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Abstract

Accurate and precise detection of anthropogenic impacts on stream ecosystems using 

macroinvertebrates as biological indicators depends on the use of appropriate field and laboratory 

methods. We assessed the responsiveness to anthropogenic disturbances of assemblage metrics and 

composition by comparing commonly employed alternative combinations of field sampling and 

individuals counting methods. Four datasets were derived by, in the field 1) conducting 

multihabitat sampling (MH) or 2) targeting samples in leaf packs (single-habitat sampling – SH) 

and, in the laboratory A) counting all individuals of the samples, or B) simulating subsampling of 

300 individuals per sample. We collected our data from 39 headwater stream sites in a drainage 

basin located in the Brazilian Cerrado. We used a previously published quantitative integrated 

disturbance index (IDI), based on both local and catchment disturbance measurements, to 

characterize the intensity of anthropogenic alterations at each site. Family richness and % 

Ephemeroptera, Plecoptera and Trichoptera (% EPT) individuals obtained from each dataset were 

tested against the IDI through simple linear regressions, and the differences in assemblage 

composition between least- and most-disturbed sites was tested using Permutational Multivariate 

Analysis of Variance (PERMANOVA). When counting all individuals, differences in taxonomic 

richness and assemblage composition of macroinvertebrate assemblages between least- and most-

disturbed sites were more pronounced in the MH than in the SH sampling method. Leaf packs 
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seemed to concentrate high abundance and diversity of macroinvertebrates in highly disturbed 

sites, acting as ‘biodiversity hotbeds’ in these situations, which likely reduced the response of the 

assemblages to the disturbance gradient when this substrate was targeted. However, MH sampling 

produced weaker results than SH when subsampling was performed. The % EPT individuals 

responded better to the disturbance gradient when SH was employed, and its efficiency was not 

affected by the subsampling procedure. We conclude that no single method was the best in all 

situations, and the efficiency of a sampling protocol depends on the combination of field and 

laboratory methods being used. Although the total count of individuals with multihabitat sampling 

obtained the best results for most of the evaluated variables, the decision of which procedures to 

use depends on the amount of time and resources available, on the variables of interest, on the 

availability of habitat types in the sites sampled, and on the other methods being employed in the 

sampling protocol.
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Introduction

Biomonitoring has long been established as a key tool for assessing and managing water 

resources worldwide (Ruaro and Gubiani, 2013; Buss et al., 2015; Ruaro et al., 2020), and 

macroinvertebrates are among the most common indicator groups used in the evaluation of 

stream ecological condition (Karr and Chu, 1999; Bonada et al., 2006). However, the 

sampling protocols used by various agencies and research groups vary widely, including 

procedures employed in the field (e.g., sampling apparatus used, sampled area, number and 

type of sampled habitats) and in the laboratory (e.g., number of subsamples or individuals 

counted, level of taxonomic resolution) (Carter and Resh, 2001; Cao and Hawkins, 2011; 

Buss et al., 2015). Accordingly, the effectiveness of macroinvertebrates in detecting 

anthropogenic pressures and stressors depends on the methods adopted (Gerth and Herlihy, 

2006; Rehn et al., 2007; Stoddard et al., 2008; Chen et al., 2015). In this context, it is 

important to know which methods result in best responses, considering time and resource 

constraints (Doberstein et al., 2000; Hughes and Peck, 2008).

Concerning field methods, the choice of the number and type(s) of habitat(s) to be sampled 

is one of the issues that has generated most debate (Parsons and Norris, 1996; Buss et al., 

2004; Gerth and Herlihy, 2006; Chessman et al., 2007; Rehn et al., 2007; Blocksom et al., 

2008). There are two basic approaches for sampling benthic macroinvertebrates in stream 

biomonitoring: multihabitat (MH) and single-habitat (SH) sampling, the latter also known as 

targeted sampling (Blocksom et al., 2008; Hughes and Peck, 2008). In MH sampling, a 

combination of the common habitat types (substrate or hydraulic types) present at each 

stream site is sampled, usually yielding a composite sample to represent the entire site. The 

different habitats can be sampled systematically along the site (which the US EPA calls 

“reachwide sampling”, Stoddard et al., 2005; Hughes and Peck, 2008), or in proportion to 

the researcher’s visual estimate of their coverage (as used in Europe in the AQEM and 
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STAR projects, Hering et al., 2006). Both ways to conduct multihabitat sampling will yield 

similar faunal collections if actual and perceived habitat distributions are similar at a site.

In SH sampling, one habitat type (e.g., riffles, snags, channel edge, leaf packs) present in all 

sites is defined before the field sampling (e.g., Reynoldson et al., 1999; Peck et al., 2006). 

The main advantage of SH sampling is the intrinsic standardization obtained by not 

comparing sites where different kinds of habitats were collected. SH sampling is supposed to 

reduce the data ‘noise’ (i.e., data variability caused by other factors than anthropogenic 

disturbances) in relation to the disturbance signal, in this way contributing to a more 

accurate assessment (Parsons and Norris, 1996; Gerth and Herlihy, 2006). One drawback of 

SH sampling is the insensitivity of this method to changes in the proportion of the chosen 

habitat type caused by anthropogenic alterations, that is, the same amount of the same 

habitat type is always sampled in all sites, independent of changes in the availability of 

habitat types caused by human activities. Another, more practical, difficulty is finding the 

same pre-defined habitat type in all stream sites to be compared across large spatial extents 

(i.e., entire river basins, regions or countries) (Turak et al., 1999; Wells et al., 2002; 

Blocksom et al., 2008). Third, the fauna found in a particular habitat type is usually only a 

subset of the entire assemblage of a site, and there is always the possibility that other 

unsampled habitats may respond better to ongoing human caused changes (Kerans et al., 

1992; Roy et al., 2003).

Regarding laboratory procedures, a fundamental decision is whether to process all the 

individuals of the samples or subsample them (Carter and Resh, 2001). Processing the whole 

sample is considered by many the most sensitive method (Courtemanch, 1996; Doberstein et 

al., 2000), and is desirable if the main concern is to enumerate rare taxa. Counting all the 

individuals is also preferable for obtaining less biased estimates of taxonomic density 

(Ligeiro et al., 2013a), defined as the number of taxa found in a given sampled area 

(Hurlbert, 1971). However, this method necessitates high counts of individuals and, 

consequently, it can be quite expensive and time-consuming (Buss et al., 2015). In addition, 

samples may be biased by fewer individuals (and taxa) occurring in naturally oligotrophic or 

homogeneous sites versus large numbers of individuals (and more taxa) in enriched or 

naturally heterogeneous sites (Gotelli and Cowell, 2001).

Subsampling procedures are implemented to reduce costs and make extensive biomonitoring 

programs more feasible (Vinson and Hawkins, 1996; Hughes and Peck, 2008). Arguably, the 

approach most commonly used is fixed-count subsampling (Carter and Resh, 2001), which 

consists of sorting and identifying a fixed number of individuals from each sample to 

generate standardized measurements of taxonomic richness (called numerical taxonomic 

richness, Hurlbert, 1971) and other related metrics. This is important because the number of 

taxa detected depends intrinsically not only on the area sampled, but also on the number of 

individuals sampled (Gotelli and Colwell, 2001). In biomonitoring protocols, the number of 

individuals counted varies from as few as 100 individuals for rapid assessments (Plafkin et 

al., 1989) to 500 individuals in national monitoring programs (Paulsen et al., 2008).

Although many studies have compared the efficiency of different methods in 

macroinvertebrate-based biomonitoring, very few have addressed the comparison of 
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different methods simultaneously (but see King and Richardson, 2002 and Chessman et al., 

2007). In fact, this would be the most realistic way to approach the problem, because no step 

of the sampling protocol operates in isolation, and the overall efficiency of a sampling 

protocol is likely to result from the sum of all decisions that it comprises. A straightforward 

criterion to assess the efficiency of competing methods is measuring their capability to 

detect known disturbance gradients (Ostermiller and Hawkins, 2004). Therefore, in this 

study, we formed four different macroinvertebrate datasets through a combination of 

methods commonly used in the field (MH and SH sampling) and in the laboratory (counting 

all individuals and subsampling). We used assemblage metrics and taxonomic composition 

derived from the four datasets to assess their responsiveness to an index of anthropogenic 

pressures calculated for the stream sites. We hypothesized that 1) SH sampling performs best 

because standardizing microhabitat conditions among the sites introduces less environmental 

variability to the assessment; and 2) processing the entire sample provides the clearest 

distinction of the disturbance gradient because it maximizes differences in taxonomic 

diversity.

Materials and Methods

Study area and site selection

We sampled streams in the Upper Araguari River Basin (46030’W - 4800’W; 1900’S - 

2000’S), southeastern Brazil, located in the Cerrado biome of Minas Gerais State. The 

Cerrado is the second largest biome of Brazil, originally covering 2,045,064 km2 (20% of 

Brazil). It is marked by predominantly savanna-like vegetation and two well-defined 

seasons: a wet season from October to March and a dry season from April to September, 

with 1200-1800 mm of rainfall per year (Brasil 1992). The Cerrado is considered a 

terrestrial biodiversity hotspot (Myers et al., 2000) because of its high floral and faunal 

diversity and endemism (Oliveira and Marquis, 2002), and high rates of habitat loss over the 

past 50 years (Wantzen et al., 2006; Françoso et al., 2015).

The Araguari Basin has an extensive and well-developed system of irrigated/mechanized 

agriculture, mainly of soy, coffee, corn, and sugar cane. Pasture and small patches of 

relatively undisturbed vegetation are also present. Most people dwell in small towns, 

although a few small cities with up to 80,000 inhabitants are present. Thirty-nine stream 

sites from 1st to 3rd order (sensu Strahler, 1957, map scale 1:100,000) were sampled in a 

hydrologic unit of 7,376 km2. They were randomly selected through a computerized 

probability-based design (Olsen and Peck, 2008) that assures a spatially balanced 

distribution of sites (Stevens and Olsen, 2003).

Field sampling and laboratory procedures

Field sampling was conducted in September of 2009, at the end of the dry season. Following 

Peck et al. (2006), each site consisted of a length equal to 40 × the mean wetted width, with 

a minimum site length of 150 m. Then, 11 equidistant cross-sectional transects were marked 

from downstream to upstream, defining 10 longitudinal sections of the same length within 

each site.
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For the MH sampling, we employed the reachwide method as described in Peck et al. 

(2006). One macroinvertebrate sample unit was taken per transect, following a systematic 

zig-zag pattern along transects (right-middle-left). Each of these 11 sample units was taken 

through use of a D-net (30 cm mouth width, 500 μm mesh size) in 0.09 m2 per sample unit 

summing to 0.99 m2 of stream bottom area sampled per site. This method assures that many 

types of habitats, including different substrates and surface water profiles, are sampled at 

each site. It is expected that the habitats will be sampled in proportion to their occurrence 

within each stream site, although rare habitats with areal cover <10% of the stream channel 

may be missed.

For the SH sampling, eight leaf packs were sampled per site, preferably located in different 

site sections. The same D-net was used, summing to 0.72 m2 of leaf pack area sampled per 

site. Leaf packs are microhabitats formed by a mixture of leaves from many plant species 

that accumulate in the streambed, coming mostly from the stream riparian vegetation 

(Moretti et al., 2007). In contrast to the pulsed input of leaf litter of temperate streams, leaf 

detritus inputs continue throughout the year in Cerrado streams, producing leaf packs in 

stream channels in all seasons (Gonçalves et al., 2006; França et al., 2009). Therefore, given 

their ecological importance, and high abundance and availability in tropical streams, we 

targeted our sampling on leaf packs when performing SH sampling. However, other SH 

sampling options are possible (e.g., riffles, pools, boulders, snags, macrophytes), as used in 

other protocols (Chessman et al., 2007; Rehn et al., 2007).

The individual sample units from each method were placed in separate plastic buckets, 

generating one composite sample for MH sampling and one composite sample for SH 

sampling per stream site. Both composite samples were preserved with 10% formalin in the 

field.

In the laboratory, all samples were fully processed (all individuals counted). Insects and 

gastropods were identified to family level through use of taxonomic keys (Pérez, 1988; 

Fernández and Domínguez, 2001; Costa et al., 2006; Mugnai et al., 2010). Only seven taxa, 

together representing < 4% of all individuals collected, were not identified to family 

(Collembola, Hydracarina, Tricladida, Nematoda, Hirudinea, Oligochaeta and Bivalvia). 

Hence, for simplicity we will refer to all identified taxa as families. Family-level 

identification of macroinvertebrates has proven to be efficient for biomonitoring purposes, 

with results comparable to those obtained with genus and species level (Melo, 2005; 

Marshall et al., 2006; Chessman et al., 2007; Whittier and Van Sickle, 2010), and it is a good 

option in many tropical regions that show high diversity of organisms and scarce taxonomic 

knowledge (Godoy et al., 2019).

Datasets compared and subsampling procedures

We compared four datasets with respect to their responsiveness to a known disturbance 

gradient, each dataset being a combination of the different field (MH and SH sampling) and 

laboratory (total counts of individuals and subsampling) methods considered in this study. 

We simulated subsampling of individuals via computer routines made in R software (R 

Development Core Team, 2018). Starting from the total counts in datasets of each of the two 

field sampling methods, we used the R function rrarefy, available in the vegan package 
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(Oksanen et al., 2018), to simulate the random subsampling (without replacement) of 300 

individuals per site. Samples that originally yielded < 300 individuals were kept unaltered. 

We performed 200 subsampling simulations for each field sampling method, totaling 400 

simulations.

There are protocols that subsample 400 or more individuals (Carter and Resh, 2001; Hughes 

and Peck, 2008), which can be desirable in terms of differentiation strength of the biological 

metrics (Cao et al., 2002; Chen et al., 2015). However, subsampling 300 individuals has also 

demonstrated adequate performance in metric estimations and site classifications, and has 

been recommended for biomonitoring purposes (Larsen and Herlihy, 1998; Sovell and 

Vondracek, 1999; Klemm et al., 2003; Boonsoong et al., 2009; Silva et al., 2017). In 

addition, many of our sites did not yield more than 300 individuals. Low densities of 

macroinvertebrates are common in the streams of many tropical regions (Heino et al., 2018).

Macroinvertebrate variables

To evaluate the responsiveness of the different methods to the disturbance gradient, we 

calculated from each dataset the total family richness and the percentage of Ephemeroptera, 

Plecoptera and Trichoptera (% EPT) individuals of the sites. Those two indicators represent 

important general aspects of taxonomic diversity and sensitivity of assemblages, which are 

among the most commonly used variables included in macroinvertebrate multimetric indices 

(Klemm et al., 2003; Stoddard et al., 2008; Waite et al., 2012; Macedo et al., 2016; Silva et 

al., 2017; Fierro et al., 2018; Ruaro et al., 2020).

Besides these two univariate metrics, we also evaluated the taxonomic composition of the 

datasets. This is because many macroinvertebrate metrics used in multimetric indices are 

derived from the assemblage composition of the samples (e.g., presence-absence or relative 

abundance of many groups) and predictive models are primarily based on the difference 

between taxonomic composition observed and expected at the sites (Wright, 1995; 

Reynoldson et al., 1997; Hawkins et al., 2000; Clarke et al., 2003).

Anthropogenic disturbance gradient

To quantitatively characterize the exposure of the stream sites to anthropogenic pressures, 

we used the Integrated Disturbance Index (IDI), described in detail in Ligeiro et al. (2013b). 

This index is based on the disturbances observed at the local scale (in-channel and riparian 

vegetation) and also at the catchment scale (land uses), because the ecological condition of 

any stream reach depends on both local and upstream catchment conditions (Allan, 2004; 

Whittier et al., 2007; Herlihy et al., 2020). We estimated local disturbance through use of the 

habitat metric W1_hall (Kaufmann et al., 1999), which is the mean number of specified 

types of anthropogenic disturbances observed at each transect (i.e., presence of buildings, 

channel revetment, pavement, roads, pipes, trash and landfill, parks and lawns, row crop 

agriculture, pasture, logging and mining), distance-weighted relative to their proximity to the 

stream channel. Catchment disturbance was calculated by summing the proportional areas of 

human land uses (i.e., pasture, agriculture and urban) in each site’s catchment. The different 

land uses were weighted according to their potential to impair the aquatic environment 

(Rawer-Jost et al., 2004; Maloney et al., 2011). The IDI was then calculated as the Euclidean 
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distance between each stream site and the origin of the Cartesian plane formed by the local 

and the catchment indices (Ligeiro et al., 2013b). The greater the IDI score of a site, the 

greater the intensity of anthropogenic disturbance expected at that site, a zero value 

representing a site lacking the anthropogenic disturbances measured. For the pool of sites 

analyzed in the present study, the IDI values ranged from 0.05 (for a site located inside a 

forested protected area) to 0.93 (for a site inside a heavily urbanized area). Therefore, the 

sampled sites covered a wide range of anthropogenic disturbance.

The effects of human activities on the ecological condition of stream sites operate at many 

spatial levels and involve many intricate pathways (Macedo et al., 2014; Leal et al., 2016; 

Leitão et al., 2017). Accordingly, they are too complex to be summarized perfectly by any 

single index. Nonetheless, the IDI has proven to be a useful practical tool to rank sites 

according to their overall intensity of exposure to anthropogenic alterations (Terra et al., 

2013; Macedo et al., 2016; Carvalho et al., 2017; Chen et al., 2017; Silva et al., 2017; Castro 

et al., 2018; Fierro et al., 2018; Sanches et al., 2019; Martins et al., 2020).

Data analyses

Comparisons between field sampling methods—We first compared the data 

obtained by MH and SH sampling methods, considering total counts of individuals of the 

samples of the 39 stream sites. We conducted paired t-tests on the number and density 

(individuals/m2) of organisms (both ln(y) transformed), family richness, and % EPT 

individuals (logit transformed, ln(y/[1 / y]), as suggested by Warton and Hui, 2011). To test 

for the congruency of the assemblage composition between the two methods we performed 

PROCRUSTES analysis (Peres-Neto and Jackson, 2001), which uses a rotation algorithm 

that minimizes the sum of squared residuals between two dissimilarity matrices under 

comparison. We used as dissimilarity measures the Jaccard index for presence/absence data 

and the modified Gower distance for relative abundances. Following the advice of Anderson 

et al. (2006), data were transformed by log2(y) + 1, but with zeros not being transformed, 

instead remaining as zeros. The modified Gower distance gives a clearer and more effective 

representation of differences on relative abundances than other more popular dissimilarity 

measures (e.g., Bray-Curtis index) (Anderson et al., 2006). A correlation-like coefficient (r) 

was calculated between the dissimilarity matrices of both sampling methods, considering 

each dissimilarity measure (following Mardia et al., 1979). A randomization test (10,000 

iterations) was made to estimate the statistical significance of the congruency observed. 

These analyses were performed with R software (R Development Core Team, 2018) using 

the vegan package (Oksanen et al., 2018) for Procrustes (function protest).

Assemblage metrics versus disturbance gradient—To test the performance of the 

four datasets in detecting the intensity of anthropogenic disturbances, family richness and % 

EPT individuals (logit transformed, as above) were regressed through simple linear 

regressions (SLR) against the IDI values of the sites. We generated one regression model for 

each total-count dataset, and 200 regression models for each subsampled dataset (one model 

per subsampling simulation). The regression models were conducted with STATISTICA 7.0 

software (StatSoft Inc., 2004).
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The strength of response of each dataset was measured by the F values of their regression 

models. In SLR, the F value indicates how many times the mean square model is greater 

than the mean square error (Zar, 2010). Therefore, in our study, higher F values indicate 

greater responsiveness of the datasets to the disturbance gradient.

To determine the degree that the two methods of counting individuals differed in their 

strength of response, we compared the single F values obtained from the total-count datasets 

with the distribution of the 200 individual F values obtained from the subsampling 

simulations of 300 individuals per site through a standardized measurement of 

differentiation (Z values):

Z = (F observed − Mean F simulations) ∕ Standard deviation of F simulations

The higher the modular value of Z, the greater the difference between the observed F value 

and the distribution of simulated F values. Usually, Z values > 1.96 (or < −1.96) indicate that 

the F value observed in the total counts is highly distinct from the mean F value of the 

simulations (Zar, 2010).

Assemblage compositional dissimilarities—We compared the assemblage 

composition between groups of sites having low and high intensities of anthropogenic 

disturbance. We included in the least-disturbed category all sites with IDI values < 0.3 and in 

the most-disturbed category all sites with IDI values > 0.6. Those thresholds clearly 

distinguish two groups of stream sites in terms of their intensity of exposure to 

anthropogenic pressures, as suggested by Ligeiro et al. (2013b). The least- and the most-

disturbed categories were represented by six and seven sites, respectively.

To test which dataset best discriminated the assemblage composition between least- and 

most-disturbed sites, we performed Permutational Multivariate Analysis of Variance 

(PERMANOVA, Anderson, 2001), employing as dissimilarity measures the Jaccard index 

and the altered Gower distance.

We used the adonis function in the vegan package (Oksanen et al., 2018) of R software (R 

Development Core Team, 2018), and employed 10,000 randomizations in each comparison 

to test model significance. Again, we generated a single PERMANOVA model for each 

total-count dataset, whereas we generated 200 PERMANOVA models for each subsampled 

dataset (one model per subsampling simulation). Once more, the F values of PERMANOVA 

models were used to measure the discrimination strength of each dataset, and Z values were 

calculated to determine the degree to which the two laboratory processing methods (total 

counts of individuals and subsampling) differed in their discrimination strength. Our general 

analytical framework is summarized in Figure 1.

Results

Comparisons between field sampling methods

We collected a total of 22,345 and 21,508 individuals in the MH and SH field methods, 

respectively. The number of families found was also similar; 69 in MH and 66 in SH, 
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totaling 77 families. Most families (58) were sampled using both methods, with 11 families 

found exclusively in MH and 8 found only in SH sampling (Supplementary Material 1).

The number of individuals and % EPT individuals per site did not differ significantly 

between the two methods (Table 1). However, MH sampling produced significantly more 

families, whereas SH sampling produced a higher density of macroinvertebrates per site 

(Table 1).

In general, the relative abundances of major macroinvertebrate groups relative to the total 

number of individuals collected differed little between the two sampling methods (Figure 2). 

In both cases, insects comprised 96% of the individuals collected, with Diptera being the 

dominant insect order and Chironomidae the most abundant family. MH sampling produced 

more EPT individuals (28%, versus 20.8% in SH sampling), particularly Ephemeroptera 

(17.6%, versus 10.6% in SH sampling), whereas SH sampling resulted in a higher 

percentage of Chironomidae (46.2%, versus 40.4% in MH sampling) (Figure 2). 

PROCRUSTES analysis showed a significant correspondence between the assemblage 

composition yielded by both MH and SH methods, with r = 0.73 for Jaccard index and r = 

0.79 for Gower distance (p < 0.001 in both cases).

Assemblage metrics versus disturbance gradient

Considering the response of macroinvertebrate family richness to the quantitative 

disturbance gradient, MH sampling showed better results than SH, independent of the 

method of counting individuals employed (Table 2). The regression model of SH family 

richness was not even significant when total counts of individuals were considered (p = 0.18, 

Table 02, Supplementary Material 02). However, subsampling increased considerably the 

responsiveness of SH family richness to disturbance (Z = −2.41) (Table 2, Supplementary 

Material 03). Subsampling did not affect considerably MH performance regarding the family 

richness metric (Z = 0.67).

For % EPT individuals, the pattern was inversed, SH presenting a better response than MH 

independent of the method for counting individuals used (Table 2, Supplementary 03). For 

MH sampling, the regression model of % EPT individuals was not significant considering 

total counts of individuals (p = 0.064, Table 2, Supplementary Material 02) and most 

subsampling simulations (91.5%) were non-significant as well. Subsampling did not affect 

the performance of the models, as showed by the low Z values (0.18 in MH, and −0.01 in 

SH), indicating that this metric was highly stable across the counting methods.

Assemblage compositional dissimilarities

Regarding the comparisons of assemblage composition between least- and most-disturbed 

sites, the altered Gower distance, accounting for the relative abundance of the taxa, always 

presented better results (higher PERMANOVA F values) than the Jaccard index (presence/

absence data), for all field and counting of individuals methods (Table 3, Supplementary 

Material 04). For both dissimilarity measures, MH presented better results than SH when 

considering total counts of individuals, whereas SH performed better than MH when 

subsampling was employed (Table 3, Supplementary Material 05). In three out of four cases, 

subsampling reduced responsiveness of the datasets to disturbances, but not for SH using 
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altered Gower, for which models obtained from subsampling simulations usually had 

PERMANOVA F values higher than in total counts (Z = −2.95). This decrease in 

performance was most pronounced in the MH field sampling method, for which the 

PERMANOVA F values for both dissimilarity measures were almost halved in the 

subsampled datasets (Table 3).

Differences between the field sampling methods according to the disturbance gradient

Given the better performance of MH sampling for almost all assemblage variables when 

considering total counts of individuals, we further explored how the differences between 

these two field sampling methods varied along the disturbance gradient. To do so, we 

conducted Pearson correlations of the IDI values of the sites versus differences calculated 

between MH and SH in terms of number and density of individuals, family richness and % 

EPT individuals. We also obtained Jaccard index and altered Gower distance between the 

two methods for each site and correlated them with the IDI values. That is, we wanted to 

know whether the magnitude of the differences between MH and SH samples were 

influenced or not by the disturbance status of the stream sites.

We found that differences of % EPT individuals and assemblage composition (assessed 

through both dissimilarity measures) between the two field sampling methods were not 

influenced by the disturbance gradient (Figure 3), i.e., the same patterns of difference were 

observed from least- to most-disturbed sites. However, we found significant (p < 0.05) 

negative correlations between the IDI and differences in the number and density of 

individuals (r = −0.42 and −0.41, respectively) and differences in family richness (r = −0.38) 

(Figure 3). In other words, in least-disturbed sites (low IDI values), MH samples presented 

higher quantity and density of individuals and higher family richness than SH samples, 

whereas in most-disturbed sites (high IDI values), SH samples presented higher quantity and 

density of individuals and higher family richness than MH samples.

Discussion

The effects of methodological decisions on the observation of biodiversity patterns is a long-

lasting discussion among stream ecologists, and it is one of central importance because the 

understanding of assemblage patterns and dynamics rely on the sampled data (Melo, 2005; 

Godoy et al., 2019; Sgarbi et al., 2020). These effects are even more dramatic in the 

interpretation of ecological indicators of anthropogenic alterations, considering that the 

outputs of biomonitoring studies are supposed to guide conservation and management 

decisions (Bonada et al., 2006; Hughes and Peck, 2008). These decisions often involve 

social actors (e.g., stakeholders, decision makers, community representatives) who are 

typically unaware of the intricacies and pitfalls of biological studies.

In line with other studies that also aimed to test the effects of different methods on the 

detectability of disturbance gradients (e.g., Buss et al., 2004; Gerth and Herlihy, 2006; Rehn 

et al., 2007; Waite et al., 2012), we were not interested here to test the ‘endpoints’ of the 

ecological indicators (e.g., biotic indices, MMI’s, predictive models). These are, by 

definition, very particular for each regional context (Cao and Hawkins, 2011). Our purpose 

was to assess the behavior of the ‘building blocks’ of these indicators (i.e., univariate 
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metrics, assemblage composition), in this way providing more general conclusions about the 

effects of methodological decisions.

Influence of field sampling methods on the detection of anthropogenic disturbances

Our first hypothesis was that targeting our sampling in a single habitat (leaf packs), in this 

way standardizing to some degree the biophysical environment that sustains 

macroinvertebrates, we would obtain better responses to the disturbance gradient, as 

suggested by Gerth and Herlihy (2006). By reducing natural habitat variability among 

streams, we expected that the anthropogenic disturbance signal would be stronger (Parsons 

and Norris, 1996). However, in general, this hypothesis was not supported by our data. 

When considering total counts of individuals, the low, statistically non-significant, F value of 

the regression model indicated that the number of families did not differ along the 

disturbance gradient. Actually, SH samples in most-disturbed sites presented much higher 

abundance and diversity of macroinvertebrates than MH samples, inverting the general 

pattern observed in other sites. Accordingly, SH samples discriminated the assemblage 

composition regarding the disturbance gradient to a lesser extent than MH sampling, mainly 

when total counts of individuals were considered.

Sampling in leaf packs seemed to impair the detection of anthropogenic disturbances when 

total counts of individuals were employed and taxonomic richness and assemblage 

composition were considered as indicators. Leaf packs are very attractive microhabitats to 

macroinvertebrates, serving as food resources, habitat and shelter (Gjerlov and Richardson, 

2004; Kobayashi and Kagaya, 2005; Ligeiro et al., 2010). Hence, this microhabitat may have 

served as refuges for organisms in our highly disturbed streams. In other words, leaf packs 

acted as ‘biodiversity hotbeds’ in most-disturbed sites, to some degree buffering the 

assemblages from the effects of anthropogenic alterations. Haapala et al. (2003) also found 

that leaf detritus aggregations in the streambed concentrated macroinvertebrates to a much 

higher degree in most-disturbed streams than in streams with good ecological condition.

In line with our findings, Chessman et al. (2006) also found that MH sampling better 

responded to anthropogenic disturbance gradients than SH sampling, even though they did 

not consider leaf packs as targeted habitats. These findings suggest that MH sampling, being 

capable of tracking the impairment of habitat heterogeneity caused by anthropogenic 

alterations, is more likely to provide an overall more powerful tool for biomonitoring. On the 

other hand, the % EPT individuals responded strongly to the disturbance gradient only when 

SH sampling was considered. This demonstrates that, although harboring a high number of 

individuals and macroinvertebrate families along the entire disturbance gradient, the number 

of sensitive individuals decreased greatly in leaf packs of most-disturbed sites, which can 

result from physical and chemical alterations in water quality (Feio et al., 2005).

We aimed to describe assemblage compositional differences between least- and most-

disturbed sites considering pure compositional variation (Jaccard Index) and compositional 

plus relative abundance variations (altered Gower distance) (Anderson at al., 2006). In this 

study, all datasets yielded higher dissimilarities between least- and most-disturbed sites 

when the altered Gower distance was employed. Anthropogenic disturbances on streams can 

change both the macroinvertebrate relative abundances, decreasing the number of 
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individuals of some taxa and increasing the number of others, and also the taxonomic 

composition, via local extinctions of some taxa and invasion of others (Karr, 1999; Norris 

and Thoms, 1999; Davies and Jackson, 2006). Therefore, we suggest that dissimilarity 

measures that account for both features of assemblage compositional dissimilarity are likely 

to respond better to anthropogenic alterations.

Effects of subsampling procedures on the assessment of disturbance effects

We found that subsampling of individuals had differing effects on the ability of the datasets 

to detect the anthropogenic disturbance gradient, depending on the field sampling method 

employed. In this way, our second hypothesis was not completely corroborated either, since 

we expected that counting all the individuals would always generate better results than 

subsampling.

Barbour and Gerritsen (1996), Vinson and Hawkins (1996), and Walsh (1997) recommended 

subsampling when comparing sites of markedly different ecological conditions, a practice 

widely performed in recent large-extent bioassessments (Hughes and Peck, 2008; Cao and 

Hawkins, 2011). Subsampling can standardize the sampling effort in terms of number of 

individuals, which is highly recommended when comparing sites with very different 

macroinvertebrate densities (Gotelli and Cowell, 2001).

On the other hand, Courtemanch (1996) argued that counting all individuals (i.e., 

considering taxonomic density) better describes the relative abundance among taxa and 

enhances the importance of rare taxa, which often encompasses the majority of 

macroinvertebrate diversity. Doberstein et al. (2000) achieved weaker models when 

employing subsampling to analyze taxonomic richness and other assemblage metrics, and 

they also advocated counting all individuals in samples for a more comprehensive 

understanding of anthropogenic alterations. Besides taxonomic diversity, total abundance of 

macroinvertebrates may also be responsive to anthropogenic pressures, and this information 

is completely lost during subsampling.

Neither taxonomic density (generated through the count of all individuals of the samples) 

nor numerical taxonomic richness (generated through subsampling of individuals) is 

necessarily the ‘correct’ way to measure taxonomic diversity, each method emphasizing 

different aspects of diversity patterns (Larsen and Herlihy, 1998; Gotelli and Cowell, 2001). 

Indeed, the primary reason to subsample is to help make regional and national biomonitoring 

programs that involve hundreds or thousands of sites more timely and cost-effective (Vinson 

and Hawkins, 1996; Hughes and Peck, 2008), and provide a standard method that would 

facilitate national monitoring data syntheses (Cao and Hawkins, 2011). Thus, a key point is 

to define which aspect of taxonomic diversity better responds to the effects of anthropogenic 

disturbances, and to which degree subsampling impairs or increase the responsiveness of 

other assemblage variables.

In our study, the subsampling procedure mostly impaired the responses given by the MH 

method to the disturbance gradient, mainly considering assemblage composition. However, 

for the SH sampling, the responses of the univariate metrics and the assemblage composition 

were mostly increased by subsampling 300 individuals. Whether this positive effect of 
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subsampling on SH can be attributed to targeting leaf packs specifically or any other 

standardized habitat/microhabitat is a matter for future studies. Nonetheless, our results 

suggest that the advantages of sampling across various habitat types are only fully realized 

when all individuals are counted. Since SH standardizes variation in macroinvertebrate 

assemblages among microhabitat conditions, it seems that it performs better with 

standardizing the number of individuals.

It is noteworthy that the number of individuals collected in this study (average of about 550 

individuals / site) was relatively small compared to the abundances found in temperate or 

boreal streams (see Heino et al. 2018). Even showing smaller abundances, the impact of the 

subsampling procedure on the responses of the datasets was substantial in our case, 

indicating that this impact may be even greater in streams with greater numbers of 

individuals.

In contrast with other variables assessed, the % EPT individuals gave fairly uniform results 

for total counts and subsampled datasets. Therefore, this metric can be considered more 

stable than family richness and assemblage composition with respect to the method of 

counting individuals. This result is in agreement with Courtemanch (1996) who argued that, 

once individuals are collected randomly during subsampling, metrics that deal with 

proportions of individuals would be more stable than taxonomic richness and composition, 

and other related metrics as well. Despite that, % EPT individuals presented poor 

performance in MH sampling, which indicates that microhabitat heterogeneity may buffer 

the impacts of anthropogenic disturbance on EPT populations.

Effects of spatial extent on macroinvertebrate assessments

Many authors have agreed that MH and SH samplings rarely lead to markedly different 

responses of macroinvertebrate assemblages to anthropogenic disturbances, even when 

methods differ on the assemblages obtained (Plafkin et al., 1989; Ostermiller and Hawkins, 

2004; Gerth and Herlihy, 2006; Rehn et al., 2007). For instance, Hewlett (2000) found that, 

despite assemblage differences observed between the methods, both MH and SH datasets 

generated the same site classifications. However, this emerging conclusion was generated 

mostly from studies dealing with very large spatial extents (> 200,000 km2), frequently 

related to regional or national biomonitoring programs. The larger the study spatial extent, 

the greater the environmental heterogeneity present within that region (Jackson et al., 2001; 

Heino et al., 2015). Therefore, as spatial extent increases, the main determinants of changes 

in the structure and composition of the assemblages moves from local factors (e.g., 

substrate, water velocity) to regional factors (e.g., precipitation, geomorphology, land use) 

(Wu and Loucks, 1995; Wiens, 2002; Bonada et al., 2008; Heino, 2009), reducing the 

proportional variability generated by the sampled habitat (Gerth and Herlihy, 2006).

Perhaps because our study was conducted in a much smaller area (approximately 7,400 

km2), we found that the choice of the sampled habitat had a clear effect on the responses of 

assemblage metrics and composition to disturbance gradients. Chessman et al. (2007), 

studying a relatively small spatial extent in western Australia, also found differences in the 

performances of metrics derived from different habitats in detecting anthropogenic 

alterations in streams. These results suggest that biological assessments conducted across 
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smaller spatial extents, including those made in smaller river basins and BACI designs, tend 

to be more sensitive to the choice of the field sampling method than studies conducted 

across larger geographical areas.

Conclusions

In this work, we found that the choice of sampling and processing method had a significant 

impact on the detection of disturbance gradients by macroinvertebrate assemblages in a 

relatively small tropical basin. Moreover, the responsiveness of the datasets was affected by 

the combination of the field and laboratory sampling methods employed, which makes this 

matter even more problematic. If time and personnel are sufficient and available, employing 

MH with total counts of individuals provided the best results for almost all assemblage 

variables analyzed. On the other hand, the responsiveness of MH data to the disturbance 

gradient was mostly diminished after employing subsampling of 300 individuals. Future 

studies should investigate if subsampling more individuals can overcome this hindrance. For 

instance, some authors propose larger individual counts (as large as 500 individuals) to 

improve the accuracy and precision of comparisons (Cao et al., 2002; Chen et al., 2015). 

However, in areas with low densities of macroinvertebrates (as in many low-latitude streams, 

Heino et al., 2018), including our sites, it is not possible to subsample more than 300 

organisms per sample. The same can happen anywhere if resources constrain the number of 

subsamples taken at a site or the number of individuals that can be identified in the 

laboratory.

Leaf packs, acting as ‘biodiversity hotbeds’ in most-disturbed streams, seemed to mask the 

human impacts when all individuals where counted. Despite the limitations we discussed, 

SH performed very well with subsampling, and can be an option to be considered if this 

procedure is necessary. In conclusion, no single field or laboratory method performed best in 

all cases, and the decision of which procedure to use depends largely on the amount of time 

and resources available, on the biological variables of interest, and on the other methods 

being adopted in the sampling protocol.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We examined how combinations of methods detected a known anthropogenic 

disturbance gradient.

• Multihabitat sampling performed best when total counts of individuals were 

employed.

• The responsiveness of targeted sampling on leaf packs was increased after 

subsampling.

• Leaf packs behaved as ‘biodiversity hotbeds’ in highly disturbed sites.

• Macroinvertebrate responsiveness to anthropogenic disturbances depends on 

assessment methodologies and on their combinations.
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Figure 1. 
Analytical design to assess the response strength of macroinvertebrate assemblages to a 

known anthropogenic disturbance gradient, comparing four combinations of field 

(multihabitat vs single-habitat) and laboratory (total counts of individuals vs subsampling) 

methods.

Ligeiro et al. Page 23

Ecol Indic. Author manuscript; available in PMC 2021 August 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 2. 
Relative abundance of major groups of macroinvertebrates observed in multihabitat (MH) 

and single-habitat (SH) field sampling methods (sum of all individuals found in all stream 

sites). COH = Coleoptera+Odonata+Heteroptera.
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Figure 3. 
Relationship of the integrated disturbance index (IDI) of the stream sites and differences in 

the number (A) and density (B) of individuals, family richness (C), % EPT individuals (D), 

Jaccard index (E) and altered Gower distance (F) between samples obtained from 

multihabitat and single-habitat field sampling methods (difference = MH - SH), considering 

total counts of individuals.
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Table 1.

Comparisons between macroinvertebrate assemblage variables obtained with multihabitat (MH) and single-

habitat (SH) field sampling methods, showing averages (± standard errors) and paired t-test results (38 degrees 

of freedom). p values < 0.05 are followed by an asterisk.

Variable Sampling method Statistics (paired t-tests)

MH SH t value p value

Number of individuals 573 (± 68) 551 (± 58) 0.03 0.974

Density (ind./m2) 579 (± 69) 766 (± 80) − 2.63 0.012 *

Number of families 24 (± 1) 21 (± 1) 3.29 0.002 *

% EPT individuals 26 (± 3) 21 (± 2) 1.90 0.065
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Table 2.

Results of simple linear regression models of macroinvertebrate family richness and % EPT individuals (logit 

transformed) against the Integrated Disturbance Index (IDI) of the stream sites. The four datasets compared 

were generated from two different field sampling methods; 1) multihabitat (MH), 2) single-habitat (SH), and 

two laboratory procedures; A) total count of individuals of the samples, and B) subsampling 300 individuals 

from the samples. For the subsampled datasets (200 simulations per field sampling method), we show the 

mean F values and the proportion of significant regression models (which represented p < 0.05). We compared 

the single F values obtained from the total counts with the respective 200 F values obtained from the 

simulations through a standardized measurement of differentiation (Z values). Degrees of freedom for F 

statistics were 1, 37. p values < 0.05 are followed by an asterisk.

Total counts Subsampling (300 individuals)

Metric Sampling method F value p value Mean F values % significant models Z value

Family richness
MH 14.76 < 0.001 * 12.93 100.0 0.67

SH 1.87 0.180 6.50 92.5 −2.41

% EPT individuals
MH 3.65 0.064 3.58 8.5 0.18

SH 14.99 < 0.001 * 15.00 100.0 −0.01
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Table 3.

Results of PERMANOVA models performed between least- and most-disturbed stream sites using the Jaccard 

index and the altered Gower distance. The four datasets compared were generated from two different field 

sampling methods; 1) multihabitat (MH), 2) single-habitat (SH), and two laboratory procedures; A) total count 

of individuals of the sites, and B) subsampling 300 individuals per site. For the subsampled datasets (200 

simulations per field sampling method), we show the mean F values and the proportion of significant 

PERMANOVA models (which presented p < 0.05). We employed 10,000 randomizations in each 

PERMANOVA to test model significance. We compared the single F values obtained from the total counts 

with the respective 200 F values obtained from the simulations through use of a standardized measurement of 

differentiation (Z values). Degrees of freedom of PERMANOVAs were 1, 37. p values < 0.05 are followed by 

an asterisk.

Total counts Subsampling (300 individuals)

Dissimilarity measure Sampling method F value p value Mean F values % significant models Z value

Jaccard index
MH 2.73 0.002 * 1.61 48.0 4.39

SH 1.95 0.010 * 1.76 69.5 0.62

Altered Gower distance
MH 3.60 0.003 * 1.74 87.0 12.52

SH 2.05 0.005 * 2.63 100.0 −2.95
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