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Abstract

Traditional air monitoring approaches using regulatory monitors have historically been used to 

assess regional-scale trends in air pollutants across large geographical areas. Recent advances in 

air pollution sensor technologies could provide additional information about nearby sources, 

support the siting of regulatory monitoring stations, and improve our knowledge of finer-scale 

spatiotemporal variation of ambient air pollutants and their associated health effects. Sensors are 

now being developed that are much smaller and lower cost than traditional ambient air monitoring 

systems and are capable of being deployed as a network to provide greater coverage of a given 

area. The CitySpace project conducted by the US EPA and the Shelby County Health Department 

included the deployment of a network of 17 sensor pods using Alphasense OPC-N2 particulate 

matter (PM) sensors integrated with meteorological sensors in Memphis, TN for six months. 

Sensor pods were collocated with a federal equivalent method (FEM) tapered element oscillating 

microbalance (TEOM) monitor both before and after the primary study period. Six of the sensor 

pods were found to meet the data quality objective (DQO) of coefficient of determination (R2) 
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greater than 0.5 when collocated with the TEOM. Seven pods were decommissioned before the 

end of the study due to mechanical failure. The six pods meeting the DQO were used to examine 

the spatiotemporal variability of fine PM (PM2.5) across the Memphis area. One site was found to 

have higher relative PM2.5 concentrations when compared to the other sites in the network. The 1-

min data from this sensor pod were evaluated to quantify the regional urban background and local-

scale contributions to PM2.5 at that monitoring location. This method found that approximately 

20% of the PM2.5 was attributed to local sources at this location, compared to 9% at a local 

regulatory monitoring site. Additionally, the 1-min data were combined with 1-min wind speed 

and wind direction data to examine potential sources in the area using the nonparametric trajectory 

analysis (NTA) technique. This method geographically identified local source areas that 

contributed to the measured concentrations at the high reading sensor location throughout the 

course of the study.

Introduction

The use of low-cost air pollution sensors has expanded in recent years. The cost-

effectiveness of sensors has increased access to air pollution information, especially for 

collecting more spatially and temporally resolved data. Sensors have been used to 

supplement ambient air monitoring (Mead et al., 2013; Snyder et al., 2013; Kaufman et al., 

2017), and improve understanding of air quality and health messaging in urban areas (Mead 

et al., 2013; Kumar et al., 2015; Ramaswami et al., 2016). As sensor technologies progress, 

it is important to properly understand their limitations and capabilities. While sensors can 

supplement current air monitoring activities, their data can also lead to erroneous 

conclusions by groups using them without a proper understanding of data quality and 

calibration (Rai et al., 2017).

Particulate matter (PM) sensors are currently some of the most popular low-cost air 

pollution measurement technologies. PM sensors typically estimate particle concentration by 

light scattering techniques or measure particle size by optical particle counters. The 

Alphasense OPC-N2 is an optical particle counter measurement device that has been shown 

to have widely varying correlations with collocated federal equivalent method (FEM) 

instruments with coefficients of determination (R2) ranging from 0.11 (Feinberg et al., 2018) 

to 0.79 [South Coast Air Quality Management District (SCAQMD), 2018]. Varying 

agreement could result from multiple factors, as the OPC-N2 assumes particles are spherical 

and of homogenous density, while in practice particle morphology and density are highly 

variable (Mukherjee et al., 2017). Additionally, OPC-N2 correlations can vary in a 

laboratory setting when using aerosols of different compositions and also exhibit artifacts 

related to humidity (Sousan et al., 2016; Feinberg et al., 2018; SCAQMD, 2018). 

Furthermore, the OPC-N2 has a minimum reported particle measurement size of 0.38 μm, so 

it has the potential to miss portions of the PM2.5 mass depending on the particle size 

distribution. Due to these factors, it is important to quantify the performance of OPC-N2 

sensors under study-specific conditions. Some recent studies have been able to improve the 

correlation of low-cost air pollution sensors to more reliable measurement methods using 

correction factors, multivariate models, and machine learning (Crilley et al., 2018; Cross et 

al., 2017; Zimmerman et al., 2018; Hagan et al., 2018). Even in the absence of improved 
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correlations, the OPC-N2 has been found to replicate some trends, including wind direction 

(Feinberg et al., 2018).

Low-cost PM sensors have the potential to create or expand measurement networks, 

enabling the collection of ambient environmental data for smart city initiatives or other 

purposes. Numerous studies have shown that sensor networks can allow researchers, 

community groups, and planning organizations to better understand air pollution sources, air 

quality trends, and limitations of sensors. Gao et al. (2015) deployed a network of fine PM 

(PM2.5) sensors in Xi’an, China. The network of sensors was able to locate a PM2.5 hotspot 

while already in a high concentration urban environment. Jiao et al. (2016) deployed a four-

site network PM2.5 sensors in Atlanta, GA. The sensor network was able to demonstrate 

spatiotemporal homogeneity for PM. The U.S. EPA and SCAQMD deployed a network of 

multi-pollutant sensors in the South Coast Basin (California) to evaluate the ability of 

sensors to supplement air quality monitoring and examine spatial and temporal variability of 

pollution (Williams et al., 2018). This study found that sensors can aid in air quality 

monitoring during controlled conditions but found that the OPC-N2 PM sensors had 

significant data losses due to sensor failure at several of the measurement sites.

The CitySpace project described in this manuscript included a long-term deployment of 

Alphasense OPC-N2 PM sensors in Memphis, TN and the surrounding area (U.S. EPA, 

2018a). The main goal of the CitySpace project was to better understand the utility of 

emerging air sensor technology when deployed in a sensor network. Additionally, this 

project evaluated whether sensor technology could provide useful supplemental information 

to existing regulatory ambient air monitoring. This manuscript reports on a network of 17 

p.m. sensors deployed from October 2016 to March 2017. The spatiotemporal variability of 

PM in the Memphis area was estimated, and potential nearby sources of PM were evaluated 

using nonparametric trajectory analysis (NTA).

Methods

2.1 Sensor Pod Design and Deployment

EPA developed a solar-powered sensor package for measuring urban PM and meteorological 

parameters (U.S. EPA, 2018a). PM was measured by an Alphasense OPC-N2 sensor while 

wind speed and wind direction were measured by an Airmar 110WX meteorology sensor. 

Temperature and relative humidity (RH) were measured by a Vaisala temperature and RH 

sensor. The OPC-N2 sensor reported mass concentration estimates of different PM size 

fractions (PM2.5, PM10, etc.). This project focused on reported PM2.5 values. Values 

reported by the sensor were logged without any conversion. A total of 17 p.m. sensor pods 

were deployed in Memphis, TN (Fig. 1a) from October 2016 to March 2017. Additional 

collocation periods were conducted at the Shelby Farms monitoring site, the easternmost site 

labeled in Fig. 1b, both 1-week before and for up to 6 weeks after the main study period, 

where sensor pods were placed alongside a tapered element oscillating microbalance 

(TEOM). The collocated TEOM collected hourly PM2.5 mass concentration measurements. 

Sensor pods transmitted data to EPA’s VoIP Enterprise Routing (VIPER; U.S. EPA, 2018b) 

wireless network-based communications system while also storing data locally on Secure 

Digital (SD) cards. Measurements were recorded every minute.
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2.2 Quality Assurance

Data were transmitted directly from the field via the VIPER system and manually retrieved 

on a weekly timeframe from the SD card. The manual data retrieval allowed a visual 

inspection of the pods and their general operational status. During some of these inspections, 

there was indication that the pods moved likely due to high wind conditions. These data 

were flagged, and the wind data was removed. VIPER records were used to provide daily 

notification of pod operational status, but ultimately the pulled SD card information was 

used to establish the analysis database.

A project-specific quality assurance project plan was developed prior to the start of the study 

and was used to review raw data and finalize the data set. Quality assurance considerations 

included timestamps, electronic signatures, reviewed raw data, appropriate dates, filenames 

and pod associations. One-minute PM2.5 data from the OPC-N2 sensors were screened to 

remove potential artifacts and to detect obviously erroneous RH and temperature data. 

Measurements were removed when PM2.5 measured extreme values (less than zero and 

greater than 200 μg/m3), RH reported values were below zero or greater than 95%, or 

recorded temperatures were less than −10 °C or greater than 60 °C. Previous experimentation 

and operation of the sensor in multiple environmental settings with the OPC-N2 identified 

that PM2.5 mass concentration estimates greater than 200 μg/m3 had a low probability of 

being statistically relevant and were often associated with high RH events (Reece et al., 

2017; Feinberg et al., 2018). In this project, the occurrence of reported PM2.5 estimates 

greater than 200 μg/m3 was rare (e.g., only 70 min above this threshold were reported by 

Unit 16 throughout the entire study, all of which occurred when the RH was 99.9%). PM2.5 

values less than zero normally indicated that a sensor pod malfunctioned. Sensor failure was 

evident during high RH events by either a complete loss of signal (flat baseline response), a 

response that reported values between 0 and 2 μg/m3 and remaining there for an extended 

period (hours or even days), or atypical PM2.5 estimations over 200 μg/m3. Reece et al. 

(2017) found similar problems with sensor failure or low-quality data during periods of high 

and sustained RH. In this study, there were some instances where sensors were able to re-

establish a nominal response once lower RH conditions occurred without operator attention. 

Often the sensor would have to be manually cycled (on/off) to re-establish normal 

functionality. Several sensors permanently failed following one of the high RH events. To 

address the anticipated RH impacts, we developed automated QA routines that searched for 

signs of sensor failure and flagged these time periods for exclusion in data analysis. After 

screening procedures, the remaining 1-min PM2.5 mass concentrations were averaged to 

hourly concentrations. At least 45 min of valid data were required to calculate an hourly 

average (i.e., 75% data completeness).

2.3 Sensor Data Analysis

To understand the performance of the OPC-N2 sensor, hourly PM2.5 mass concentrations 

were estimated and compared to hourly PM2.5 data from the TEOM FEM monitor. Crilley et 

al. (2018) suggested that correlation between the OPC-N2 sensor and reference monitors can 

be improved when adjusting for humidity effects. However, an attempt to develop an 

improved linear regression including RH via a training set approach using the caret package 

in R statistical software (Version 3.4.3) found RH was not a significant predictor at a 0.05 
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confidence level. Sensor pods that exhibited a coefficient of determination (R2) greater than 

0.5 during the collocation periods (Fig. 1b) were used to examine the spatiotemporal 

variation of PM2.5 in the Memphis area.

The data from each sensor pod that met the correlation criterion were calibrated to better 

reflect the TEOM concentrations based on the linear regressions of the hourly average PM2.5 

concentrations from the final collocation period (i.e., the sensor data were normalized using 

the slopes and intercepts from the regression analysis). This calibration helped remove 

varying biases when comparing the sensor pods to each other (for example one sensor could 

exhibit a slope of 2 when compared to the TEOM, while another could exhibit a slope of 

0.5). The calibrated sensor data were then compared to each other using the Pearson 

correlation to examine how temporal trends agree between sites and coefficient of 

divergence (CoD) to examine the difference in concentrations between sites (Kim et al., 

2005; Wongphatarakul et al., 1998).

The high-time resolution measurement data allowed for improved understanding of 

contributions to the measured PM. For a given site, the low-varying component was 

identified as taking the rolling 60-min 5th percentile concentration (Bukowiecki et al., 

2002). For example, for a given 1-min measurement within a complete 60-min window, the 

low-varying component of its signal would be identified as the third lowest measurement 

from the 30 min both before and after that measurement. The remaining concentration from 

each site was then assigned as the high-varying component of the concentration (i.e., the 

difference between the 1-min measurement value and the low-varying component for the 

surrounding 60-min window). In this analysis, the low-varying component of the 

concentration was indicative of regional contributions and the high-varying component was 

indicative of the local contribution to PM2.5 concentrations. This allowed for overall 

estimates of local and background impacts at a site without necessarily requiring an entire 

network of measurements.

The sensor data was also analyzed using nonparametric trajectory analysis (NTA) to 

understand PM source contributions. The NTA method uses wind and pollutant 

concentration data to inform potential source types and regions (Henry et al., 2011). NTA 

uses wind data to calculate urban-scale back trajectories and assigns the associated measured 

concentration to each point on the trajectory. In this analysis, 50-min trajectories were used. 

Finally, NTA calculates an expected concentration for each point within the analysis area by 

calculating the weighted average of those associated concentrations for all nearby trajectory 

points. The shape and location of high expected concentration areas can inform whether 

sources contributing to high concentrations are distributed or points sources and can 

potentially identify regions containing high-impact point sources. The technique can also be 

combined with the high/low frequency analysis, enabling analysis of only the local 

concentration, in attempt to clarify results. This technique was applied to measurements 

from the Douglass site, which is in a known environmental justice area. Due to the 

previously mentioned movement of the sensor nodes, wind data were obtained from the 

Memphis International Airport (NOAA National Centers for Environmental Information, 

2018), approximately 15 km south of the Douglass site, and were used for the NTA analysis.
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Results and Discussion

3.1 Sensor Pod Performance

A summary of data completeness, range of QA screened hourly average measurements, and 

correlations from different colocation periods are presented in Table 1. Measurement ranges 

represent concentrations reported by the OPC-N2 sensors before normalization. Three 

sensor pods never consistently collected data during the study (Units 10, 12, and 19). Four 

additional pods stopped the collecting data in the middle of the study (Units 2, 8, 13, and 

20), and one pod failed towards the end of study (Unit 7).

The high failure rate was in part due to the periods of high and sustained humidity. The 

period of collocation used for regression is also included as the sensor pods that failed 

during data collection were not included in the final collocation. Of the 17 sensor pods, six 

had R2 values greater than 0.5, which was previously chosen as a data quality metric for use 

in examining the spatiotemporal variability of urban PM in the area. While these six sensor 

pods had correlations that met the data quality metric, they also had wide ranges of slopes 

and intercepts when compared to the reference monitor. To better compare concentrations 

between sites, PM2.5 estimations from the OPC-N2 sensors were normalized based on their 

regressions with the collocated TEOM during the post-deployment collocation period. The 

results from these collocated regressions are presented in Table 2. Fortunately, the sensors 

that met the data quality objective were well distributed within the study area, and their 

locations are shown in Fig. 1b.

3.2 Spatiotemporal Analysis of Sensor Data

After adjusting the hourly sensor pod data based on linear regression to the TEOM, they 

could be used to examine the spatiotemporal variability of PM2.5 in the study area. Pearson 

correlation (R) was calculated as a measure of difference in temporal trends between sites 

while CoD was used to estimate spatial variability. To calculate R and CoD, sensor pod data 

collected from the Shelby Farms site were compared with the data from each of the other 

five sites. This was done to show how each site would compare with the regulatory 

monitoring site (Shelby Farms). Table 3 shows the R, CoD, and mean hourly PM2.5 mass 

concentrations for each site when compared to Shelby Farms. The Pearson correlations from 

each comparison were relatively high, implying that there is low temporal variability of 

PM2.5 in the Memphis area. This is unsurprising, as PM tends to be regionally dominated, 

and all sites tend to rise and fall over time. A CoD greater than 0.2 is typically representative 

of spatial heterogeneity, while a CoD less than 0.2 indicates spatial homogeneity 

(Wongphatarakul et al., 1998). Most sites had CoD values less than 0.2 when compared to 

the Shelby Farms site, except for the Douglass site. The Douglass site had the highest PM2.5 

concentrations of the six sites examined in this study. This site is in a known environmental 

justice area containing a large railyard and multiple PM2.5 point sources therefore, higher 

PM2.5 concentrations were expected.

3.3 High-time Resolution Data Analysis

The elevated PM2.5 concentrations at the Douglass site prompted further examination of that 

site using techniques suited for high-time resolution data. The first of which was using the 
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high- and low-varying components of the PM2.5 measurements. This is a useful technique, 

as it allows for estimation of the regional background PM contribution with data from a 

single site. Using this analysis, the high-varying component of the hourly data averaged 

2.7 μg/m3, or about 20% of the total PM2.5 mass. In contrast, at the Shelby Farms site, the 

high-varying component of the hourly signal averaged 0.8 μg/m3, or about 9% of the total 

PM2.5 mass for the same time period. A Wilcoxon Signed-Rank test of pairwise local 

contributions found the local contribution at the Douglass site to be higher at a 0.05 

confidence level.

NTA was performed using data from the Douglass site (N = 90138 min) to better understand 

influences of higher PM2.5 concentrations at that site. Fig. 2 shows the NTA results at the 

Douglass site using the normalized sensor pod PM2.5 signal (a) and the high-varying 

component of the PM2.5 signal as defined in the previous analysis (b). On both plots, the 

green point in the center is the measurement site and the blue circles represent PM2.5 point 

sources as identified by the 2014 National Emission Inventory (NEI; U.S. EPA, 2016). The 

area shown in each map is a 10 km by 10 km square. For the total PM2.5 signal (Fig. 3a), the 

locations with the highest expected measured concentrations are centered around the 

measurement site, with lobes that extend in multiple directions. This implies that the highest 

concentrations occur during calm winds where there is potential for accumulation of local 

emissions. In this case, concentrations are likely influenced by the accumulation of local 

traffic emissions in the area in addition to point sources and regional contributions. While 

the OPC-N2 sensor is likely unable to detect fresh PM emissions from traffic, it would be 

able to detect aged aerosol associated with traffic activity. The lobes that point outward from 

the center likely represent elevated PM2.5 concentrations that are associated with winds that 

have significant sources in those directions. Both the total and the high-varying signal have 

lobes that point out toward the east. This region contains a rail line nearby with significant 

traffic and a significant point source. Within the southern lobe is another point source, an 

additional rail track, a bus terminal, and significant motor vehicle traffic areas. Other lobes 

that also have lesser but still elevated expected PM2.5 concentrations tend to align with 

locations such as large traffic interchanges. The NTA results using the total PM2.5 signal and 

the high-varying PM2.5 signal are very similar. This may be expected, as impacts from local 

sources should lead to the highest expected concentrations. However, it is good confirmation 

to show that the local signal is driving the highest expected concentrations in the total signal.

Conclusions

A network of sensor pods measuring PM2.5 and local meteorological conditions was 

deployed around Memphis, TN for approximately six months. Several sensor pods failed 

during the long-term deployment, and when collocated with an FEM TEOM, only 6 of the 

17 deployed sensor pods met the data quality objective of R2 greater than 0.5. However, 

those 6 pods well distributed geographically and were used to examine spatiotemporal 

variability of urban PM2.5 in Memphis. The spatiotemporal analysis found that the hourly 

PM2.5 averages shared similar trends between sites, and the Douglass site had elevated 

PM2.5 concentrations compared to the rest of the study area. The Douglass site is in an 

environmental justice area and elevated PM2.5 concentrations were anticipated. A variance 

method and NTA were used to better understand potential source contributions to PM2.5. 
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The high- and low-variance method estimated the local contribution to PM2.5 at the 

Douglass site to be 2.7 μg/m3, or about 20% of the total signal. NTA was used to identify 

local regions which were associated with high concentrations and found that numerous local 

sources contributed to the highest concentrations, including a railyard, multiple point 

sources, roadways, and a bus terminal.
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Figure 1. 
Map of sensor pod locations (a) and map of sensor pod locations that met the data quality 

objective and used for further analysis (b).
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Fig. 2. 
NTA results of the expected 1-min PM2.5 mass concentrations for total PM2.5 (a) and high-

varying PM2.5 (b) at the Douglass monitoring location calculated over the six-month study 

period
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Table 1

Hourly Summary and Correlation Statistics of deployed Sensor Pods

Sensor Pod Number of Valid 
Hours

Measurement Range (μg/m3) R2 Regression Period Comments

Unit 1 2056 0 – 86 0.58 Post

Unit 2 648 0 – 93 0.14 Pre Failed to operate nominally after 
12/16/16

Unit 3 1663 0 – 75 0.20 Post

Unit 4 1475 0 – 42 0.57 Post

Unit 5 1470 0 – 24 0.81 Post

Unit 6 1659 0 – 71 0.43 Pre

Unit 7 1313 0 – 54 0.21 Pre Failed to operate nominally after 
2/12/17

Unit 8 1410 0 – 57 0.18 Pre Failed to operate nominally after 
1/10/17

Unit10 219 0 – 16 NA NA Never operated nominally, including 
during colocation

Unit 11 2116 0 – 146 0.52 Post

Unit 12 126 0 – 42 0.10 Pre Never operated nominally

Unit 13 86 0 – 82 0.27 Pre Failed to operate nominally after 
12/3/16

Unit 14 1638 0 – 45 0.53 Post

Unit 16 1752 0 – 52 0.52 Post

Unit 18 1253 0 – 64 0.24 Post

Unit 19 NA NA 0.47 Pre Failed after initial collocation

Unit 20 798 1 – 94 0.17 Pre Failed to operate nominally after 
11/28/16
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Table 2

Collocated regression statistics for sensor pods meeting data quality objective

Sensor Pod Location Slope Intercept R2

Unit 1 Residential Backyard 1.84 3.04 0.58

Unit 4 Near Road 2.23 2.48 0.57

Unit 5 Douglass 5.49 0.64 0.81

Unit 11 Hernando 1.36 3.52 0.52

Unit 14 Frayser 1.73 3.40 0.53

Unit 16 Shelby Farms 1.50 4.15 0.52
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Table 3

Spatiotemporal analysis results

Sensor Pod Location Pearson Correlation* CoD* Mean Hourly Concentration

Unit 1 Residential Backyard 0.87 0.12 10.2

Unit 4 Near Road 0.94 0.11 8.5

Unit 5 Douglass 0.82 0.26 12.7

Unit 11 Hernando 0.84 0.12 7.7

Unit 14 Frayser 0.78 0.11 8.4

Unit 16 Shelby Farms NA NA 8.4

*
When compared with Shelby Farms site
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