.005, based on the assumptions in the HTTK package 47, 

and those with a value of 1 were set to 0.99 (upper limit of detection). The final dataset after 

removing the chemicals from the external ER-AR dataset comprised 1003 chemicals that 

had defined Pubchem fingerprints and Toxprints. Before modeling, fub was transformed 

using the log-odds ratio form 25:

fubtransformed = log10
(1 − fub)

fub (2)

Supplemental Figure S3 shows the distribution of the transformed fub values. This 

transformed dataset was divided into an 80% training dataset (802 chemicals) and a 20% 

external test dataset (201 chemicals). Regression QSAR models were developed for fub, 

details of which are provided below.

Intrinsic Clearance: The final dataset after removing the chemicals from the external ER-

AR dataset comprised 524 chemicals that had defined Pubchem fingerprints and Toxprints. 
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Each chemical was assigned a clearance value of low, medium or high based on the 

following scheme: Clint values less than or equal to 0.9 were set as low, values between 0.9 

and 50 were set as medium and values greater than 50 were set as high. These thresholds 

were defined by Ekins et al. 30. All Clint values are in units of uL/min/million cells. Two 

types of QSAR models were developed for Clint: (1) classification models to predict low, 

medium and high clearance, and (2) regression models using data for chemicals in the 

medium clearance group to avoid the effect of outliers (low or high clearance values) on the 

models. For regression models, the clearance data from the medium bins was log 

transformed before modeling. Supplemental Figure S4 shows the distribution of clearance 

data for classification and regression models. For both classification and regression models, 

the transformed dataset was then divided into two parts where 80% of the data (419 

chemicals for classification and 269 chemicals for regression) was used as the training set 

and 20% of the data (105 chemicals for classification and 68 chemicals for regression) was 

used as an external test set.

Once the classification (low, medium, high) and regression (medium bin) QSAR models for 

intrinsic clearance were run, the results were combined as follows. Chemicals predicted to 

have low clearance were assigned a default clearance value equal to the median clearance 

value for training set chemicals in the low clearance bin, and the chemicals predicted to have 

high clearance were assigned a default value equal to the median clearance value for training 

set chemicals in the high clearance bin. Thus, the models can predict if a chemical exhibits 

low, medium or high clearance, and provides a quantitative value in each case.

3.3.2 Algorithm—Regression models for fub and Clint were developed using the lasso 

regression 61, support vector machine (SVM) 62, 63, random forest (RF) 64, 65 and neural 

network multiple layer perceptron 65, 66 algorithms. Classification models for Clint were 

developed using the logistic regression 65, 67, support vector machine (SVM) 62, 63, random 

forest (RF) 64, 65 and neural network multiple layer perceptron 65, 66 algorithms. The 

datasets were randomly split into a training set (80% chemicals) and an external test set 

(20% chemicals). The training set was used to build the models using 5-fold cross-validation 

with hyper-parameter tuning where the model is developed over a grid of parameter values 

and the values with the best model performance are selected as the final algorithm 

parameters. The final models were then evaluated on the external test set. Detailed 

discussion of the machine learning algorithms and the hyperparameters tuned for each 

model are available in supplemental information (1-Supplemental-Methods&Results.docx).

For both fub and Clint, several models were developed in an additive fashion where a new set 

of descriptors were added incrementally to observe any improvements in model predictivity. 

The first set of models, referred to as the baseline models, were developed using structural 

information encoded by PubChem fingerprints and ToxPrints. The subsequent models 

expanded on the baseline models in terms of the descriptor space. In the second set of 

models, two physicochemical descriptors (LogP and pKa) were added to the fingerprints. In 

the third set of models, 10 additional physicochemical descriptors from PaDEL and CDK 

were added. Finally, the two best performing models for each endpoint were combined to 

develop a consensus model 68, where the final prediction was the average prediction from 

the two best performing models. The performance of each regression model was evaluated in 
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terms of MAE (mean absolute error), RMSE (root mean square error), RMSE/σ (RMSE / 

standard deviation of the endpoint distribution) and the variance explained (R2). The 

performance of each classification model was evaluated in terms of accuracy, F1-score 

(harmonic mean of positive predictive value and sensitivity) for each class and R2. Different 

additive models were compared based on the improvement in performance relative to their 

coverage. Note that the number of chemicals used in developing each additive model was 

dependent on generation of valid set of descriptors for each model.

3.4 Prediction of TK parameters and comparison with ADMET predictor

Model predictions from this work were compared with those of the ADMET Predictor 

package on an external dataset of 1,814 chemicals tested in a battery of 18 ER and 11 AR 

related assays 49, 50. ADMET predictions were obtained for these chemicals using data 

previously generate by Sipes et al 12. Overall, 472 chemicals had predicted fraction unbound 

and 410 chemicals had predicted Clint from the models developed in this work and the 

ADMET predictor. The residuals (difference between the observed experimental value and 

the predicted value) from both models (this work and ADMET predictor) were compared 

across both TK parameters to identify any chemicals or regions where both the models 

performed poorly. The experimental data for selected chemicals was then re-evaluated to 

account for potential experimental errors and data anomalies. Note that the chemicals in this 

set were not used in training the models in this work but it is unknown if those chemicals 

were present in the training dataset for the ADMET predictor.

3.5 Prediction and validation of Css: Calculation of in silico Css and comparison with in 
vitro Css

The HTTK R package 47 was used to predict steady-state concentration in plasma (Css) 

using the R software environment 69. Css is interpreted as the steady-state concentration of a 

chemical in the plasma given a constant 1 mg/kg/day oral dose rate and has units of 

μM/mg/kg/day. The default parameters of the population simulator in HTTK, httkpop (using 

calc_mc_Css) were used 47, 70 to calculate Css. The httkpop function returns the upper 95th 

percentile of Css in the population – corresponding to individuals for whom the same 1 

mg/kg/day exposure produces plasma concentrations higher than 95% of the population. 

This is intended to be a conservative estimate, calculated with a simple steady-state model 

that estimates clearance from passive renal filtration and well-stirred hepatic metabolism. 

The omission of other routes of clearance acts to make Css higher (more conservative when 

comparing to estimated exposure). The calculation of Css for each chemical requires 

chemical-specific physicochemical properties (LogP and pKa), in addition to fub and Clint. 

Experimental fub and Clint data was available for 709 chemicals from the HTTK package. 

So, in vitro Css (using experimental fub, Clint and the default physicochemical properties 

from the HTTK package) and in silico Css (using predicted fub, Clint and the 

physicochemical properties calculated from the OPERA tool) could be calculated for 709 

chemicals. The HTTK package LogP was obtained from the DSSTox database 51 or 

predicted using the EPA’s estimation program interface (EPI) suite (http://www.epa.gov/

tsca-screening-tools/epi-suitetmestimation-program-interface) or using OPERA71. pKa was 

taken from the literature when available or taken from predictions produced by Strope et al 
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72. The in vitro and in silico Css calculations were compared to get an estimate of variance in 

Css values based on the models developed in this work.

3.6 Comparison of human oral equivalent doses (OEDs) and exposure predictions: 
Bioactivity-exposure ratio plot

A set of OEDs for each chemical in the dataset described in Section 3.4 was calculated by 

dividing in vitro potency values (ACC: activity concentration at cut-off) for a series of in 
vitro assays by the corresponding Css values. The assays that were used measured activities 

in the estrogen and androgen receptors (ER and AR), and have been combined to provide 

definitive estimates of agonist and antagonist activity for these receptors 50, 73. The OEDs 

for each chemical were then compared with the median estimated daily exposure taken from 

the EPAs ExpoCast estimates 34, 35. For each chemical, the following analysis was done:

1. The response (ACC value) in any ER or AR related assay was retained if the 

agonist or antagonist model AUC value 50, 73 was greater than 0.1, indicating 

activity in the specific target and mode (ER, AR, agonist, antagonist). The lowest 

ACC value across all assays (the most potent assay) was then used to calculate a 

conservative estimate of OED and is referred to as ACC hereafter,

2. The ACC was divided by the chemical’s in silico Css value to obtain an OED,

3. If the chemical had an in vitro Css value, ACC was divided by the in vitro Css 

value to obtain an overall conservative estimate of OED for the chemical based 

on in vitro Css,

4. An estimate of variance in the in silico values based on the Css prediction 

analysis from the analysis in Section 3.5 was incorporated to obtain an overall 

conservative estimate of OED for the chemical based on in silico Css. The ACC 

was divided by the in silico Css plus twice the standard deviation of the residuals 

between in silico and in vitro Css values,

5. Finally, all estimates of OEDs were compared with the exposure estimates.

The software for data analysis and model development was developed using the functions 

implemented in the scikit-learn module 74 of Python 2.7 75 and is available as supplemental 

information (code.zip).

4 Results and Discussion

4.1 QSAR modeling

Fraction Unbound in Plasma—Feature selection on combined PubChem fingerprints 

and Toxprints resulted in 80 substructural features that were used for baseline model 

development. Subsequent models expanded the baseline feature set (80 features) with 

additional physicochemical descriptors. Across all sets of models, the best predictive 

performance was achieved when using RF, SVM or Lasso algorithms. Consequently, the 

consensus models were developed by averaging the predictions of best two models. 

Supplemental Table S2 summarizes the model details and the performance metrics for all the 

models developed. The coverage for all the baseline models was 1003 chemicals (the entire 
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dataset). Adding two physicochemical descriptors LogP and pKa(from OPERA) to the 

baseline models resulted in the best consensus model performance metrics with MAE = 

0.61, RMSE = 0.82, RMSE/σ = 0.66 and R2 = 0.56 for 5-fold internal cross-validation, and 

MAE = 0.61, RMSE = 0.80, RMSE/σ = 0.65 and R2 = 0.57 for the external test set 

validation with over 10% loss in coverage at 886 chemicals. Figure 1 shows the observed 

versus predicted transformed Fub values as evaluated in 5-fold internal cross-validation (red 

dots) and external validation (blue squares). Note that the RMSEs for all the models are well 

within one standard deviation (=1.24) of the endpoint distribution (Figure S3), which 

provides a context to the error rates.

Intrinsic Clearance—Feature selection on PubChem fingerprints and Toxprints resulted 

in 79 substructural features that were used for baseline model development. Subsequent 

models expanded the baseline feature set (of 79 features) with additional physicochemical 

descriptors. As expected from the unsupervised clustering analysis results (see supplemental 

file Supplemental-Methods&Results.docx for the methods used), use of structural 

descriptors did not yield highly predictive models. Supplemental Tables S4 and S5 

summarize the model details and the performance metrics for all the classification and 

regression models, respectively. Adding LogP and pKa as descriptors to the classification 

baseline models using the support vector algorithm resulted in the best consensus model 

performance metrics with accuracy = 66.47% and F1-score = [0.43, 0.77, 0.18] for 5-fold 

internal cross-validation, and accuracy = 73.26% and F1-score = [0.41, 0.83, 0.25] for the 

external test set validation. The regression models were all poorly performing with the 

random forest baseline model being the best one with MAE = 0.39, RMSE = 0.46, RMSE/σ 
= 1.01 and R2 = −0.02 for 5-fold internal cross-validation, and MAE = 0.33, RMSE = 0.41, 

RMSE/σ = 0.92 and R2 = 0.14 for the external test set validation. Figure 2 shows the 

observed versus predicted transformed clearance values as evaluated in 5-fold internal cross-

validation (red dots) and external test set validation (blue squares).

Overall, fub models performed better than Clint models. Unsupervised clustering analysis 

(described in supplemental file 1-Supplemental-Methods&Results.docx) show that: (i) fub 

values are more tightly bounded across different clusters as compared to Clint, and (ii) the 

mean value of fub are more distinct across clusters as compared to Clint. A new evaluation of 

uncertainty in experimental Clint values identified a median coefficient of variation of 0.31 

[Wambaugh 2019, submitted]. Therefore, there is significant uncertainty in the experimental 

values on which the QSAR modeling was performed.

4.2 Prediction of TK parameters and comparison with ADMET predictor

Figure 3(a) shows the plot of the residuals between the current model and those of ADMET 

Predictor for fraction unbound for 472 chemicals. The RMSE and R2 for ADMET Predictor 

were 0.19 and 0.55, respectively, and the RMSE and R2 for this work were comparatively 

better for this dataset at 0.16 and 0.67, respectively. The residuals from the two models had 

low correlation (R2 = 0.40). In general, the ADMET predictor over-predicts fub while the 

consensus model from this work under-predicts fub as compared to the experimental data. 

The dotted lines and the dashed lines highlight the chemicals for which the absolute 

residuals were greater than 0.25 and 0.50 for both predictors (outliers), respectively. The 
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outliers with experimental data from Wetmore et al. 2012 and 2015 were cross-checked for 

any potential measurement errors7, 46. In general, the experimental data appeared to be 

reliable with the predicted fraction unbound values lower than the measured data. It is 

speculated that the ADMET predictor looks specifically at predicted binding to AAG and 

albumin, but does not consider additional binding to lipoprotein complexes, whereas the 

experimental measures capture these interactions.

Figure 3(b) shows the plot of the residuals for Clint for 410 chemicals on the log10-

transformed dataset. For the purposes of plotting on a logarithmic-scale, the chemicals with 

an observed clearance value of zero were defaulted to 10−3 (i.e. log-transformed clearance 

value = −3). The models developed in this work worked better on this dataset with explained 

variance of 0.22 as compared to the negative R2 values from the ADMET predictor. 

However, the RMSEs were 1.89 and 1.55 for ADMET and this work, respectively. The 

residuals from the two models were quite uncorrelated (R2 = 0.17). The dashed lines 

highlight the region where the residuals for both predictors were less than −2 log-units and 

dotted line highlights the region where the residuals from the ADMET predictor were 

greater than 3 log-units (outliers). In general, the residuals from this work are more centered 

around zero, indicating lesser bias, as compared to the ADMET predictor which has a wider 

range of residuals. The outliers with experimental data from Wetmore et al. 2012 and 2015 

were cross-checked for any potential measurement errors (details described in the 

supplementary file 1-Supplemental-Methods&Results.docx)7, 46. In general, the 

discrepancies in primary hepatocyte data can be accounted due to non-P450 related 

clearance (ADMET predictor uses only P450 metabolism in their calculations), non-

metabolic degradation and sensitivity/detection issues at 1μM measurements. The poor 

predictions from the models developed in this work could be due to the general inability of 

chemical structural descriptors to adequately model Clint. A complete list of all the 

chemicals highlighted in the residual plots, experimental and predicted data, and data 

evaluation results are provided in supplemental information (4-ERAR-FubClintData.xlsx).

4.3 Prediction and validation of Plasma Css: Calculation of in silico Css and comparison 
with in vitro Css

Figure 4 shows a plot of Css values calculated using the models in this work (in silico Css) 

against Css calculated using the data in HTTK package (in vitro Css) for the ER-AR dataset 

and the entire set of chemicals with in vitro fub and clint data from the HTTK package. The 

Css units are log10 mg/kg. The observed RMSE and the R2 values for the ER-AR dataset 

were 0.82 and 0.47, and for the big dataset were 0.83 and 0.40, respectively. These plots 

incorporate the variability in Css calculations owing to the underlying experimental 

variability in the fub and Clint data as calculated using the HTTK package and are shown as 

error bars in the plot. The results of this analysis demonstrate that Css calculations tend to be 

relatively stable given the uncertainty in (predicted) clearance values. The standard deviation 

of the residuals from this analysis were further used in the BER analysis to arrive at a 

conservative estimate of dose for hazard assessment. Note that the analysis excludes all 

chemicals that were in the training dataset for development of the fub and Clint models.
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4.4 Comparison of human oral equivalent doses (OEDs) and exposure predictions: 
Bioactivity-exposure ratio plot

Figure 5 shows the range of OEDs derived for each chemical, based on ER-AR in vitro 
assay data, using Css values calculated based on the fraction unbound and clearance 

predictions from this work, along with exposure predictions. A total of 136 chemicals were 

active for ER or AR and had Css predictions. The OED value from the lowest assay potency 

(ACC) and using the in silico Css estimate is represented as a blue square dot. The exposure 

predictions are represented as green squares with error bars indicating the 95% upper 

confidence interval of the median exposure estimate. The red solid circles indicate OEDs 

derived using in vitro Css values but are only shown for chemicals that had in vitro fraction 

unbound and clearance data. The black squares indicate a conservative estimate of OEDs 

derived using in silico Css predictions and incorporating the standard error (=2σ of the 

residuals) due to uncertainty in Css predictions for the ER-AR dataset (Figure 4(a)).

About 92% (121/136) of the chemicals have a hazard point estimate (lowest OED value 

from in vitro assays, blue squares) higher than the upper 95% confidence interval (CI) of the 

exposure estimate. After adjusting for uncertainty, (black squares), about 91% (120/136) of 

chemicals have an OED higher than the upper 95% CI exposure estimate. For chemicals 

with in vitro OED estimates, 85% (120/136) have an OED higher than the upper 95% CI 

exposure estimate, leaving 16 that would be prioritized for follow-up based on an overlap 

between the OED and the exposure estimate. Of these, the in silico estimates identified 14 of 

the 16. In general, the chemicals on the left side of the plot with overlapping exposure and 

OED estimates are naturally occurring hormones or pharmaceuticals that are intended to 

occur at levels that are bioactive. A complete list of chemicals and the corresponding data 

are available in supplemental information (3.ERAR_BERPlot-Data.csv).

Overall the novelty of this work lies in (1) the development of open-source QSAR models 

for fub and Clint using a simple descriptor space and a rich chemical dataset, allowing 

prediction of pharmacokinetics for thousands of chemicals for which experimental data is 

not available, (2) incorporation of uncertainty due to the source of physicochemical 

properties in Css calculations in the estimation of OEDs to allow for a conservative 

comparison with exposure predictions resulting in higher confidence, and (3) extending the 

ability to prioritize large numbers of data-poor chemicals using in silico predictions in an 

effort to ease the transition from hazard-based prioritization to exposure related risk 

assessment. The model of fub shows higher predictivity than does that for Clint, but the Clint 

model developed here has similar predictivity to the commercial model it was compared to. 

The model for Css combines fub, Clint and physicochemical parameters, which are also 

typically the result of QSAR models. A recent analysis using new experimental fub and Clint 

measurements characterizes the uncertainty in the observed data and estimates the 

coefficient of variation for uncertainty as 0.4 for fub and 0.3 for Clint data [Wambaugh 

submitted 2019]. Both this new analysis and that shown here indicates that Css is less 

sensitive to uncertainty in Clint than to the other inputs (fub, pKa, logP). A final important 

point is illustrated by Figure 5 and the associated discussion. The uncertainties associated 

with using the in silico Css values are on the same order of magnitude as the uncertainties in 

the exposure predictions, but the BER (minimum OED, uncertainty included/maximum 
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exposure) are often large compared with the individual component uncertainties. This means 

that in general, classifications of chemicals into those with BER > or < 1 are relatively 

accurate. 16 of 18 chemicals with exposure ratio<1 using in vitro TK parameter values were 

identified with in silico TK parameter values. This indicates that the models developed here 

for fub and Clint can provide useful input for efforts to prioritize thousands of chemicals 

lacking the appropriate experimental data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Observed versus predicted fraction unbound (transformed scale) for the random forest and 

support vector machine consensus model (highlighted in red in Supplemental Table S2) for 

5-fold internal cross-validation (red dots) and external test set validation (blue squares). The 

root-mean-squared-error and R-squared for the 5-fold internal cross-validation are 0.82 and 

0.56, respectively, and for external test set validation are 0.80 and 0.57, respectively. The 

black solid line indicates the line of perfect fit, where the predicted values would equal the 

experimental values. The red dashed lines indicate an error margin of ±1 standard deviation 

of the training dataset and the blue dotted lines indicate an error margin of ±1 standard 

deviation of the test dataset. The uncertainty in the observed data is indicated as a red error 

bar (coefficient of variation for uncertainty = 0.4) on an example chemical.
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Figure 2. 
Observed versus predicted medium intrinsic clearance (transformed scale) for the random 

forest model (highlighted in red in Supplemental Table S5) for (a) 5-fold internal cross-

validation (red dots), and (b) external test set validation (blue squares). The root-mean-

squared-error and R-squared for the 5-fold internal cross-validation are 0.46 and −0.02, 

respectively, and for external test set validation are 0.41 and 0.14, respectively. The black 

solid line indicates the line of perfect fit, where the predicted values would equal the 

experimental values. The red dashed lines indicate an error margin of ±1 standard deviation 

of the training dataset and the blue dotted lines indicate an error margin of ±1 standard 

deviation of the test dataset. The uncertainty in the observed data is indicated as a red error 

bar (coefficient of variation for uncertainty = 0.3) on an example chemical.
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Figure 3. 
Residual comparison plots between the models developed in this work with those of the 

ADMET predictor. The black line on the plots is the line of perfect fit, where the residuals 

(observed minus predicted) from both the predictors are the same. (a). Plot of fraction 

unbound residuals. The dotted lines highlight the regions where the absolute residuals were 

greater than 0.25 for both the predictors. The dashed lines highlight the regions where the 

absolute residuals were greater than 0.50 for both the predictors. (b) Plot of intrinsic 

clearance residuals. The dashed lines highlight the region where the residuals were less than 

−2 log-units for both the predictors. The dotted line highlights the region where the residuals 

from the ADMET predictor were greater than 3 log-units.
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Figure 4. 
Comparison of Css calculated using the models in this work (in silico Css) calculations with 

Css calculated using the data in HTTK package (in vitro Css) for (a) the ER-AR dataset and 

(b) the entire set of chemicals with in vitro fub and clint data from the HTTK package. The 

plots incorporate the variability in Css calculations owing to the underlying experimental 

variability in the fub and Clint data. The standard deviation of residuals from this analysis 

were used in the BER analysis (for the ER-AR dataset) to derive a conservative estimate of 

dose for hazard assessment. The Css units are log10 mg/kg. Note that the analysis excludes 

all chemicals that were in the training dataset for development of the fub and clint models.
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Figure 5. 
Bioactivity-exposure ratio (BER) plot to compare human oral equivalent doses (OEDs) and 

exposure predictions. Lowest and a conservative estimate of ToxCast derived OEDs 

(visualized as blue and black squares, respectively) were compared with the exposure 

estimates (visualized as median exposure value along with a 95% upper confidence interval 

in green). The plot is ordered by lowest ToxCast OED estimate. This analysis allows for the 

generation of a BER plot that compares hazard to exposure estimates within a high-

throughput risk assessment framework to aid chemical screening and risk-prioritization.

Pradeep et al. Page 20

Comput Toxicol. Author manuscript; available in PMC 2021 November 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript


	Abstract
	Introduction
	Workflow
	Methods
	Dataset
	Molecular descriptors
	QSAR modeling
	Data Preparation
	Fraction unbound in plasma
	Intrinsic Clearance

	Algorithm

	Prediction of TK parameters and comparison with ADMET predictor
	Prediction and validation of Css: Calculation of in silico Css and comparison with in vitro Css
	Comparison of human oral equivalent doses (OEDs) and exposure predictions: Bioactivity-exposure ratio plot

	Results and Discussion
	QSAR modeling
	Fraction Unbound in Plasma
	Intrinsic Clearance

	Prediction of TK parameters and comparison with ADMET predictor
	Prediction and validation of Plasma Css: Calculation of in silico Css and comparison with in vitro Css
	Comparison of human oral equivalent doses (OEDs) and exposure predictions: Bioactivity-exposure ratio plot

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

