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Abstract: Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) is a clinical condition charac-
terized by a sudden and dramatic obsessive-compulsive disorder with a suggested post-infectious 
immune-mediated etiology. This condition is accompanied by an extensive series of relatively seri-
ous neuropsychiatric symptoms. The diagnosis of PANS is made by "exclusion", as the individual 
PANS symptoms overlap with a multiplicity of psychiatric disorders with the onset in childhood. A 
number of researchers accumulated evidence to support the hypothesis that PANS was closely as-
sociated with a number of infections.  

In the last decade, metabolomics played an essential role in improving the knowledge of complex 
biological systems and identifying potential new biomarkers as indicators of pathological progres-
sions or pharmacologic responses to therapy. The metabolome is considered the most predictive 
phenotype, capable  of recognizing epigenetic differences, reflecting more closely the clinical real-
ity at any given moment and thus providing extremely dynamic data.  In the present work, the most 
recent hypothesis and suggested mechanisms of this condition are reviewed and the case of a 10 -
year-old girl with PANS is described, before and after clarithromycin treatment. The main results 
of this case report are discussed from a metabolomics point of view. The alteration of several meta-
bolic pathways concerning the microbial activity highlights the possible role of the microbiome in 
the development of PANS. Furthermore, different metabolic perturbations at the level of protein 
biosynthesis, energy and amino acid metabolisms are observed and discussed. Based on our obser-
vations, it is believed that metabolomics is a promising technology to unravel the mysteries of 
PANS in the near future. 

Keywords: Pediatric Acute-onset Neuropsychiatric Syndrome (PANS), metabolomics, Proton Nuclear Magnetic Resonance 
(1H-NMR), mycoplasma pneumoniae, urine, infection. 

1. INTRODUCTION 

 PANS is a clinical condition characterized by the sudden 
and dramatic onset of obsessive-compulsive disorder (OCD) 
with suggested post-infectious immune-mediated etiology 
[1]. This condition is accompanied by an extensive series of 
relatively serious neuropsychiatric symptoms: separation 
anxiety; irritability, aggression and/or severely oppositional 
behaviors; emotional liability and/or depression; sensory or 
motor abnormalities with choreiform finger movements; 
academic decline related to attention and memory deficit; 
sleep disturbances, severely restricted food intake, urinary 
frequency and enuresis [2, 3]. The diagnosis of PANS  
is made by "exclusion", as the individual PANS  
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symptoms overlap with a multiplicity of psychiatric disor-
ders with the onset in childhood, such as schizophrenia, de-
pression, ADHD (Attention Deficit Hyperactivity Disorder), 
Tourette’s syndrome and bipolar disorder. However, the 
abrupt and simultaneous onset of these symptoms makes it 
possible to differentiate PANS from other neurodevelopmen-
tal disorders [4]. It is therefore important, in PANS suspi-
cion, to be able to obtain a complete medical and psychiatric 
history, as well as carry out a thorough physical examination 
accompanied by laboratory tests [4]. Indeed, PANS is char-
acterized by a large number of related disorders with  
multiple etiology, ranging from autoimmune or auto-
inflammatory diseases to immunodeficiency syndromes and 
recurrent infections [1-4]. In particular, in the second half of 
1990s, different investigators at the National Institute of 
Mental Health (NIMH) observed that the abrupt and simul-
taneous onset of OCD disorders was associated with a viral 
or bacterial infection, such as varicella, influenza, and infec-
tions from Streptococcus pyogenes, Mycoplasma pneumo-
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niae,  Group A Streptococcus, Epstein Barr and Borrelia 
burgdorferi [5, 6]. Allen et al., in 1995, highlighted how in 
some patients the infections by micro-organisms (in particu-
lar from Group A β-hemolytic Streptococcus) can trigger 
autoimmune responses, causing or exacerbating the child-
hood-onset of OCD or tic disorders (including Tourette's 
syndrome) through a process analogous to Sydenham's cho-
rea [6]. 
 Subsequent studies on a larger population confirmed that 
positivity to Group A β-hemolytic Streptococcus infection 
was present in 60-75% of the children affected by OCD. The 
particularly unique clinical features of the case studies 
served as a basis for the diagnostic criteria for the defined 
subgroup, PANDAS (Pediatric autoimmune neuropsychiatric 
disorder associated with streptococcus) [6, 7]. Over the time, 
a number of researchers accumulated more evidence to sup-
port the hypothesis that PANS and PANDAS were closely 
associated with a variety of infections [8, 9], including My-
coplasma pneumoniae [10, 11]. Alternatively, in the absence 
of the reported infection, this syndrome is presumed to result 
from a variety of disease mechanisms with multiple etiolo-
gies (neuroinflammatory, toxic, endocrine, metabolic and 
environmental disorders) [12, 13]. 

2. INFECTION BY NON-STREPTOCOCCAL  BAC-
TERIA 

 Although the primary focus has been on streptococcal 
infections [14, 15], a variety of putative infections have been 
suggested to determine the clinical picture of PANS. The 
most commonly observed previous infections seem to be of 
the upper respiratory tract, including rhinosinusitis, pharyn-
gitis, or bronchitis. 
 Mycoplasma pneumoniae is a bacterial pathogen that 
causes frequent infections every year in the upper and lower 
respiratory tract in children as well as in adults. It is primar-
ily an extracellular pathogen that depends on a close host-
cell interaction for survival; nevertheless in some cases, it is 
able to penetrate the cell membrane of the host and invade 
the cells [16, 10]. In particular, this bacterium is known to 
cause various types of extra-pulmonary symptoms involving 
almost all organs of the human body, including the central 
nervous system (acute cerebellar ataxia, thalamic necrosis, 
and early onset encephalitis) [17, 18]. In fact, it has been 
revealed that the cell membrane of Mycoplasma pneumoniae 
contains some lipoproteins considered to be potent inducers 
of cytokines, equivalent to bacterial lipopolysaccharide and 
its cytoplasm containing strong immunogenic molecules, 
such as glycolipids and glycoproteins, which can stimulate 
autoimmunity through their molecular mimics of various 
components of human cells, particularly in the brain [10, 19-
21]. In 2016, Narita indicated three possible pathomecha-
nisms, direct, indirect type and vascular occlusion type, con-
cerning the extra-pulmonary manifestations due to M. pneu-
moniae infection [18]. The “direct type” involves  the dam-
age of the nervous tissue strictly due to the local activity of 
Mycoplasma pneumoniae, while the “indirect type” implies 
the absence of the bacterium at the inflammation site where 
mechanisms, based on autoimmunity or formation of im-
mune complexes, can play an important role. Finally, the 
third type of mechanism involves a type of vascular occlu-

sion in which the blood flow obstruction is directly or indi-
rectly induced by the bacteria. The literature studies in the 
last ten years report the possible role of Mycoplasma pneu-
moniae in neurological manifestations, including encephali-
tis [21, 22], acute disseminated encephalomyelitis [23, 24], 
cerebellar disease [25, 26], myasthenia gravis [27] and two 
cases of transient Parkinsonism in association with Myco-
plasma pneumoniae infections [28]. Thus, even Mycoplasma 
pneumoniae is a suspected trigger of PANS, although no 
single microbe, apart from Group A β-hemolytic Streptococ-
cus, has yet been consistently associated with the onset of 
PANS. Muller et al., in 2000, indicated an association be-
tween Mycoplasma pneumoniae infection and Tourette’s 
syndrome [10, 29]. In this study, elevated antibody titers 
against Mycoplasma pneumoniae were found to be signifi-
cantly higher in patients with Tourette syndrome than the 
controls, suggesting a role of Mycoplasma pneumoniae in a 
subgroup of Tourette syndrome patients. They described two 
cases with Tourette’s syndrome involving Mycoplasma 
pneumoniae infection where inflammatory signs, immu-
nological response, detection of the DNA of Mycoplasma 
pneumoniae in the cerebrospinal fluid, and prompt im-
provement of the symptoms during antibiotic therapy dem-
onstrated how the neuropsychiatric symptoms were closely 
linked to the Mycoplasma pneumoniae infection. 
 As in the case of neurodevelopmental disorders, such as 
Sydenham’s chorea and Tourette’s syndrome, a mechanism 
of molecular mimicry is also hypothesized for PANS and 
PANDAS. The different theories proposed concern the pos-
sibility that serum antibodies produced against infectious and 
non-infectious agents cross the blood-brain barrier and cross-
react with neuronal antigens [30-33]. These antibodies then 
cause dysregulation of the basal ganglia functions, producing 
a multiplicity of neurological and psychiatric symptoms. 
Anti-neuronal antibodies observed are anti-lysoganglioside, 
anti-tubulin, and anti-dopamine D1 and D2 receptor antibod-
ies. In Sydenham’s chorea, monoclonal antibodies showed 
specificity for mammalian lysoganglioside GM1 (a CSN 
ganglioside that influences neuronal signal transduction) and 
N-acetyl-β-D-glucosamine, the immunodominant epitope of 
the Group A streptococcus (GAS) carbohydrate [34]. These 
antibodies were present in both the serum and cerebrospinal 
fluid of patients with acute Sydenham’s chorea. Chorea anti-
bodies were able to target the surface of human neuronal 
cells in vitro, with specific induction of calcium/calmodulin-
dependent protein kinase II, a protein kinase involved in 
multiple signaling cascades. Further investigations revealed 
the presence of basal ganglia antibodies in the serum of 
PANDAS patients at significantly lower concentrations than 
Sydenham’s chorea patients [32]. 
 The autoimmune pathophysiology of PANS or PANDAS 
depends not only on the presence of neuronal antibodies but 
also on the action of neuroactive cytokines, IL-17A, IFN-γ, 
as inflammatory mediators [35-38]. Dileepan et al., in 2016, 
identified GAS-specific T helper 17 cells in tonsils of hu-
mans naturally exposed to the GAS, prompting them to ex-
plore whether GAS-specific CD4+T lymphocytes could be 
found in the mouse brain following infection. In mice, re-
peated intranasal GAS inoculation promoted the migration of 
GAS-specific Th17 cells from nasal-associated lymphoid 
tissues into the brain. IL-17A and other cytokines produced 
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by T helper 17 cells activate microglia and induce blood-
brain barrier breakdown, resulting in extravasation of anti-
bodies and further circulation of T cells into the brain. 
Autoantibodies induced by bacteria then target mimetic brain 
antigens, such as dopamine receptors, to induce abnormal 
motor and/or behavioral changes [37, 38]. A similar mecha-
nism could also be hypothesized for neuropathologies in-
duced by Mycoplasma pneumoniae. 
 Nowadays, with current standard radiological or bio-
chemical techniques, it is not possible to establish the spe-
cific cause of the symptoms observed in PANS patients. It is 
only possible to make a hypothesis after the histopathologi-
cal analysis of the postmortem brain tissues of these patients. 
Recently, there has been a strong interest in the relationship 
between the intestinal microbiota and the brain function, 
stressing the relevance of the so-called gut-brain axis [39]. 
The modifications in the microbiome due to diet, stress or 
antibiotic treatment are considered to be involved in various 
pathological conditions, including inflammatory bowel dis-
ease, metabolic disorders, allergies and neurological disor-
ders (e.g., anxiety, depression, schizophrenia, and autism) 
[40-45]. In fact, a condition of inflammation in the gastroin-
testinal tract can, through the release of cytokines and neuro-
transmitters, stress the microbiome and increase the intesti-
nal permeability, allowing bacteria, bacterial prod-
ucts/molecules, or inflammatory cytokines, to filter through 
the submucosa into the systemic circulation. This is only a 
part of the complex phenomenon known as “leaky gut syn-
drome” [39]. Once they reach the systemic circulation, these 
products can eventually reach the brain by crossing the 
blood-brain barrier, or they can modify the permeability of 
this barrier as well, and ultimately influence the brain func-
tion [46]. Quagliariello et al., in 2018, performed a study on 
gut microbiota profiling in children with PANS and PANS 
associated with streptococcal infections compared to control 
subjects [47]. PANS/PANDAS children were characterized 
by a strong increase in Bacteroidetes. In particular, the inves-
tigator identified Bacteroides, Odoribacter, and Oscillospira 
as potential microbial biomarkers. Moreover, the children 
with PANS/PANDAS exhibited increased activation of sev-
eral pathways concerning the modulation of the antibody 
response to inflammation within the gut as well as decreased 
activation of the pathways involved in brain function, such 
as short-chain fatty acids, D-alanine and tyrosine metabo-
lism, and the dopamine pathway. 

3. METABOLOMICS: THE “NEW CLINICAL BIO-
CHEMISTRY” IN THE UNDERSTANDING OF PEDI-
ATRIC ACUTE-ONSET NEUROPSYCHIATRIC SYN-
DROME 

 The data reported so far in the literature identify PANS 
only on the basis of a number of behavioral conditions with-
out possible biological markers that can clearly distinguish 
PANS from other similar neuropsychiatric disorders and 
confirm the hypothesis of inflammatory mechanisms. 
 In the last decade, different ‘omics’ disciplines, such as 
genomics, transcriptomics, proteomics and metabolomics, 
played an essential role in improving the knowledge of com-
plex biological systems and identifying potential new bio-
markers as indicator of normal biological courses, pathologi-

cal progressions, or pharmacologic responses to a therapeutic 
intervention [48-50]. In particular, metabolomics, unlike 
other 'omics' disciplines, provides a ‘phenotypic snapshot’ of 
a cell, tissue or organism, reflecting more closely the clinical 
reality at any given time. This could improve the understand-
ing of physiopathological mechanisms, the identification of 
new profiles to classify a pathological condition and indica-
tion of the possible targets of the therapy [51]. Metabolomics 
identifies and quantifies the “metabolome”. The term "me-
tabolome" was coined, in a way similar to that of the genome 
and proteome, in 1998 by Oliver et al. [52] to designate a 
dynamic set of low molecular weight molecules (<1000 Da), 
including amino acids, oligopeptides, sugars, steroids, biliary 
acids, simple and complex fatty acids and intermediate com-
pounds of many biochemical pathways in an organism. The 
metabolome is considered the most predictive phenotype, 
capable of recognizing epigenetic differences, reflecting 
more closely the clinical reality at any given moment and 
thus providing extremely dynamic data. In fact, the me-
tabolome can vary in accordance with the physiological or 
pathological state of cells, tissues, organs or organisms. In 
metabolomics, the choice of the biological material, such as 
biofluids (plasma, blood, urine, serum, cerebrospinal fluid, 
liquor, and saliva) or tissue, and the analytical methods of 
investigation (nuclear magnetic resonance spectroscopy and 
mass spectrometry) are very important and depend on the 
objective of the study. Metabolomic studies conducted on 
pediatric patients predominantly used urine as a biofluid be-
cause its collection is easy and non-invasive and carries im-
portant diagnostic information. A large number of metabo-
lites characterize the urine, including products or intermedi-
ates of different metabolic processes. Metabolomics is con-
sidered a ‘window into the organism’ that monitors the entire 
metabolism and its biochemical profile is the result of a 
combination of factors, such as genotype, physiological 
state, state of health, nutrition and the environment [51]. 
 In recent years, different metabolomic studies have been 
performed in order to better characterize the mechanisms 
underlying neurological disorders in the pediatric population, 
such as the autism spectrum disorders, and to identify new 
diagnostic biomarkers that can support the clinical diagnosis 
of the pathology. Some of these studies were performed by 
our group by comparing autistic children with their healthy 
siblings. These patients showed altered concentrations of 
several organic acids, sugars, and metabolites of bacterial 
origin [53-57]. 
 As previously stated, the diagnosis of PANS is still under 
debate and not well defined. Therefore, it is important to 
better understand the pathogenic mechanisms of PANS and 
to identify disease-specific biomarkers. Metabolomics, in 
recent years, has contributed in improving the understanding 
of different neurological diseases and identified potential 
biomarkers of the disease [58-61]. 
 Given the severe and devastating nature of the symptoms 
and the effects on family and children, the understanding of 
the biological basis of this syndrome and the identification of 
evidence-based and effective therapies are necessary. The 
aim of this case report is to suggest a study on the me-
tabolome in the field of PANS in order to define its patho-
genesis and characterize possible biomarkers. 
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4. CASE REPORT 

4.1. Clinical History 

 A 7-year-old girl suddenly had recurrent episodes of 
vomiting in the morning which persisted for more than a 
month. A gastroenterological consultation was immediately 
requested and suggested a situation of nervous gastritis. She 
then began to show early symptoms of OCD, like drinking 
and washing continuously, accompanied by sporadic attacks 
of anger with sudden screaming and cries. Meanwhile, with-
out any relevant change in the diet, the child gained almost 
10 kg of body weight in a few weeks. After 2 months of the 
first sudden episode, the earliest motor abnormalities of up-
per and lower limbs and eyes also arose. No impairment in 
school performance was reported, however, her handwriting 
worsened. The girl was subjected to repeated medical 
checks, and stress was diagnosed as a major factor. The 
symptoms persisted moderately for about 3 years, which 
suddenly increased in intensity with OCD, tics, and motor 
anomalies and increasingly severe choreiform finger move-
ments. The psychiatric department was consulted for her 
symptoms and she was initially diagnosed with Tourette's 
syndrome. Psychological support, behavioral and drug ther-
apy were suggested. Drugs were not prescribed. The Yale 
Global Tic Severity Scale (YGTSS) index was calculated to 
be 40, with a marked impact on daily activity and social rela-
tionships. After a year, given the persistence of the symp-
toms, possible PANDAS was suggested. During different 
clinical tests, amoxicillin and clavulanic acid were adminis-
tered for 4 weeks, 2 times per day and then substituted with 
penicillin G benzathine for 18 days and ibuprofen as needed. 
The symptomatology after therapy did not improve.  OCD 
symptoms, tics, and choreic movements persisted.  Strongly 
opposing aggressiveness and behavior, depression, psycho-
sis, and auditory hallucinations appeared.  
 Finally, after a positive test for Mycoplasma pneumoniae, 
clarithromycin was administered with probiotics. After 5 
days of the antibiotic, the OCD symptoms decreased with 
normal walking without compulsions, absence of the fear of 
physical contact, good mood, good handwriting, and good 
learning speed.  After 10 days of the antibiotic, the patient 
showed a marked reduction in symptoms, which almost dis-
appeared. At that time, the YGTSS index was 18.  
 Urine samples for metabolomics analysis were collected 
in the presence of neurological symptoms and after 10 days 
of the clarithromycin treatment when the symptoms were 
significantly improved. 

4.2. Preparation of Urine Samples for 1H-NMR Analysis 

 800 μL aliquot of urine was transferred into an Eppen-
dorf tube together with 8 μL of a 1% aqueous solution of 
NaN3 to inhibit bacteria growth and stored at -80 °C. Before 
the analysis, the sample was centrifuged at 12000g for 10 
min at 4 °C to remove some solid particles. Then, 630 μL of 
the supernatant solution was mixed with 70 μL of potassium 
phosphate buffer in D2O (1.5 M, pH 7.4) containing sodium 
3-trimethylsilyl-propionate-2,2,3,3,-d4 (TSP) as an internal 
standard with a final concentration of 1 mM (98 atom% D, 
Sigma-Aldrich, Milan). An aliquot of 650 μL was transferred 
to 5-mm NMR glass tubes for 1H-NMR measurement. 

4.3. Data Acquisition 

 NMR analysis was carried out using a Varian UNITY 
INOVA 500 spectrometer operating at 499.839 MHz for 
proton and equipped with a 5 mm double resonance probe 
(Agilent Technologies, CA, USA). 1H-NMR spectra were 
acquired using a standard pulse sequence (1D NOESY, One 
Dimensional Nuclear Overhauser Effect Spectroscopy) with 
presaturation during relaxation and mixing time for water 
suppression, at 300 K with a spectral width of 6000 Hz, an 
acquisition time of 2s, a relaxation delay of 3s, a mixing time 
of 0.1s and 256 scans. 1H-NMR spectra were imported in an 
ACDLab Processor Academic Edition (Advanced Chemistry 
Development, 12.01, 2010) and preprocessed with a line 
broadening of 0.5 Hz, zero-filled to 64 K, and Fourier trans-
formed. Spectra were manually phased and baseline cor-
rected and chemical shifts referenced internally to TSP. All 
the identified compounds were quantified by using the Che-
nomx NMR Suite 7.1 (Chenomx Inc., Edmonton, Alberta, 
Canada). This software provides a comprehensive database 
of metabolites and their signals, consisting of Lorentzian 
peaks that can be used for manual deconvolution. The proc-
essing of the NMR data (i.e., phase and baseline correction) 
is known to have a considerable impact on the accuracy of 
peak area integration, with relative uncertainty as high as 
11% [62]. Therefore, a 20% measurement uncertainty was 
considered in order to identify relevant changes in the con-
centration of the metabolites before and after drug therapy. 

4.4. Pathway Analysis 

 Metabolic pathways were generated by using Me-
taboAnalyst 3.0 (www.metaboanalyst.ca). MetaboAnalyst 
3.0 is an integrated web-based platform for the comprehen-
sive analysis and interpretation of metabolomics data [63]. 

5. RESULTS  

 In Fig. (1), the 1H NMR spectrum of the urine sample 1) 
before and 2) after antibiotic therapy is shown. A large num-
ber of partly overlapping peaks characterized each 1H NMR 
spectrum, reflecting the different metabolites present in the 
urine. Metabolites were identified based on literature infor-
mation and by using dedicated databases, such as the Human 
Metabolome Database (HMDB, http://www.hmdb. ca) and 
the 500 MHz library from Chenomx NMR suite7.1. The 
spectra can be divided into two distinct spectral regions. The 
region from 0.6 to 4.7 ppm (Fig. 1A) contains signals  
from free amino acids, organic acids, osmolytes, while the  
spectral portion between 6.4, and 9.6 ppm (Fig. 1B) is char-
acterized by signals from aromatic metabolites. The graphs 
in Fig. (2) show only those metabolites with a variation in 
the concentration > 20% by comparing the metabolites in the 
urine before and after drug therapy. The urine sample after 
drug therapy exhibited decreased content of homoserine, 
glycolate, glutamine, ethanolamine, hippurate, trigonelline, 
formate, cis-aconitate, valine, methylamine and dimethyl-
guanidine, and an increased content of creatine-phosphate, 
proline, histidine, lysine, trimethylamine N-oxide, phenyla-
lanine, methyl-histidine, ethanol, imidazole, methylsucci-
nate, 3-methyloxovalerate, tryptophan, pyruvate, isoleucine, 
riboflavin, 1-methylnicotinamide and pyroglutamate. The 
metabolic pathways analysis, conducted 
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Fig. (1). 500 MHz 1H-NMR spectrum of urine obtained from 1) before and 2) after drug therapy. 
PEAKS OF THE REGION FROM 0.6 TO 4.7 PPM (A): 1) 3-Methyl-2-oxovalerate, 2) 2-Hydroxyvalerate, 3) Isoleucine, 4) Valine, 5) Methylsucci-
nate, 6) Ethanol, 7) Fucose, 8) 3-Hydroxyisovalerate, 9) Lactate, 10) Threonine, 11) Alanine, 12) Lysine, 13) Ornithine, 14) Acetate, 15) 
Homoserine, 16) Proline, 17) Glutamate, 18) Glutamine, 19) Pyruvate, 20) Citrate, 21) Dimethylamine, 22) Asparagine, 23) Trimethylamine, 
24) Dimethylglycine, 25) Creatine, 26) Creatine phosphate, 27) Creatinine, 28) cis-Aconitate, 29) Malonate, 30) Ethanolamine, 31) O-
phosphocholine, 32) Trimethylamine N-oxide, 33) Taurine, 34) Glycine, 35) Guanidoacetate, 36) Glycolate, 37) Pyroglutamate, 38) Dimeth-
ylguanidine, 39)* 2-Methylglutarate, 40)* 2-Phenylpropionate, 41)* Acetoacetate (*the red number indicates the metabolites present only in 
the urine sample after drug therapy). 
PEAKS OF THE REGION FROM 6.4 TO 9.6 PPM (B): 1) Trigonelline, 2) 1-methylnicotinamide, 3) Hippurate, 4) Formate, 5) Imidazole, 6) Hy-
poxanthine, 7) Histidine, 8) n-Methylhistidine, 9) Xanthine, 10) Riboflavin, 11) Tryptophan, 12) T-Methylhistidine, 13) Phenylalanine, 14) 3-
hydroxymandelate, 15) Tyrosine, 16) Kynurenine, 17) Trans-Aconitate, 18) 2-Phenylpropionate. 
(A higher resolution / colour version of this figure is available in the electronic copy of the article). 

������ �	�
� ���
 ��
�� ��� ��
�

������ �	�
� ���
 ����� ��� ��
�

�

�

��

��

��

��

��� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 	�� 	�� 	�� 	�� 	�� 	�� 	�� 	�� 	�	 	�
 
�� 
�� 
�� 
��


	������

���


	������

�����������������������
��	��������������� ��	 ��
 ��� ��� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ��� ��� ��� ���

�
�

� � � �

	

� 
���


� ��

�� �

�

��

�

������

��

���������	�

��

��

���������	�
��

�
�����

��
��

�
�

��
�
���


�

	
�

�
��

��

�������

�������

��

�	

�	
��

��

��

��

�����
���
����

��

��

��������������

�	 �� �


��

��

�� �
����

�����	��������

���������� ��


���
���


�

�

�������������

	 �


�����	��������

��
�


���������������	

��

��

�	

�	 ��

��

��

��

�����
���
���� ��
�


����������

��

���


�

�

	

�������������



188    Current Pediatric Reviews, 2020, Vol. 16, No. 3 Piras et al. 

 
Fig. (2). A vertical bar plot shows progressive changes of the metabolites relative concentration on urine samples before (dark grey) and after 
drug therapy (light grey). The error bar represents a 20% uncertainty. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 
 

 
Fig. (3). Metabolic pathway analysis carried out by using all metabolites significantly changed in the urine sample after drug therapy. Meta-
bolic pathways are arranged according to the scores from enrichment analysis (-log (p)) and topology analysis (pathway impact). The point 
color is based on its p-value and the point radius is determined based on their pathway impact values. Pathway: 1) Aminoacyl-tRNA biosyn-
thesis; 2) Nitrogen metabolism; 3) Methane metabolism; 4) Arginine and proline metabolism; 5) Glycine, serine and threonine metabolism; 6) 
Glyoxylate and dicarboxylate metabolism; 7) Valine, leucine and isoleucine biosynthesis; 8) Phenylalanine metabolism; 9) Alanine, aspartate 
and glutamate metabolism; 10) Synthesis and degradation of ketone bodies, 11) Citrate cycle (TCA cycle). (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article). 
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using the metabolites increased or decreased after drug ther-
apy, highlighted several altered metabolic pathways, such as 
aminoacyl-tRNA biosynthesis, nitrogen metabolism, meth-
ane metabolism, free amino acids metabolism, glyoxylate 
and dicarboxylate metabolism, glutamate metabolism, syn-
thesis and degradation of ketone bodies and citrate cycle 
(Fig. 3).  

6. DISCUSSION 

 Pediatric acute-onset neuropsychiatric syndrome is char-
acterized by a broad clinical spectrum of neuropsychiatric 
comorbidities, potentially triggered by the infections by mi-
croorganisms and/or eating disorders [2, 64]. The present 
case-report, using a 1H-NMR based approach, showed a dif-
ferent metabolomics profile in the urine before and after 
drug treatment. The drug treatment consisted of an antibiotic 
therapy based on macrolide (clarithromycin) for the infection 
by Mycoplasma pneumoniae. After the antibiotic treatment, 
the patient showed a marked improvement in the obsessive-
compulsive disorder (and/or tic disorders) and motoric hy-
peractivity (including muscle dystonia). Several authors re-
ported the possibility of a strong link between the common 
infectious agents, such as viruses or bacteria, and neurologi-
cal disorders [29, 65-67]. In particular, Ercan et al. published 
a case very similar to the one described in this study, dis-
cussing a 5.5-year-old Mycoplasma pneumoniae positive 
child. The authors emphasized that the onset of the symp-
toms was  associated with the mycoplasma pneumonia infec-
tion, and after the third day of antibiotic therapy with 
clarithromycin, the obsessive-compulsive symptoms and 
aggressive attitude disappeared completely. In our case 
study, the improvement was limited to the period of the ther-
apy. The analysis of the pathways highlights the alteration in 
the nitrogen metabolism, indicating the presence of a micro-
bial activity despite antibiotic treatment. In fact, NMR spec-
trum analysis showed an alteration of some metabolites, such 
as pyruvate, formate, and ethanol, as well as some ketogenic 
amino acids, used by different bacterial cells as an ATP 
source [68, 69]. Several authors reported the ability of My-
coplasma pneumoniae to persist even after several days of 
treatment, due to a mutation in the 23S rRNA gene in some 
Mycoplasma pneumoniae strains [70, 71]. The transitory 
improvement of the neurological symptoms could be due to 
the partial resolution of mycoplasma pneumonia infection, 
and probably due to some immunomodulatory characteristics 
of macrolides independent of their known antimicrobial 
properties [72-74]. Experimental evidence highlighted a 
pathophysiological relationship between inflammation and 
neuropsychiatric disorders. Some authors suggested a form 
of autoimmunity in a genetically susceptible host similar to 
Sydenham chorea, in which antibodies produced against bac-
terial proteins cross-reacted with neuronal tissue, becoming 
antineuronal antibodies [75-78]. The cross-reaction mecha-
nism may lead to an exaggerated immune responsivity with 
pro-inflammatory cytokine production resulting in the dam-
age to the structure of the central nervous system, which 
eventually results in neuropsychiatric disorders manifested 
by PANS patients. Contrary to Sydenham chorea, in which 
molecular mimicry has been widely demonstrated, molecular 
mechanisms in PANS still remain controversial. It was 
speculated that clarithromycin may act as an immunomodu-

lator, downregulating the immune response and/or common 
hyper inflammation in PANS patients [79, 80]. The NMR 
analysis of urine after drug treatment highlighted the altera-
tion of different metabolic pathways involved in the biosyn-
thesis of proteins and energy production and in the synthesis 
of monoamine and amino acid neurotransmitters (tryptophan 
and phenylalanine). Aminoacyl-tRNA biosynthesis is a 
metabolic pathway characterized by a set of metabolites, 
including histidine, valine, lysine, isoleucine, proline, pheny-
lalanine, tryptophan, and glutamine, which were altered in 
the urine following the therapy with clarithromycin. In par-
ticular, NMR analysis showed an increase in his-
tidine/methylhistidine after drug treatment. Studies con-
ducted on animal models indicated how the alteration of his-
tidine carboxylase, which encodes the limiting enzyme in the 
histamine biosynthesis, led to an accumulation of histamine, 
with consequent increase of histidine in plasma and urine. 
Histamine is both a neurotransmitter and an immune modu-
lator. Abnormalities in histaminergic signaling have been 
observed in diseases overlapping with PANS, such as 
Tourette syndrome [81-83]. Furthermore, it has been shown 
that the alteration of the levels of histamine in the central 
nervous system can lead to an altered immune response of 
the microglia cells, resulting in an excessive inflammatory 
response, which can induce neurodegenerative diseases, in-
cluding PANS [75, 84-89]. Branched-chain amino acids 
(valine and isoleucine) and glutamine were found altered in 
the urine after antibiotic therapy. Some authors have  
emphasized the key role of branched-chain amino acids in 
the regulation of glutamate concentration in the central nerv-
ous system. Branched-chain amino acids are an important 
source of amino groups for the synthesis of brain glutamate 
and act like a "buffer system", avoiding the accumulation of 
glutamate. In fact, several neurological disorders are due to 
high concentrations of glutamate in the synapses [90-93]. 
The NMR analysis showed the alteration of different me-
tabolites closely linked to the gut microbiota. Recent ex-
perimental data suggest a complex interaction between the 
gastrointestinal tract and central nervous system defined as 
the “gut-brain axis” [94, 95]. The development of gut micro-
biota immediately after birth is influenced by different ge-
netic and non-genetic factors (e.g., maternal health, exposure 
to antibiotics, etc.), and seems to actively participate in the 
development of cognitive, emotional and behavioral proc-
esses immediately after birth. Studies on animal models have 
shown that altering the microbiota can significantly affect 
the concentration of the neurotransmitters, like serotonin in 
the hypothalamus, influencing several aspects of the devel-
opment of the central nervous system [40, 96, 97]. PANS 
seems to be characterized by changes in the gut microbiota, 
providing some pathogenic organisms the opportunity to 
colonize the gut epithelium. Toxins produced by pathogenic 
organisms trigger an immune response in the host with con-
sequent inflammation and increased gut permeability, deter-
mining the possible translocation of intestinal bacteria 
through the intestinal wall. The release of inflammatory cy-
tokines may lead to the activation of neurons in the vagus 
nerve, modulating the activity of the central nervous system 
[98]. The analysis of urine after antibiotic therapy indicated 
the alteration of different metabolites, such as hippurate, 
methylamine, trimethylamine N-oxide and riboflavin, poten-
tially linked to gut microbiota. Indeed, hippurate urinary 
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levels are associated with the intestinal microbial profile as 
an indirect indicator of microbiota alterations. The admini-
stration of antibiotics induces the suppression of the gut mi-
crobiota and results in a reduction in the excretion of hippu-
rate levels [54]. As already mentioned, Quagliarello et al., in 
a very recent work, highlighted the presence of a marked 
imbalance between Firmicutes and Bacteroidetes in a group 
of PANDAS patients compared to a control group [47]. 
Their results showed alterations of some metabolic pathways 
linked to inflammation, an increase in cellular metabolism 
and changes in riboflavin metabolism. In our case, an in-
crease in the concentration of riboflavin after pharmacologi-
cal treatment supported the hypothesis of the dysbiosis of the 
intestinal microflora. 

CONCLUSION AND PERSPECTIVES 

 PANS is a clinical condition characterized by a sudden 
and dramatic OCD disorder with a possible post-infectious 
immune-mediated etiology. The etiology and physiopathol-
ogy of the disease are still largely unknown. The case of a 
10-year-old girl with PANS was described before and after 
antibiotic treatment (clarithromycin). The main results of our 
study demonstrated the alteration of several metabolic path-
ways concerning the microbial activity and the gut microbi-
ota, highlighting its possible role in the development of 
PANS. Furthermore, different metabolic perturbations at the 
level of protein biosynthesis and energy metabolism were 
detected. Also, some amino acid metabolisms were altered, 
in particular, those of histidine, tryptophan and phenyla-
lanine, which were directly linked to the brain function. 
 Based on our observations, we believe that metabolomics 
is a promising technology to unravel the mysteries of PANS 
in the near future.  
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