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Abstract

Cells use signaling pathways to receive and process information about their environment. These 

systems are nonlinear, relying on feedback and feedforward regulation to respond appropriately to 

changing environmental conditions. Mathematical models developed to describe signaling 

pathways often fail to show predictive power, because the models are not trained on data that 

probe the diverse time scales on which feedforward and feedback regulation operate. We 

addressed this limitation using microfluidics to expose cells to a broad range of dynamic 

environmental conditions. In particular, we focus on the well-characterized mating response 

pathway of S. cerevisiae (yeast). This pathway is activated by mating pheromone and initiates the 

transcriptional changes required for mating. Although much is known about the molecular 

components of the mating response pathway, less is known about how these components function 

as a dynamical system. Our experimental data revealed that pheromone-induced transcription 

persists following removal of pheromone and that long-term adaptation of the transcriptional 

response occurs when pheromone exposure is sustained. We developed a model of the regulatory 

network that captured both persistence and long-term adaptation of the mating response. We fit 

this model to experimental data using an evolutionary algorithm and used the parameterized model 

to predict scenarios for which it was not trained, including different temporal stimulus profiles and 
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genetic perturbations to pathway components. Our model allowed us to establish the role of four 

regulatory motifs in coordinating pathway response to persistent and dynamic stimulation.

INTRODUCTION

Proper cellular function requires cells to respond appropriately to stimuli in their 

environment. Environmental cues, such as hormones and growth factors, are typically sensed 

by receptors on the cell surface and transmitted by intracellular signaling pathways. A key 

function of these pathways is to initiate the appropriate transcriptional program to respond to 

the environmental challenge. Mathematical modeling has helped to elucidate many of the 

design principles that regulate the spatiotemporal activity of signaling pathways and allow 

them to function reliably in changing environmental conditions (1). The ultimate test for 

these models is to predict pathway dynamics under conditions of time-dependent stimulation 

regimens and in the presence of genetic or pharmacological perturbations that disrupt the 

system in well-defined ways. While many models have reproduced qualitative features of 

signaling systems, their quantitative predictive power is often lacking. One reason for the 

lack of predictive power is that many previous studies have assessed cellular responses only 

to constant stimuli. However, signaling networks are nonlinear systems which typically have 

both positive and negative feedforward and feedback loops that operate on different time 

scales. Therefore, full characterization of these systems requires using time-dependent 

stimulus profiles that probe multiple time scales (2–12).

We have performed such an analysis using the mating response of Saccharomyces cerevisiae 
(yeast). This response is activated when a mating-type specific pheromone binds to and 

activates a G-protein coupled receptor on a cell of opposite mating type. The signal is then 

propagated by a mitogen activated protein kinase (MAPK) cascade (Fig. 1). A key function 

of the terminal kinases in this cascade, Fus3 and Kss1, is to initiate the transcriptional 

program required for successful mating by promoting dissociation of the transcriptional 

repressors Dig1 and Dig2 from the transcription factor, Ste12 (13–18). Additionally, Fus3 

activates Far1, a protein required for cell cycle arrest (19–21). Far1 is also known to affect 

the transcriptional response by promoting degradation of Ste12 (22). This signaling pathway 

provides an ideal model system for studying signal transduction and transcriptional 

regulation (23, 24) and has long served as a prototype for MAPK pathways (25). It achieved 

this status because of the unparalleled ease of genetic manipulation of individual 

components and unambiguous determination of how these perturbations affect in vivo 
processes. In eukaryotic cells, MAPKs mediate responses to growth factors, cytokines, 

hormones, cell adhesion, stress and nutrients that determine a wide range of cellular decision 

processes (26). Thus, a systems level analysis of the yeast mating response is likely to reveal 

properties common to MAPK regulation of these wide-ranging responses in other cells.

We combined a microfluidics system that allows cells to be exposed to pheromone 

concentrations with precisely defined temporal profiles and a short-lived fluorescent reporter 

to monitor dynamic changes in mating specific gene expression. We discovered that 

transcriptional regulation was sustained following removal of pheromone, a property of the 

system that we refer to as “persistence”. To better define this surprising property of the 
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system, we exposed cells to pheromone concentrations that oscillate at six different 

frequencies. The fluorescent data were used to develop and train a model for transcriptional 

regulation during the mating response. Two strategies were used to validate the model and 

demonstrate its predictive power. First, we used the model to predict the behavior of 

mutations that selectively disrupt various signaling motifs in the pathway. Then we used the 

model to predict the transcriptional response of the system at a lower pheromone 

concentration. The result of our investigations is a fully validated model of transcriptional 

regulation that allows a quantitative characterization of the signaling motifs that regulate 

gene expression. We anticipate that our approach provides a template for a research strategy 

to characterize regulatory motifs inherent to many signaling pathways.

RESULTS

Adaptation and persistence in the mating response pathway

To determine the dynamics of the yeast mating response, we developed experimental tools 

that allow cells to be exposed to well-defined input signals of any specified temporal profile 

and a readout that faithfully tracks the dynamic response of the pathway. For controlling 

stimulus profiles, we employed a microfluidics system that is an adaptation of the “dial-a-

wave” system developed by J. Hasty and colleagues (27). For tracking time-dependent 

changes in pheromone-induced transcription in living cells, we placed a short-lived 

fluorescent reporter under the control of the pheromone responsive FUS1 promoter. The 

fluorescent protein we used is fast maturing (~15 min) and through use of an N-degron tag 

(YΔk) was engineered to have a half-life similar to its mRNA (~ 7 min) (28). The short-lived 

reporter is essential in studies of temporal response dynamics, since it reveals transient 

response characteristics that are otherwise masked by accumulation of a long-lived reporter 

protein.

Initially, we exposed cells containing our short-lived fluorescence reporter to a constant 

stimulus of 50 nM pheromone for 10 hrs and monitored reporter fluorescence by imaging of 

cells in the microfluidic chamber (Fig. 2A). For all the experimental results presented in this 

manuscript, we used cells lacking the protease Bar1 to remove the effect of pheromone 

degradation (29, 30). We refer to this strain as wildtype hereafter. Under these conditions, 

the transcriptional response of wildtype cells reaches a maximum amplitude at 220 min, and 

then decreases for the remainder of the experiment (Fig. 2B).

In our next studies, we exposed cells with the short-lived reporter to pheromone pulses of 

different duration and again monitored reporter fluorescence (Fig. 2C). Interestingly, 

reporter gene expression was significantly sustained following removal of pheromone for 

pulses of 90 min or less. We refer to this property as persistence and quantify it as the time 

from removal of pheromone to the time that signal drops below 2.5% of the maximum. The 

extent of persistence is correlated with the duration of the stimulus pulse; as pulse length 

increases the persistence of the transcriptional response decreases (Fig. 2D). Another 

important observation is that the rate at which the fluorescent reporter decreases in time is 

independent of pulse duration (Fig. 2E) and the half-life associated with this rate (98 ± 9 

min) is considerably longer than the half-lives (~7 min) of the reporter mRNA and protein 

Pomeroy et al. Page 3

Sci Signal. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Fig. 2E, green line) (28). Thus, new synthesis of transcripts and protein continues during 

the attenuation phase.

A simple explanation for the observed pathway persistence is that it represents a delay 

between receptor signaling and translation and maturation of the induced GFP reporter. To 

test this possibility, we developed a linear mathematical model of the response pathway that 

takes into account this delay (Supplementary Materials). Our analysis of the model revealed 

that a simple delay cannot account for the persistence in the transcriptional response (Fig. 

S1). In total, our preliminary investigations reveal that the pathway contains some form of 

“memory” that sustains new mRNA synthesis following removal of pheromone

We next sought to determine at what level in the pathway the mechanisms for long term 

adaptation and persistent signaling occur. To determine if “long-term adaptation” relies on 

upstream pathway regulators of short-term desensitization, such as Sst2 or receptor 

endocytosis (31–34), we investigated the dynamics of MAPK activity. We monitored MAP 

kinase dual phosphorylation, which is an indicator of activity, by Western blotting protein 

extracts of aliquots prepared from cells in the presence of 50 nM pheromone for a 10 hr time 

course. Fus3 activity remained constant after a transient increase and that of Kss1 increased 

throughout most of the time course and only slightly diminished toward the end of the 

experiment (Fig. 3A). These results demonstrate that the mechanism of long-term adaptation 

of transcriptional response does not involve upstream signaling events, but likely occurs at 

the level of transcriptional regulation.

We similarly monitored Fus3 and Kss1 kinase activity for a 90 min pulse of 50 nM 

pheromone by Western blot analysis for dual phosphorylation of the MAPKs. In this case 

aliquots of the culture were removed at indicated intervals during pheromone exposure and 

after removal of pheromone. Unlike gene expression, activity of the two MAPKs diminished 

rapidly once pheromone was removed (Fig. 3B), demonstrating that the mechanism for 

persistence also lies downstream of the MAPK signaling molecules.

Model for transcriptional regulation

To determine which elements of the pathway are critical for regulating the magnitude of the 

response, long-term adaptation and persistence, we developed a mechanistic model. We 

chose to include four established signaling motifs. We included an incoherent feedforward 

loop resulting from Far1-dependent Ste12 degradation as one potential mechanism for long-

term adaptation (22) (Fig. 4A, motif 1). Next, we included positive feedback loops resulting 

from Ste12 auto-regulation and Ste12-dependent transcription of the MAPKs (Fig. 4A, motif 

2), which we hypothesized could contribute to both the amplitude and persistence of the 

signaling response. Previously, we found that if Ste12 in the Dig/Ste12 complex degraded 

more slowly than free Ste12, rebinding of the Digs to Ste12 could act as a mechanism for 

adaptation (Fig. 4A, motif 3) (35). We hypothesized that this motif also could contribute to 

persistent signaling, if the rate constant associated with rebinding was small. Finally, we 

included a negative feedback loop resulting from Ste12 induced synthesis of Far1 (Fig. 4A, 

motif 4), which we hypothesized might also contribute to long-term adaptation. These four 

motifs were included in the full model to capture persistent activation following stimulus 

removal and long-term adaptation of the transcriptional response (Fig. 4B). Importantly, the 
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model also included synthesis and degradation of our transcriptional reporter. The 

abundance of this transcriptional reporter was the experimental output used to train the 

model. The model input was a piecewise-linear function that corresponded to the temporal 

pheromone stimulation profile. Full details of the mathematical model including the set of 

differential equations that describe the system are presented in Materials and Methods.

Below we describe the data sets used to train the model and present results for the model’s 

performance. We used an evolutionary algorithm (Fig. 4C) to fit the model’s 28 parameters. 

For each parameter, we determined a biologically relevant range from which the parameter 

values were selected (Supplementary Material). Each generation of the evolutionary 

algorithm had 500 individual parameter sets that underwent selection, crossover, and 

mutation. Over the course of 100 generations the total absolute error (TAE) between the 

experimental data and the simulations converged (Fig. 4D and E).

Assessment of model performance

Signaling pathways represent nonlinear dynamical systems capable of responding on 

multiple different scales. Therefore, we reasoned to develop a predictive model for 

transcriptional regulation, it was critical to measure the system’s response to time dependent 

pheromone concentrations with multiple different frequencies. To this end, in addition to the 

single pulse data described above (replotted in Figs. 5A–F), we collected data for periodic 

stimulation consisting of pulses of pheromone in which the on and off intervals were the 

same length. The on-off durations used were 45, 60, 75, 90, and 120 (Fig. 5, G–K). We also 

included data for constant pheromone stimulation (replotted in Fig. 5L.) The model captured 

the varying durations of persistence after stimulus is removed (Fig. 2D, gray curve) and 

long-term adaptation to stimulus under conditions of both periodic and constant stimulus 

(Fig. 5). The model was also capable of capturing the dynamics of the MAPK activation 

profiles in response to constant stimulation and to a 90 min pulse of 50 nM pheromone (Fig. 

S2).

Regulation of response to prolonged stimulus

To understand how response to constant stimulus is regulated, we perturbed motifs that are 

likely to affect the magnitude of the response and long-term adaptation. First, we used the 

model to investigate the role of Ste12 auto-regulation in determining the magnitude of the 

transcriptional response by eliminating motif 2. We found that some parameter sets found by 

the evolutionary algorithm predict a dampened response in the absence of Ste12 auto-

regulation (green and brown curves) while other parameter sets predict a response similar to 

wildtype (purple curves) (Fig. 6A). To experimentally determine whether Ste12 auto-

regulation in this system has a significant role in amplifying the response, we replaced the 

Ste12 promoter with that of the promoter of the scaffold protein Ste5 (PSTE5-STE12). We 

chose this promoter because it produces constitutive amounts of Ste12 similar to the basal 

amount from the endogenous promoter (Fig. S3) and is not subject to auto-regulation by 

Ste12 (36). In cells containing the PSTE5-STE12 mutation, the overall transcriptional 

response was diminished, and long-term adaptation began ~50 min sooner than for wildtype 

cells (Fig. 6A, triangles). These findings indicate Ste12 auto-regulation is important for 
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amplifying the response and affects the timing of adaptation. They also suggest that Ste12 

autoregulation counterbalances the depletion of Ste12 promoted by Far1 (motif 1).

Next, we investigated the role of Far1 in long term adaptation. In the model, Far1 is involved 

in two signaling motifs. The first is the incoherent feedforward loop (motif 1) formed by 

MAPK activation of Far1, followed by active Far1 promoting the degradation of Ste12. The 

second (motif 4) is the negative feedback loop formed by Ste12-dependent expression of 

Far1. First, we used the model to predict the system’s response when Far1 is eliminated, 

which blocks both Far1-dependent mechanisms of adaptation (motifs 1 and 4). We found 

that some parameter sets predict no long-term adaptation in the absence of Far1 (blue and 

brown curves); however, other parameter sets predict no difference from wildtype (purple 

curves) (Fig. 6B). We reasoned that the interaction between the Digs and Ste12 was 

responsible for long-term adaptation for those parameter sets still exhibiting adaptation in 

the absence of Far1 (35). In the model, we allowed for the possibility that complex 

formation with the Digs protects Ste12 from degradation. There are two consequences of 

this protective complex (35). First, it ensures a large pool of inactive Ste12 is maintained 

prior to pheromone stimulation. Second it provides for an adaptive response. The basis for 

adaptation is that following exposure to pheromone, the free Ste12 concentration transiently 

increases as Ste12 is released from the Digs, but eventually returns to its pre-stimulus level 

(35). To test whether eliminating protective binding has any effect on adaptation in our 

model, we set the degradation rate of Ste12 in the Dig/Ste12 complex equal to that of the 

degradation rate of free Ste12. With this change, long-term adaptation was lost when the 

model was run using parameter sets that predicted Far1 was not involved in adaptation (Fig. 

S4). To determine which of these mechanisms is responsible for regulating long-term 

adaptation, we examined the response of a far1Δ mutant strain. In this mutant the 

transcriptional output does not diminish over time (Fig. 6B, triangles) demonstrating that 

Far1-dependent degradation of Ste12 is the primary mechanism of long-term adaptation.

To further constrain model parameters, we retrained the model including experimental data 

for the PSTE5-STE12 and far1Δ mutants. The resulting parameter sets better captured the 

responses of the pathway mutants than those used for predictions (compare Figs. 6C and D 

to Figs. 6A and B), while maintaining similarly good fits to the wildtype transcriptional 

responses to different pheromone stimulation regimens (compare Fig. S5 to Fig. 5). The 

distribution of parameters associated with both motifs narrows when the additional data are 

included in the training sets (compare parameters kff, rate of Far1 dependent Ste12 

degradation, and kfb2, rate of Ste12 autoinduction, in Fig. S6A and B). This demonstrates 

that including strategic pathway perturbations in the training data can improve ability to 

identify biologically relevant parameters.

Because elimination of Far1 disrupts both the incoherent feedforward and negative feedback 

motifs (motif 1 and 4, respectively), we used the model to test if negative feedback 

contributes to long-term adaptation. In the model, disruption of the incoherent feedforward 

loop is equivalent to eliminating Far1 since promoting degradation of Ste12 is the only effect 

of Far1 on transcriptional response. However, we can use the model to identify the role of 

negative feedback. When transcriptional induction of Far1 by Ste12 was eliminated (motif 4) 

some simulations predict a sustained response, but most simulations still show adaptation 
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(Fig. 6E). These results suggest that the incoherent feedforward loop (motif 1) is the 

predominant mechanism for long-term adaptation of the transcriptional response. While the 

model did not require the induction of Far1 for long term transcriptional adaptation, it is 

likely this feedback is required for one of the other functions of Far1 in the mating response, 

such as gradient sensing or maintaining cell cycle arrest.

Regulation of response to dynamic stimulus

To examine motifs that could contribute to persistence and further test the model’s predictive 

power, we measured the system’s response to single 90-minute pulses of 50 nM pheromone 

in the presence of pathway mutants that perturb Ste12 autoregulation, binding to DNA, or 

binding to the Dig1 and Dig 2 repressors. First, we eliminated Ste12 autoregulation (motif 2) 

as before by using the PSTE5-STE12 mutation. While there was a dampened response 

consistent with the response to constant stimulus, neither the simulations nor the mutant 

response had any appreciable effect on persistence (Fig. 7A). Second, we examined a 

mutation to one of the three pheromone responsive elements (PREs) within the FUS1 
promoter that drives transcription of the GFP reporter. Ste12 has been reported to bind at a 

synthetic promoter having the same PRE mutation with only 30% of the affinity that it binds 

to a synthetic promoter with the wildtype sequence (37). This PRE mutation (PRE*-GFP) 

significantly reduced the maximal amplitude of the transcriptional response and led to a 

shorter persistence in response to a pulse of stimulus (Fig. 7B, triangles). Using the best 

10% of parameter sets found from fitting to the wildtype, far1Δ, and PSTE5-STE12 data, we 

predicted the response of the PRE mutant by increasing the apparent dissociation constant 

by a factor of 3.33. The resulting parameter sets accurately predict the response of the 

PRE*-GFP mutant (Fig. 7B).

Finally, we examined the effect deleting the Dig1 and Dig2 repressors, which causes Ste12 

to be constitutively active. This deletion mutant showed high basal expression and a slight 

increase in expression following pheromone induction (Fig. 7C, triangles). We predicted the 

response of the dig1Δdig2Δ mutant by setting the total Dig concentration to zero. The model 

predicted a wide range of responses in the absence of the Dig1 and Dig2 transcriptional 

repressors. Interestingly, the results could be clustered into three groups (Fig. 7C, colored 

curves). The model predictions that showed high basal transcriptional response (Fig. 7C, 

green curves) result from parameter sets in which the degradation of Ste12 in complex with 

the Digs (kdegS12D) is similar to that of the degradation rate of free Ste12 (kdegS12) (Fig. 

7E). In this case the total amount of Ste12 is the same in the dig1Δdig2Δ mutant and 

wildtype reference. Removing the Dig repressors generates more active Ste12 prior to 

pheromone stimulation, and, therefore, higher levels of the reporter in the mutant. For model 

predictions in which the pre-stimulation level of the fluorescent reporter does not increase 

significantly compared to the wildtype reference (Fig. 7C, cyan curves), removing the Digs 

had two effects. For these parameter sets, the degradation rate of Ste12 in complex with the 

Digs is reduced (Fig. 7E). That is, the Dig repressors provide protective binding. Removing 

the Digs exposes Ste12 for degradation, but also activates Ste12. When these two opposing 

effects are balanced, the pre-stimulation level of active Ste12 in the dig1Δdig2Δ mutant is 

similar to that of wildtype, and, therefore, the expression level of the reporter does not 

significantly increase. The parameter sets that fit the experimental data best had intermediate 
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degradation rates for Ste12 in complex with the Digs (Fig. 7E and Fig. 7C, brown curves). 

These results are consistent with our previous analysis of Ste12 dynamics that demonstrated 

that the Dig repressors provide some degree of protective binding (35).

Another observation consistent with previous experimental observations is that parameter 

sets best fitting the experimental results for the dig1Δdig2Δ mutant (Fig. 7C, brown curves) 

predict that the rate at which active Far1 is degraded (kdegPF1) is less than that for inactive 

Far1 (kdegF1) (Fig. 7E) (38). Additionally, other parameters that affect Far1-dependent 

degradation of Ste12 including the rate of Far1 dephosphorylation (kp3) and rate of Far1 

dependent degradation of Ste12 (kff) show significantly different ranges for the three groups 

of parameter sets (Fig. 7E). The best fitting predictions show modest attenuation of the 

transcriptional response resulting from the feedforward Far1-dependent Ste12 degradation, 

consistent with the experimental results (Fig. 7C, brown curves). The high responders (Fig 

7C, green curves) have parameter values that increase the abundance of Far1 resulting in a 

stronger effect of the incoherent feedforward and consequently predictions of stronger 

transcriptional attenuation. Conversely, the low responders (Fig. 7C, cyan curves) have 

parameter values that rapidly degrade and deactivate active Far1 both of which reduce the 

effect of the incoherent feedforward and consequently predict little to no transcriptional 

attenuation. These results again illustrate the need to use targeted pathway perturbations to 

fully constrain model parameters.

Because in the model, the only mechanism for transcriptional induction is dissociation of 

Ste12 from the Dig repressors, the model is not able to capture the slight pheromone-

dependent induction seen in the dig1Δdig2Δ strain. This induction may result from 

pheromone-induced degradation of the transcription factor Tec1, a known binding partner of 

Ste12 (39). The slight pheromone-dependent induction in the dig1Δdig2Δ strain exhibits 

prolonged maximal expression after a 90-minute pulse of stimulus (72 min persistence) 

compared to wildtype (43 min persistence). To further investigate how the transcriptional 

repressors contribute to persistence, we perturbed motif 3 by increasing the rebinding rate of 

Ste12 to the Digs in the model by 5-fold. In doing so, the average persistence of the 

simulations decreased from 25 min to 13 min (Fig. 7D). This result combined with the 

prolonged persistence when the transcriptional repressors are deleted suggests that slow 

rebinding of the transcriptional repressors are a primary factor in the persistent 

transcriptional response following stimulus removal.

Prediction of different stimulation profiles

To further test the model’s predictive power, we measured the response of cells exposed to 

periodic stimulation at the same frequencies as shown in Fig. 5, but at a lower pheromone 

concentration (Fig. 8, triangles). In response to 10 nM of constant pheromone, the 

fluorescent reporter achieves the same maximum amplitude as the 50 nM case but takes 25 

min longer to reach its half maximum amplitude (Fig. 8A). For short pulses of stimulus (Fig. 

8B), the amplitude of the response to 10 nM is considerably lower than that to 50 nM for all 

pulses. However, for longer pulses (Fig. 8C) there is less of a difference in the amplitude 

between the two doses. To simulate the lower pheromone dose, the only modification we 

made to the model was to adjust the slope of the input signal to match the slower production 
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rate of the fluorescent reporter measured at 10 nM constant pheromone. Using this 

adjustment to the input stimulus, all of the parameter sets that fit the 50 nM data accurately 

predicted the response to sustained and pulsed 10 nM pheromone (Fig. 8, blue curves). This 

performance demonstrates that this model is capable of capturing behaviors at different 

doses of stimulus despite only being trained on a single dose.

DISCUSSION

A common way for cells to respond to changes in their environment is by regulating gene 

expression. Because environmental conditions are dynamic and can show significant 

variability, gene expression needs to be tightly regulated by the signaling pathways used by 

cells to monitor their surroundings. This regulation, which typically takes the form of 

feedback and feedforward loops, makes gene regulation an inherently non-linear process. 

Therefore, predicting the response of these systems is not possible without the aid of 

mathematical models. Developing predictive models is challenging for two reasons: 1) these 

models tend to contain many parameters that are not directly measurable and therefore must 

be estimated from experimental data and 2) these systems operate on multiple time scales 

and, therefore, experimental data sets used to train the models must capture the relevant time 

scales. To overcome both these obstacles, we developed a research strategy that involved 

exposing yeast cells to single and periodic pulses of mating pheromone. By varying both the 

duration and frequency of the pulses, we ensured that the regulatory network that controls 

gene expression during the mating response was probed on the relevant time scale and with 

sufficient temporal resolution to accurately perform parameter estimation. This systematic 

analysis revealed novel features of the pathway and allow us to develop a mathematical 

model with predictive power.

Our analysis led us to the discovery of memory in the yeast mating response. Specifically, 

we discovered that transcriptional regulation was sustained following removal of 

pheromone, a property of the system that we refer to as “persistence”. Our model revealed 

that this persistence was not due to positive autoregulation of Ste12 but rather involves slow 

rebinding of the transcriptional repressors to Ste12 and tight binding of Ste12 to pheromone-

responsive promoters. Persistent signaling may represent an important design feature of the 

pheromone response pathway. Yeast mating takes place in noisy environments where 

pheromone levels are expected to fluctuate. Preparing for mating takes a significant fraction 

of the cell’s resources. Therefore, once the decision has been made to commit to the mating, 

it is important that the cell not “give up” if there is a transient loss of the pheromone signal. 

Persistent signaling provides a mechanism to guard against this situation. Conversely, it is 

also important that a cell not remain committed to mating indefinitely. This might explain 

why persistent gene expression does not rely on positive feedback, which is capable of 

generating an irreversible switch.

In the presence of sustained pheromone signals, it is probably beneficial for yeast cells not to 

remain growth arrested when mating is unlikely to be successful. Such adaptative behavior 

in the mating response has been observed previously (22, 40). However, these studies were 

done in the presence of the protease Bar1, which degrades pheromone, thus making it 

difficult to identify the predominate mechanism that underlies transient signaling. 
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Interestingly, our results revealed that in the absence of Bar1, pheromone-induced gene 

expression is transient, whereas MAPK signaling is sustained. Our model predicted two 

mechanisms could underlie this long-term adaptation, an incoherent feedforward loop or 

protective binding. Further experiments revealed that the incoherent feedforward loop 

involving Far1-dependent degradation of Ste12 accounts for most of the long-term 

adaptation.

Our approach that combines mathematical modeling with experiments designed to probe 

cellular response pathways over multiple time scales provides a general framework for 

investigating gene regulatory motifs. First, we used experiments to narrow the portion of the 

pathway responsible for the dynamic properties of interest. In our case, these preliminary 

investigations revealed that both persistent signaling and long-term adaptation occurred at 

the level of gene regulation and did not involve upstream signaling components. Next, we 

developed a model incorporating known regulatory mechanisms and narrowed parameter 

ranges to physiologically relevant values. We then performed parameter estimation using an 

evolutionary algorithm applied to training data sets spanning multiple timescales. The use of 

time-dependent stimuli covering multiple time scales was essential for building a predictive 

model. When a subset of the data was used, model parameters were significantly less 

constrained, and the model’s predictive power was reduced. Additionally, training on data 

sets spanning multiple timescales revealed the differences in timing of the signaling motifs. 

For example, the rebinding of the transcriptional repressors and the incoherent feedforward 

operate on different timescales, leading to decreased persistence after longer pulses of 

stimulus.

We also note that successful model building is an iterative process. For example, when fit 

only using wildtype data the model found two mechanisms of long-term adaptation were 

consistent with the data. The model also predicted positive feedback contributed to 

amplifying the signal but showed significant variability in the predicted strength of this 

feedback. Strategic experiments using targeted mutants were then able to identify the true 

mechanism of long-term transcriptional adaptation and quantify the role of positive 

feedback. Including these results in the training data sets, further constrained parameter 

values and allowed the model to accurately predict the system’s behavior for lower 

pheromone concentrations and additional genetic perturbations.

Because gene editing and quantitative experimental approaches are becoming increasingly 

more feasible in other cell types, including mammalian cells, we believe our approach can 

be adapted to these systems. For example, such studies could reveal important information 

about the dynamics of MAPK signaling pathways dysregulated in diseases, including cancer, 

and ultimately suggest treatments for restoring proper function.

MATERIALS AND METHODS

Plasmids, PCR alleles, and recombinant DNA procedures

Table 1 lists plasmids used in this study. Those that have been described previously are listed 

with the corresponding reference. Standard recombinant DNA procedures were used for 

construction of those plasmids described below (41). Table 2 lists the sequence of 
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oligonucleotides used for PCR fragment amplification, mutagenesis, and DNA sequence 

confirmation involved in plasmid and strain constructions.

A fluorescent protein (GFP*) with a fast maturation time and an N-degron tag (Ubi-YΔK) 

that confers a short half-life was designed and characterized previously (28). The plasmid 

pNC1146 carries a reporter gene in which the pheromone responsive FUS1 promoter 

(PFUS1) drives expression of the UBIYΔKGFP* reporter gene in a cassette with the S. 
pombe (Sp) HIS5 gene as a selectable marker and flanking sequences that target integration 

to the URA3-TIM9 intergenic region. To construct this reporter cassette (URA3-PFUS1-
UBIYΔKGFP*-SpHIS5-TIM9), we first introduced a PacI restriction endonuclease 

recognition site 6 bp upstream of the ubiquitin (UBI) coding sequence in the plasmid 

pNC1136 (28). This modification was accomplished using the Stratagene Quick Change 

site-directed mutagenesis protocol (Stratagene, La Jolla, CA) with pNC1136 as template 

DNA and oligonucleotides pNC1136QC(PacI)_F and pNC1136QC_R as primers. Next, a 

1658 bp fragment encompassing the FUS1 promoter flanked by XhoI and PacI restriction 

endonuclease recognition sites was PCR amplified using BY4741 genomic DNA as template 

and oligonucleotides FUS1(XhoI)_F and FUS1(PacI)_R as primers. pNC1136 modified with 

the PacI site and the PCR amplified DNA fragment were digested with XhoI and PacI. The 

resulting 1646 bp XhoI-PacI FUS1 promoter fragment (PFUS1) was ligated to the 6553 bp 

XhoI-PacI fragment from the plasmid to generate pNC1146. DNA sequence analysis of 

pNC1146 using primers M13R, 1155, 1164, 1170, and 1231 confirmed the absence 

mutations in the FUS1 promoter region.

The plasmid pNC1152 (URA3-PFUS1(PRE*)-UBIYΔKGFP*-SpHIS5-TIM9) has the same 

reporter gene cassette as described for pNC1146 except for a single base pair substitution 

(C:G to g:c) in one of the PRE elements (underlined) that comprise the PFUS1 upstream 

activating sequence (UAS): ATGAAACAAACATGAAACGTCTGTAATTTGAAACA to 

ATGAAAgAAACATGAAACGTCTGTAATTTGAAACA. This transversion substitution in 

the consensus PRE was shown by Su et al. (19) to shift the equilibrium towards less 

favorable binding to Ste12. The substitution mutation in the reporter gene cassette was 

generated using the Stratagene Quick Change protocol (Stratagene, La Jolla, CA) for site-

directed mutagenesis with pNC1146 DNA as template, oligonucleotides 1175 and 1176 as 

primers and Phusion High Fidelity Polymerase (Thermo Scientific, Pittsburgh, PA). DNA 

sequence analysis of the 5141 bp region encompassing the reporter gene cassette in the 

isolate designated pNC1152 using oligonucleotide primers M13R, M13F 491, 953, 954, 

1010, 1148, 1155, 1170, and 1231 confirmed the presence of the desired mutation in the 

PFUS1 UAS and the absence of any additional mutations.

Yeast strains and genetic procedures

Table 3 lists yeast strains used in these studies. Media preparation and standard yeast genetic 

methods for transformation, gene replacement, crosses and tetrad dissection were as 

described in Amberg, Burke, and Strathern (42).
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Strains constructed using the one step gene replacement method (43).

URA3 strain BY4741–64: URA3 strain BY4741–64 was derived from ura3Δ0 strain 

BY4741 by transformation with a 1580 bp fragment that was PCR amplified using primer 

pair 1202/1203 with genomic DNA from the URA3 strain D502–3C as template and 

selection on -Ura medium.

ura3Δ58 strain BY4741–65: ura3Δ58 strain BY4741–65 was derived from BY4741–64 by 

replacing the URA3 allele with the HindIII fragment from pURA3Δ58 (provided to us by M. 

Resnick, NIEHS) and selecting for the resulting Ura- phenotype using 5-FOA medium. This 

ura3Δ58 null allele has a 58 bp deletion of an ApaI-StuI fragment in the URA3 coding 

sequence. PCR analysis confirmed the 58 bp deletion by using BY4741–65 genomic DNA 

as template with primer pair 946/618, which fail to yield a product, and primer pair 946/947, 

which yield a smaller product than the for the wildtype reference strain.

bar1Δ::hisG strainBY4741–66: bar1Δ::hisG strainBY4741–66 was derived from BY4741–

65, by using the EcoRI -SalI fragment from pJGsst1 to replace the BAR1 locus with the 

bar1Δ::hisG-URA3-hisG allele. Replacement of BAR1 with hisG-URA3-hisG was selected 

for after transformation by growth on -Ura medium and confirmed based on super sensitivity 

of the resulting strains to pheromone in halo assays and by PCR analysis using genomic 

DNA as template with primer pairs 967/968 and 966/972. The bar1Δ::hisG allele was 

generated from the resulting strains by selection on 5-fluororotic acid (5-FOA, 0.1% w/v) 

medium (44). This medium provides a positive selection for isolates in which the URA3 
marker is excised by recombination within the direct hisG repeats (45).

PFUS1-UBIYΔKGFPSpHIS5 and PFUS1(PRE*)-UBIYΔKGFPSpHIS5 reporter gene 
strains BY4741–68 and BY4741–169: PFUS1-UBIYΔKGFPSpHIS5 and PFUS1(PRE*)-
UBIYΔKGFPSpHIS5 reporter gene strains BY4741–68 and BY4741–169 were derived from 

BY4741–66 by transformation with SacI-SalI digested pNC1146 or pNC1152, respectively 

and selection on –His medium.

The integration of the reporter gene cassette in each strain was confirmed by PCR analysis 

using BY4741–68, and BY4741–169 genomic DNA as template with primer pair 867/1214.

far1Δ0::KanMX4 PFUS1-UBIYΔKGFPSpHIS5 strain BY4741–130: far1Δ0::KanMX4 
PFUS1-UBIYΔKGFPSpHIS5 strain BY4741–130 was derived from BY4741–68 by 

transformation with a 3.3 kb fragment that was PCR amplified using BY4741–70 DNA as 

template with primer pair 1208/1209 and selection on G418 medium (200 μg/ml). 

Replacement of the FAR1 locus with the far1Δ0::KanMX4 allele was confirmed by PCR 

analysis using BY4741–130 genomic DNA as template with primer pair 1210/881.

dig2Δ0::kanMX4 PFUS1-UBIYΔKGFPSpHIS5 strain BY4741–110: dig2Δ0::kanMX4 
PFUS1-UBIYΔKGFPSpHIS5 strain BY4741–110 was derived from BY4741–68 by 

transformation with a 1972 bp fragment that was PCR amplified using BY4741–29 genomic 

DNA as template with primer pair 1156/1157 and selection on G418 medium (200 μg/ml). 

Replacement of the DIG2 locus with the dig2Δ0::kanMX4 allele was confirmed by PCR 

analysis using BY4741–110 genomic DNA as template with primer pair 868/881.
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Strains constructed using the “Delitto Perfetto” approach (46).
PSTE5-STE12 PFUS1-UBIYΔKGFPSpHIS5 strain BY4741–103: PSTE5-STE12 PFUS1-
UBIYΔKGFPSpHIS5 strain BY4741–103 was derived from BY4741–68 by replacing the 

entire SAM35-STE12 intergenic region (−1 to −485 from the STE12 ATG codon) with 815 

bp from the ARX1-STE5 intergenic region (−1 to −815 bp from the STE5 ATG codon). This 

promoter replacement was chosen because STE5 is expressed constitutively at levels 

comparable to STE12 basal expression (see below). The first step for construction of this 

strain was to replace a 94 bp region that encompasses the STE12 UAS with the PCR 

generated ste12ΔUAS::CORE-UK allele. pCORE-UK (37) was the template for the first 

round of PCR synthesis with primer pair 1019/1091. The resulting PCR product served as 

template for the second round with primer pair 1020/1093. Replacement of the STE12 UAS 
region with the CORE-UK cassette was selected for on -Ura medium and confirmed by PCR 

analysis using genomic DNA as template with primer pair 1194/881. In the second step, the 

ste12ΔUAS::CORE-UK allele was replaced with a PSTE5 fragment generated by three rounds 

of PCR. Genomic DNA was the template for the first round of PCR synthesis with primer 

pair 1121/1124. The PCR product from the previous round served as template for second 

and third round synthesis with primer pairs 1125/1127 and 1126/1128, respectively. The 

amplified 815 bp from the STE5 intergenic sequence is flanked by primer derived sequences 

(61 bp on the 5’ end and 69 bp on the 3’ end) that target the PCR fragment to the STE12 
locus. The CORE-UK replacement was counter selected for on 5-FOA medium and verified 

by the concomitant reversion to G418 sensitivity. PCR analysis using BY4741–103 genomic 

DNA as template with primer pair 1194/1116 confirmed the integration at the STE12 locus. 

DNA sequence analysis of the resulting PCR product with the amplifying primers confirmed 

the sequence fidelity of PSTE5 driving STE12 expression.

Strains constructed using the PCR based gene deletion or modification 
method (47).

STE12–3xmyc::KanMX6 and PSTE5-STE12–3xmyc::KanMX6 strains BY4741–105 and 
BY4741–132: STE12–3xmyc::KanMX6 and PSTE5-STE12–3xmyc::KanMX6 strains 

BY4741–105 and BY4741–132 were derived from BY4741–68 and BY4741–103, 

respectively by adding a C-terminal triple myc-tag to the STE12 coding sequence. A cassette 

with the 3xmyc tag and the KanMX6 selectable marker was amplified using two rounds of 

PCR. In the first round of PCR pYM4 (48) was template DNA with primer pair 1119/1110. 

The second round PCR used the product of the first round as template with primer pair 

1120/1111. Insertion of the tag was confirmed by PCR analysis using BY4741–105 and 

BY4741–132 genomic DNA as template with primer pair 903/881. DNA sequence analysis 

of the resulting PCR product with primers 903 and 1015 confirmed the sequence fidelity of 

the tag.

dig1Δ0::hyg strains BY4741–147 and BY4741–148: dig1Δ0::hyg strains BY4741–147 and 

BY4741–148 were derived from BY4741–110 and BY4741–137, respectively by 

transformation with a 1890 bp PCR amplified dig1Δ0::hyg allele and selection on 

hygromycin B (200 μg/ml) (Sigma Aldrich,) medium. The allele was amplified in three 

rounds of PCR. In the first round of PCR, pCORE-UH was template DNA with primer pair 

1177/1179. The second round and third round of PCR used the product of the previous 
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round as template with primer pair 1178/1180 and 1181/1182, respectively. Replacement of 

the DIG1 locus with the dig1Δ0::hyg allele was confirmed by PCR analysis using BY4741–

147 and BY4741–148 genomic DNA as template with primer pair 822/1148.

Cell Extract Preparation and immunoblotting

The following procedure was performed to determine the phosphorylation state and relative 

amount of Fus3 and Kss1 in response to a pheromone stimulus. Cells either untreated or 

treated with 50 nM α-factor for different durations (as described in the figure legend) were 

harvested in TCA (5 % final concentration), washed with 10 mM NaN3 and pellets frozen at 

−80 °C. To prepare cell extracts, glass-bead lysis in TCA was performed as described before 

(49). DC protein assay (Bio-Rad, Hercules, CA) was used to determine protein 

concentration. 25 μg total protein was loaded per sample. Proteins were resolved on 10 % 

SDS-PAGE, transferred to nitrocellulose and detected by immunoblotting with Phospho-

p44/42 MAPK antibodies at 1:500 (9101L, Cell Signaling Technology, Danvers, MA), Fus3 

antibodies at 1:500 (sc-6773, Santa Cruz Biotechnology, Dallas, TX), and anti-G6PDH at 

1:50,000 (A9521, Sigma-Aldrich, St. Louis, MO). Immunoreactive moieties were detected 

by chemifluorescent detection (Pierce ECL Plus, Thermo Fisher Scientific, Rockford, IL) of 

horseradish peroxidase-conjugated (HRP) antibodies (anti-rabbit, 170–5046, Bio-Rad, 

Hercules, CA; anti-goat, sc-2768, Santa Cruz Biotechnology, Dallas, TX; or anti mouse, 

A90–103P, Bethyl Laboratories, Montgomery, TX) at 1:10,000. Blots were scanned using 

Typhoon Trio+ (GE Healthcare, Little Chalfont, UK) and band intensity was quantified 

using Fiji (National Institute of Health).

The following procedure was performed to compare basal expression levels of Ste12 under 

either the native pheromone inducible promoter or a noninducible promoter, PSTE12 and 
PSTE5, respectively. Cultures of BY4741–68 (STE12, untagged), BY4741–104 

(STE12-3xmyc), and BY4741–133 (PSTE5-STE12-3xmyc) were grown to a cell density of 

1×107 cells/mL in YPD, and 10 mL of each were harvested by centrifugation. The Ota 

protein extract protocol (Mattison et al., 1999) was followed to yield cell lysates that were 

then mixed in a 1:1 ratio with SDS running buffer and boiled. 10 μL of each sample was run 

on an 8 % SDS-PAGE gel and transferred to nitrocellulose. The membrane was blocked for 

1 hr at room temperature with 5 % milk in TBST. The membrane was then incubated with 

1:1,000 of the primary goat anti-cMyc antibody (Bethyl Laboratories) in 5 % milk in TBST 

overnight at 4 °C. After washing in TBST, the membrane was incubated in 1:10,000 HRP-

conjugated rabbit anti-goat secondary (Santa Cruz) in 10 mL of TBST with 200 μL 5 % milk 

in TBST for 1 hr. The membrane was visualized using Western Lightning ECL Pro 

(PerkinElmer, Waltham, MA) and the ChemiDoc MP imaging system (Bio-Rad). The 

membrane was washed in TBST and incubated in 10 mL of stripping buffer at 65 °C for 45 

min. The same protocol was then followed with 1:50,000 rabbit anti-G6PDH (A9521, 

Sigma-Aldrich) for the primary and 1:10,000 goat anti-rabbit HRP-labeled antibody (170–

5046, Bio-Rad) for the secondary.

Microfluidics

To generate time-dependent pheromone concentrations we used a microfluidics device and 

robotic automation which is part of the Dial-a-Wave system developed by the Laboratory of 
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Dr. Jeff Hasty at USCD (50). The device consists of a narrow chamber where cells are 

loaded and imaged, and two input ports; one containing pheromone and the other only 

containing media. When one of the input channels is positioned higher than the other, the 

fluid from that channel is at a higher pressure and flows into the chamber housing the cells. 

By alternating the height of the input channels, we can turn pheromone on and off in the 

chamber. The input channel also contained a 1:1,000 dilution of stock Alexa Fluor 647 

(Invitrogen) dye, which has a similar diffusion coefficient as pheromone. The fluorescent 

signal is quantified in the chamber as the height of the input channels is alternated. 

Typically, it takes 2–5 min for the dye to equilibrate inside the chamber after switching the 

channels. This is much faster than the timescale of transcriptional response in the mating 

pathway. During the experiments, switching is automated using a step motor. Detailed 

microfluidics can be found in a methods review (51).

Microscopy

All experiments were performed in a microfluidic device using cell culturing methods as 

described in the supplement to Hao et al. (2008 Mol. Cell 30:649–656). Alexa 647 dye was 

added to pheromone containing media to enable imaging of the chamber and verification 

that dye (and by inference pheromone) turned on and off within less than 20 seconds. For 

experiments done at 50 nM constant pheromone and a single 200-minute pulse of 50 nM 

pheromone time-lapse microscopy was performed using a Nikon Ti-E inverted fluorescence 

microscope with Perfect Focus, coupled with Hamamatsu Orca-flash 4.0 digital camera and 

a Lumen Dynamics C-Cite LED light source system. Images were taken using a Nikon Plan 

Apo VC X60 oil immersion objective (NA 1.40 WD 0.17 MM). Images were taken every 5 

minutes for pulses of stimulus and every 10 minutes for constant stimulus in the brightfield 

and green channels. Images were acquired in the far-red channel every other time point. The 

lowest LED intensity setting (5%) was used to prevent photobleaching and phototoxicity. 

Cells were imaged for 20 min prior to exposure to pheromone and for 10 hours thereafter

For all other experiments time-lapse microscopy was performed using a Nikon Ti-E 2000 

inverted fluorescence microscope with Prior stage, coupled with Hamamatsu OrcaII 

Monochrome camera and a Prior Lumen200 light source system. Images were taken using a 

Nikon Plan Apo VC X60 oil immersion objective (NA 1.40 WD 0.17 MM).

Image analysis

To improve the quality of segmentation images were edited in ImageJ by first subtracting the 

background, using the unsharp mask filer with a radius of 2.0 and a mask weight of 0.5, 

using the Gaussian blur filter with a radius of 3.0, and finally subtracting the background 

again. These images were then used to perform image segmentation using SchnitzCells (52). 

The resulting segmentation was checked and corrected manually. The individual cells were 

tracked based on the position of each cell’s centroid and used to generate single cell traces 

of GFP fluorescence. All data is reported as the average of 90 or more single cell traces. For 

single pulses, analysis of wildtype and mutant strains was performed including and 

excluding daughter cells born after stimulus was removed. The comparison showed that 

excluding daughter cells did not change the average transcriptional response. We also 

compared transcriptional induction of cells in the G1, S and G2/M phases of the cell cycle 

Pomeroy et al. Page 15

Sci Signal. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



when cells were exposed to 50 nM pheromone. This comparison revealed that cells in all 

phases of the cell cycle respond to pheromone by inducing transcription but those in S-phase 

respond more slowly than those in G1 and G2/M (Fig. S7).

Model Development

Our experimental investigations revealed that the mechanisms responsible for persistent 

gene expression following removal of pheromone must occur downstream of MAP kinase 

activity. Therefore, we do not explicitly consider upstream signaling events and start our 

model at the level of the MAP kinase. The following equations govern the concentrations of 

inactive, [MAPK], and active, [ppMAPK], Fus3 and Kss1:

d[MAPK]
dt = ksynF3 + kfb1[Ste12]ℎc

KMAPK + [Ste12]ℎc − kp1s(t)[MAPK]

+ kp2 ppMAPK − kdegF3 Fus3
(1.1)

d[ppMAPK]
dt = kp1s(t)[MAPK] − kp2[ppMAPK] (1.2)

where ksynF3 is the constitutive synthesis rate of Fus3, kdegF3 is the MAPK degradation rate, 

kp1s(t) is the pheromone dependent activation rate of MAPK, and the term kfb1[Ste12]hc/

(KMAPK + [Ste12]hc) models synthesis of Fus3 due to Ste12 dependent gene transcription.

Our model focuses on mechanisms that regulate Ste12-dependent gene expression. The 

regulatory mechanism we consider are self-induction of Ste12 (positive feedback), 

pheromone-dependent degradation of Ste12 (negative feed forward), and Ste12 inactivation 

by Dig1/2. For simplicity, we assume that the concentration of Dig1/2 remains constant, and 

when in a Ste12-Digs heterodimer Ste12 is protected from degradation. The equations that 

govern the concentration of free Ste12, [Ste12], and Ste12-Digs heterodimer, [Ste12Digs] are 

given by:

d Ste12
dt = ksynS12 + kfb2[Ste12]ℎc

KSte12 + [Ste12]ℎc

−kdegS12 Ste12 1 + kff1[pFar1]
km1 + [pFar1]

−ka1 Ste12 DigsT − Ste12Digs
+ ka2 ppMAPK + ka3 Ste12Digs

(1.3)

d Ste12Digs
dt = ka1 Ste12 DigsT − Ste12Digs

− ka2[ppMAPK] + ka3 + kdegS12Digs Ste12Digs
(1.4)

where ksynS12 is the constitutive synthesis rate, kdegS12 is the basal degradation rate of free 

Ste12, kdegS12Digs, is the basal degradation rate of Ste12 in the Ste12-Digs complex, the term 

kff1[pFar1] /km1 + [pFar1] models the pheromone-dependent increase in the degradation 

rate, which depends on active Far1, and the term kfb2[Ste12]hc⁄KSte12 + [Ste12]hc model’s 
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synthesis of Ste12 due to Ste12 dependent gene transcription. The terms in the third and 

fourth lines of Eq. (1.3) and in Eq. (1.4) represent the formation and dissociation of Ste12-

Digs heterodimer. In this term, DigsT represents the total Dig1/2 concentration, which is 

assumed to remain constant, ka1 is the association rate constant, krsd2 is the dissociation rate 

constant in the absence of pheromone and ka2[ppMAPK] is MAPK dependent increase in 

dissociation rate.

Since degradation of Ste12 is dependent on active Far1, our model includes Far1 dynamics. 

The equations that govern the concentrations of active Far1, [pFar1], and inactive Far1, 

[Far1] are given by:

d Far1
dt = ksynF1 + ka5[Ste12]ℎc

KFar1 + [Ste12]ℎc + kp3 pFar1

−kp4[ppMAPK] Far1 − kdegF1 Far1
(1.5)

d[pFar1]
dt = kp4[ppMAPK] Far1 − kp3[pFar1] − kdegPF1 pFar1 (1.6)

where ksynF1 is the constitutive synthesis rate of Far1, kp3 is the dephosphorylation rate of 

active Far1, kp4[ppFus3] is the pheromone dependent rate of Far1 activation, kdegF1 is the 

degradation rate of inactive Far1, kdegPF1 is the degradation rate of active Far1, and the term 

ka5[Ste12]hc⁄KFar1 + [Ste12]hc models synthesis of Far1 due to Ste12 dependent gene 

transcription.

The final component included in our model is GFP, which is expressed from a FUS1 

promoter. GFP is included so we can directly compare our experimental data with the 

model. The equation that governs GFP, [GFP], synthesis and degradation are given by:

d[GFP]
dt = ksynGFP + ka4 Ste12 ℎc

KGFP + Ste12 ℎc − kdegGFP GFP (1.7)

where ksynGFP is the constitutive synthesis rate of GFP, kdegGFP is the degradation rate of 

GFP, which is known as we used a short lived GFP with a well-established half-life, and the 

term ka4[Ste12]hc⁄KGFP + [Ste12]hc models synthesis of GFP due to Ste12 dependent gene 

transcription.

Modeling pheromone signal

In our model the pheromone signal comes in at the level of the MAPK, Fus3, which is 

activated in a pheromone dependent manner. We model upstream activation of the pathway 

as a piecewise linear function. We specify a slope mon that describes the rate at which signal 

activity increase following pheromone exposure and assume the signaling turns of 

instantaneously following removal of pheromone. The maximum input signal activity is kp1. 

For pulse trains of period p (on+off phase), the maximum input signal (smax) achieved 

during the simulation (smax) is:
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smax = kp1min monp
2 , 1 . (2.1)

Then we use the following piecewise linear equation to describe the temporal signal profile 

for periodic stimulus:

s(t) = min mon(t − Ip), 1 t ≥ Ip, t < p
2 + Ip

0  otℎerwise
(2.2)

where t is the time and I is the pulse number defined by floor(t/p).

For single pulses of stimulus, the signal is described by the following equation:

s(t) =
min mon(t − Ip), 1 t < p

2

0 t ≥ p
2

(2.3)

Parameter estimation

To perform parameter estimation, we used an evolutionary algorithm. Evolutionary 

algorithms have the goal of optimizing a solution to a problem and are inspired by elements 

of biological evolution including recombination, mutation, and selection. In our application 

we aim to optimize the fit of our model to experimental data by finding parameter sets that 

minimize the error between the experimental and simulated data. We implemented the 

algorithm using DEAP (Distributed Evolutionary Algorithms in Python) which is a user 

friendly framework for building and executing evolutionary algorithms (53).

The evolutionary algorithm is broken down into three main functions: simulation, scoring, 

and evolution. The algorithm is initiated by selecting parameter sets from specified uniform 

random distributions. In the simulation function, these parameters are used to simulate the 

model. In the scoring function, the difference between the simulation and the experimental 

data is the quantified using the mean absolute error. In the evolution function, the best 

parameters are chosen through a tournament. Then those parameters go through mating and 

mutation. Mating was simulated using a two-point crossover function and mutation was 

simulated using a polynomial bounded mutation function. The resulting parameter sets are 

then returned to the simulation function and the process starts over again. The algorithm 

continues to optimize parameter sets for a specified number of generations.

We performed all model fitting with 100 generations of 500 individuals because these 

numbers were typically sufficient for convergence of the score function. The mating and 

mutation functions were chosen because they worked best with synthetic data sets, 

specifically to optimize models with hill functions. Similarly, the hyperparameters (mutation 

rate, crossover rate, and tournament size) were selected based on their efficiency in fitting 

the synthetic data set best.
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Scaling experimental data

It was necessary to scale the experimental data sets to account for differences in 

experimental conditions, such as light source and intensity. We first normalized the wildtype 

time series for constant 50 nM α-factor to have a maximum of 1. Then all data sets 

generated using 50 nM α-factor were scaled to align with the wildtype response during the 

initial on phase of pheromone exposure. For example, the choice of scaling factor for a 45 

min pulse experiment was based aligning the first 45 minutes of this times series with the 

response for the constant pheromone case.

For the pathway mutants, a series of constant stimulation experiments was done in quick 

succession using the same microscope settings. In this experiment data were collected for 

wildtype, far1Δ, dig1Δdig2Δ, PRE*-GFP, and PSTE5-STE12 strains. The wildtype data was 

multiplied by a scaling factor to align with the data used to train the model. The mutant 

responses were then multiplied by this scaling factor to correctly adjust their starting and 

maximal values. The response of the each of the mutants to a 90-miunte pulse of stimulus 

was then multiplied by a strain specific scaling factor to match the corresponding scaled 

constant response.

Prediction response to low pheromone dose

To predict the low dose data set, we scaled the signal input signal on rate (mon) by 0.3 based 

on an estimation of the difference in the slopes for the temporal response to 50 nM and 10 

nM constant pheromone. Using the parameter sets corresponding to the best fits to the 50 

nM data but changing mon, we successfully simulated the 10 nM data (Fig. 8, blue curves).

Predicting response of pathway perturbations

The model was used to predict the response of four mutations to the pathway, far1Δ, 

dig1Δdig2Δ, PRE*-GFP, and pSTE5-STE12. The far1Δ was described in the model by 

setting all parameters related to Far1 expression, degradation, or activation (ksynF1, ka5, kp3, 

kp4kdegF1, kdegPF1) equal to zero. The dig1Δdig2Δ was described in the model by setting the 

total amount of Dig1 and Dig2 (DigsT) equal to zero. The PRE*-GFP was described in the 

model by setting the apparent dissociation constant for Ste12 binding to the pheromone 

responsive element (PRE) of the GFP promoter (KGFP) equal to 3.33 times the value given 

from the best fits corresponding to the reported the relative competition strength of 0.3 (19). 

Finally, the pSTE5-STE12 was described in the model by setting the parameter responsible 

for Ste12 inducing its own transcription (kfb2) equal to zero.
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Refer to Web version on PubMed Central for supplementary material.

Funding:

Support for this work was provided by NIH R01GM114136, NIH R35GM127145, NIH R35GM118105, and NIH 
T32GM067553.

Pomeroy et al. Page 19

Sci Signal. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

1. Alon U, Network motifs: theory and experimental approaches., Nat. Rev. Genet 8, 450–461 (2007). 
[PubMed: 17510665] 

2. Rahi SJ, Larsch J, Pecani K, Katsov AY, Mansouri N, Tsaneva-Atanasova K, Sontag ED, Cross FR, 
Oscillatory stimuli differentiate adapting circuit topologies., Nat. Methods 14, 1010–1016 (2017). 
[PubMed: 28846089] 

3. Bennett MR, Hasty J, Microfluidic devices for measuring gene network dynamics in single cells., 
Nat. Rev. Genet 10, 628–638 (2009). [PubMed: 19668248] 

4. Mitchell A, Wei P, Lim WA, Oscillatory stress stimulation uncovers an Achilles’ heel of the yeast 
MAPK signaling network., Science 350, 1379–1383 (2015). [PubMed: 26586187] 

5. Ryu H, Chung M, Dobrzyński M, Fey D, Blum Y, Lee SS, Peter M, Kholodenko BN, Jeon NL, 
Pertz O, Frequency modulation of ERK activation dynamics rewires cell fate., Mol. Syst. Biol 11, 
838 (2015). [PubMed: 26613961] 

6. Saigusa T, Tero A, Nakagaki T, Kuramoto Y, Amoebae anticipate periodic events., Phys. Rev. Lett 
100, 018101 (2008). [PubMed: 18232821] 

7. Sumit M, Takayama S, Linderman JJ, New insights into mammalian signaling pathways using 
microfluidic pulsatile inputs and mathematical modeling., Integr Biol (Camb) 9, 6–21 (2017). 
[PubMed: 27868126] 

8. Blum Y, Mikelson J, Dobrzyński M, Ryu H, Jacques M-A, Jeon NL, Khammash M, Pertz O, 
Temporal perturbation of ERK dynamics reveals network architecture of FGF2/MAPK signaling., 
Mol. Syst. Biol 15, e8947 (2019). [PubMed: 31777174] 

9. Castillo-Hair SM, Igoshin OA, Tabor JJ, How to train your microbe: methods for dynamically 
characterizing gene networks., Curr. Opin. Microbiol 24, 113–123 (2015). [PubMed: 25677419] 

10. Kussell E, Leibler S, Phenotypic diversity, population growth, and information in fluctuating 
environments., Science 309, 2075–2078 (2005). [PubMed: 16123265] 

11. Sumit M, Jovic A, Neubig RR, Takayama S, Linderman JJ, A Two-Pulse Cellular Stimulation Test 
Elucidates Variability and Mechanisms in Signaling Pathways., Biophys. J 116, 962–973 (2019). 
[PubMed: 30782397] 

12. Ryu H, Chung M, Song J, Lee SS, Pertz O, Jeon NL, Integrated Platform for Monitoring Single-
cell MAPK Kinetics in Computer-controlled Temporal Stimulations., Sci. Rep 8, 11126 (2018). 
[PubMed: 30042437] 

13. Cook JG, Bardwell L, Kron SJ, Thorner J, Two novel targets of the MAP kinase Kss1 are negative 
regulators of invasive growth in the yeast Saccharomyces cerevisiae., Genes Dev. 10, 2831–2848 
(1996). [PubMed: 8918885] 

14. Bardwell L, Cook JG, Zhu-Shimoni JX, Voora D, Thorner J, Differential regulation of 
transcription: repression by unactivated mitogen-activated protein kinase Kss1 requires the Dig1 
and Dig2 proteins., Proc. Natl. Acad. Sci. USA 95, 15400–15405 (1998). [PubMed: 9860980] 

15. Tedford K, Kim S, Sa D, Stevens K, Tyers M, Regulation of the mating pheromone and invasive 
growth responses in yeast by two MAP kinase substrates., Curr. Biol 7, 228–238 (1997). [PubMed: 
9094309] 

16. Hung W, Olson KA, Breitkreutz A, Sadowski I, Characterization of the basal and pheromone-
stimulated phosphorylation states of Ste12p., Eur. J. Biochem 245, 241–251 (1997). [PubMed: 
9151949] 

17. Song D, Dolan JW, Yuan YL, Fields S, Pheromone-dependent phosphorylation of the yeast STE12 
protein correlates with transcriptional activation., Genes Dev. 5, 741–750 (1991). [PubMed: 
2026326] 

18. Madhani HD, Galitski T, Lander ES, Fink GR, Effectors of a developmental mitogen-activated 
protein kinase cascade revealed by expression signatures of signaling mutants., Proc. Natl. Acad. 
Sci. USA 96, 12530–12535 (1999). [PubMed: 10535956] 

19. Chang F, Herskowitz I, Identification of a gene necessary for cell cycle arrest by a negative growth 
factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2., Cell 63, 999–1011 (1990). [PubMed: 
2147873] 

Pomeroy et al. Page 20

Sci Signal. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Breitkreutz A, Boucher L, Tyers M, MAPK specificity in the yeast pheromone response 
independent of transcriptional activation., Curr. Biol 11, 1266–1271 (2001). [PubMed: 11525741] 

21. Elion EA, Satterberg B, Kranz JE, FUS3 phosphorylates multiple components of the mating signal 
transduction cascade: evidence for STE12 and FAR1., Mol. Biol. Cell 4, 495–510 (1993). 
[PubMed: 8334305] 

22. Esch RK, Wang Y, Errede B, Pheromone-induced degradation of Ste12 contributes to signal 
attenuation and the specificity of developmental fate., Eukaryotic Cell 5, 2147–2160 (2006). 
[PubMed: 17041188] 

23. Arkowitz RA, Chemical gradients and chemotropism in yeast., Cold Spring Harb. Perspect. Biol 1, 
a001958 (2009). [PubMed: 20066086] 

24. Bardwell L, A walk-through of the yeast mating pheromone response pathway., Peptides 26, 339–
350 (2005). [PubMed: 15690603] 

25. Dohlman HG, Slessareva JE, Pheromone signaling pathways in yeast., Sci STKE 2006, cm6 
(2006).

26. Zhang W, Liu HT, MAPK signal pathways in the regulation of cell proliferation in mammalian 
cells., Cell Res. 12, 9–18 (2002). [PubMed: 11942415] 

27. Ferry MS, Razinkov IA, Hasty J, Microfluidics for synthetic biology: from design to execution., 
Meth. Enzymol 497, 295–372 (2011).

28. Houser JR, Ford E, Chatterjea SM, Maleri S, Elston TC, Errede B, An improved short-lived 
fluorescent protein transcriptional reporter for Saccharomyces cerevisiae., Yeast 29, 519–530 
(2012). [PubMed: 23172645] 

29. Ciejek E, Thorner J, Recovery of S cerevisiae a cells from G1 arrest by alpha factor pheromone 
requires endopeptidase action., Cell 18, 623–635 (1979). [PubMed: 391400] 

30. Chan RK, Otte CA, Physiological characterization of Saccharomyces cerevisiae mutants 
supersensitive to G1 arrest by a factor and alpha factor pheromones., Mol. Cell. Biol 2, 21–29 
(1982). [PubMed: 7050666] 

31. Hoffman GA, Garrison TR, Dohlman HG, Endoproteolytic processing of Sst2, a multidomain 
regulator of G protein signaling in yeast., J. Biol. Chem 275, 37533–37541 (2000). [PubMed: 
10982801] 

32. Venkatapurapu SP, Kelley JB, Dixit G, Pena M, Errede B, Dohlman HG, Elston TC, Modulation of 
receptor dynamics by the regulator of G protein signaling Sst2., Mol. Biol. Cell 26, 4124–4134 
(2015). [PubMed: 26310439] 

33. Dixit G, Kelley JB, Houser JR, Elston TC, Dohlman HG, Cellular noise suppression by the 
regulator of G protein signaling Sst2., Mol. Cell 55, 85–96 (2014). [PubMed: 24954905] 

34. Schandel KA, Jenness DD, Direct evidence for ligand-induced internalization of the yeast alpha-
factor pheromone receptor., Mol. Cell. Biol 14, 7245–7255 (1994). [PubMed: 7935439] 

35. Houser JR, Ford E, Nagiec MJ, Errede B, Elston TC, Positive roles for negative regulators in the 
mating response of yeast., Mol. Syst. Biol 8, 586 (2012). [PubMed: 22669614] 

36. Flotho A, Simpson DM, Qi M, Elion EA, Localized feedback phosphorylation of Ste5p scaffold by 
associated MAPK cascade., J. Biol. Chem 279, 47391–47401 (2004). [PubMed: 15322134] 

37. Su T-C, Tamarkina E, Sadowski I, Organizational constraints on Ste12 cis-elements for a 
pheromone response in Saccharomyces cerevisiae., FEBS J. 277, 3235–3248 (2010). [PubMed: 
20584076] 

38. Blondel M, Galan JM, Chi Y, Lafourcade C, Longaretti C, Deshaies RJ, Peter M, Nuclear-specific 
degradation of Far1 is controlled by the localization of the F-box protein Cdc4., EMBO J. 19, 
6085–6097 (2000). [PubMed: 11080155] 

39. Bao MZ, Schwartz MA, Cantin GT, Yates JR, Madhani HD, Pheromone-dependent destruction of 
the Tec1 transcription factor is required for MAP kinase signaling specificity in yeast., Cell 119, 
991–1000 (2004). [PubMed: 15620357] 

40. Hackett EA, Esch RK, Maleri S, Errede B, A family of destabilized cyan fluorescent proteins as 
transcriptional reporters in S. cerevisiae., Yeast 23, 333–349 (2006). [PubMed: 16598699] 

41. Sambrook J, Fritsch EF, Maniatis T, Molecular cloning : a laboratory manual (Cold Spring Harbor 
Laboratory Press, New York, ed. 2nd, 1989).

Pomeroy et al. Page 21

Sci Signal. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



42. Amberg DC, Burke D, Strathern JN, Methods in yeast genetics : a Cold Spring Harbor Laboratry 
course manual (Cold Spring Harbor Laboratory Press, New York, 2005).

43. Rothstein RJ, in Recombinant DNA part C, Methods in Enzymology. (Elsevier, 1983), vol. 101, pp. 
202–211. [PubMed: 6310324] 

44. Boeke JD, Trueheart J, Natsoulis G, Fink GR, 5-Fluoroorotic acid as a selective agent in yeast 
molecular genetics., Meth. Enzymol 154, 164–175 (1987).

45. Alani E, Cao L, Kleckner N, A method for gene disruption that allows repeated use of URA3 
selection in the construction of multiply disrupted yeast strains., Genetics 116, 541–545 (1987). 
[PubMed: 3305158] 

46. Storici F, Resnick MA, The delitto perfetto approach to in vivo site-directed mutagenesis and 
chromosome rearrangements with synthetic oligonucleotides in yeast., Meth. Enzymol 409, 329–
345 (2006).

47. Wach A, Brachat A, Pöhlmann R, Philippsen P, New heterologous modules for classical or PCR-
based gene disruptions in Saccharomyces cerevisiae., Yeast 10, 1793–1808 (1994). [PubMed: 
7747518] 

48. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E, Epitope tagging of 
yeast genes using a PCR-based strategy: more tags and improved practical routines., Yeast 15, 
963–972 (1999). [PubMed: 10407276] 

49. Hao N, Behar M, Parnell SC, Torres MP, Borchers CH, Elston TC, Dohlman HG, A systems-
biology analysis of feedback inhibition in the Sho1 osmotic-stress-response pathway., Curr. Biol 
17, 659–667 (2007). [PubMed: 17363249] 

50. Bennett MR, Pang WL, Ostroff NA, Baumgartner BL, Nayak S, Tsimring LS, Hasty J, Metabolic 
gene regulation in a dynamically changing environment., Nature 454, 1119–1122 (2008). 
[PubMed: 18668041] 

51. Shellhammer JP, Pomeroy AE, Li Y, Dujmusic L, Elston TC, Hao N, Dohlman HG, Quantitative 
analysis of the yeast pheromone pathway., Yeast (2019), doi:10.1002/yea.3395.

52. Young JW, Locke JCW, Altinok A, Rosenfeld N, Bacarian T, Swain PS, Mjolsness E, Elowitz MB, 
Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse 
microscopy., Nat. Protoc 7, 80–88 (2011). [PubMed: 22179594] 

53. Fortin F-A, De Rainville F-M, Parizeau M, Gagne C, DEAP : Evolutionary Algorithms Made Easy, 
Journal of Machine Learning Research 13, 2171–2175 (2012).

54. Elion EA, Grisafi PL, Fink GR, FUS3 econdes a cdc2+/CDC28-related kinase equired for the 
transition from mitosis into conjugation, Cell 60, 649–664 (1990). [PubMed: 2406028] 

55. Reneke JE, Blumer KJ, Courchesne WE, Thorner J, The carboxy-terminal segment of the yeast 
alpha-factor receptor is a regulatory domain., Cell 55, 221–234 (1988). [PubMed: 2844413] 

56. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD, Designer deletion strains 
derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-
mediated gene disruption and other applications., Yeast 14, 115–132 (1998). [PubMed: 9483801] 

Pomeroy et al. Page 22

Sci Signal. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Schematic of the yeast mating response.
The yeast mating response is activated when mating pheromone binds to the G-protein 

coupled receptor (GPCR) activating a heterotrimeric G-protein. The G-protein βγ dimer 

then activates a mitogen activated protein kinase (MAPK) cascade, resulting in activation of 

two MAPKs, Fus3 and Kss1. Both kinases activate the transcription factor Ste12 by 

suppressing the activity of the transcriptional repressors Dig1 and Dig2. Fus3 also activates 

Far1, which is responsible for cell cycle arrest and promotes degradation of Ste12 (solid gray 

arrow). Ste12 promotes the transcription of itself, Far1, and Fus3 (dashed gray arrows).
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Figure 2. Persistence in transcriptional response.
(A) Images of cells with an integrated fluorescent reporter that expresses short-lived GFP 

from the mating specific FUS1 promoter exposed to constant stimulus in a microfluidic 

chamber. (B and C) Quantification of the transcriptional response using fluorescence of the 

GFP reporter in wildtype (BY4741–68) cells exposed to (B) constant stimulus and (C) 

stimulus pulses of six different durations (45, 60, 75, 90, 160, and 200 min). (D) The mating 

transcriptional response persists after a pulse of stimulus is removed, and as the pulse length 

increases the persistence decreases. This persistence is quantified as the time after stimulus 

removal until the response to drop 2.5% below the maximum transcription response and 

each point represents a biological replicate. The solid gray curve represents the mean 

response from the model and the gray shaded region represents a 99.9% confidence interval 

band, (E) Adaptation after stimulus removal for each of the six pulse durations is compared 

by plotting the natural logarithm of the normalized transcriptional response. The normalized 
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response is the average fluorescence at time t after the maximal response divided by the 

average fluorescence at the onset of adaptation. Assuming exponential decay, the half-life 

associated with the rate of decreased transcriptional response after stimulus removal is 98 ± 

9 min, compared to the 7-minute half-life of the short-lived GFP reporter plotted as a solid 

green line. Fluorescence data are presented as the average of the indicated number (n) of 

single cell traces from at least two independent experiments normalized to the maximum 

response of constant stimulus.
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Figure 3. No long-term adaptation or persistence is present in MAPK activation.
Quantification of MAPK activation by immunoblotting with phospho-p44/42 MAPK 

antibodies to detect active MAPK (pKss1 and pFus3), Fus3 antibodies to detect total Fus3, 

and anti-G6PDH as a loading control for (A) constant stimulus and (B) a 90-minute pulse of 

stimulus. Quantification of Western blots are presented as either (A) the mean and individual 

data points from two experiments normalized to the average response after 60 minutes of 

stimulus exposure or (B) the mean ± standard deviation from three independent experiments. 

To compare between conditions, quantification of immunoblotting is normalized so pKss1 

and pFus3 are equal to 1 after 60 minutes of stimulus.
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Figure 4. Model of the gene regulatory network.
(A) Four important signaling motifs, an incoherent feedforward loop in which 

phosphorylated Far1 promotes the degradation of Ste12 (Motif 1), positive feedback loops 

where Ste12 promotes the transcription of itself and the MAPK (Motif 2), slow rebinding of 

the transcriptional repressors (Dig1 and Dig2) to Ste12 (Motif 3), and a negative feedback 

where Ste12 promotes the transcription of Far1 (Motif 4). (B) The complete model 

incorporating all four motifs, which includes MAPK, Far1, and Ste12 each in their active 

and inactive states as well as the transcriptional reporter GFP. The colored icons adjacent to 

arrows in the schematic indicate the pathway components that increase each rate. (C) 

Schematic of evolutionary algorithm (EA) used to fit the model to experimental data. This 

EA was run 2000 times selecting the best of 500 individuals for 100 generations. (D) The 

total absolute error (TAE) between the simulation and experimental data for the top 10% of 

2000 independent EA runs. Each line represents the lowest error of the 500 individual 
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parameter sets. (E) A comparison of the predicted transcriptional response (TR) of the top 

10% of fits at generations 0, 50, and 100 (gray lines) to experimental data (black circles) for 

constant stimulus.
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Figure 5. Model captures response to dynamic stimulation.
Model simulations generated using the top 10% of parameters found by the evolutionary 

algorithm (gray lines) compared to the experimental data (circles) for wildtype strain 

(BY4741–68) transcriptional response to (A–F) six different pulse durations (45, 60, 75, 90, 

160, and 200 min), (G–K) five different oscillatory stimulation profiles (45, 60, 75, 90, and 

120 min on-off), and (L) constant stimulus of 50 nM pheromone. Gray shading indicates 

when mating pheromone is present in the time course. Experimental data is presented as the 

average transcriptional response of the indicated number (n) of cells at the time stimulus is 

first removed.
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Figure 6. Model predictions of response to sustained stimulus for mutants that perturb signaling 
motifs.
(A and B) Simulations (lines) using the best 10% of parameters found by the evolutionary 

algorithm for two signaling network perturbations. (A) Simulations in the absence of Ste12 

autoregulation (STE12 endogenous promoter replaced with that from STE5) predict a 

variety of responses ranging from no change (purple lines) from the wildtype (circles) to a 

dampened response (green and brown lines). Experimental data of the transcriptional 

response of the PSTE5-STE12 mutant (BY4741–103) shows a dampened response 

(triangles). (B) Simulations in the absence of the incoherent feedforward and negative 

feedback loops (Far1 removed) predict a variety of responses ranging from no change 

(purple lines) from the wildtype (circles) to a persistent transcriptional response (brown and 

blue lines). Experimental data of the transcriptional response of the far1Δ mutant (BY4741–

130) shows a persistent response (triangles). Parameters from simulations that best capture 

the experimental results for the PSTE5-STE12 mutant (green lines in A) and far1Δ mutant 
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(blue lines in B) were selected and used to predict the response of both signaling 

perturbations (brown lines in A and B). (C and D) Model simulations (gray lines) generated 

using the top 10% of parameters found by the evolutionary algorithm fit to wildtype 

(BY4741–68) (constant, single pulse, and periodic stimulus), far1Δ (constant stimulus), and 
PSTE5-STE12 (constant stimulus) training data compared to the experimental data for 

wildtype (circles) or (C) PSTE5-STE12 mutant and (D) far1Δ mutant responses (triangles). 

(E) Using the parameter sets shown in C and D, simulations (blue lines) for elimination of 

only the negative feedback loop. For most parameter sets, elimination of negative feedback 

exhibits long term adaptation similar to wildtype (circles).
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Figure 7. Prediction response of pathway perturbations to transient stimulus.
The top 10% of parameter sets found by the evolutionary algorithm fit to wildtype 

(BY4741–68), far1Δ (BY4741–130), and PSTE5-STE12 (BY4741–103) training data were 

used to predict the response of pathway perturbations to a 90-minute pulse of stimulus. (A) 

Predicted response of a the PSTE5-STE12 mutation that eliminates autoregulation of Ste12 

(blue lines) compared to experimentally determined response for the mutant strain 

(triangles). (B) Predicted response of a PRE*-GFP promoter mutation that causes Ste12 to 

bind less tightly to the GFP promoter (blue lines) compared to experimentally determined 

response for the mutant strain (BY4747–149) (triangles). (C) Predicted response of a 

dig1Δdig2Δ double mutation that eliminates the transcriptional repressors divided into three 

clusters, high basal response (green lines), low basal response (cyan lines), and response that 

best fits the experimental data (brown lines) compared to experimentally determined 

response for the mutant strain (BY4741–146) (triangles). (D) Predicted response of faster 
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rebinding of the transcriptional repressors (Dig1 and Dig2) (blue lines) compared to 

wildtype response (circles). Wildtype response (circles) is included on all panels A-D as a 

reference. (E) Analysis of parameter distributions within each of the clusters shown in panel 

C for the rates of inactive Far1 degradation (kdegF1), active Far1 degradation (kdegPF1), 

active Ste12 (kdegS12), Ste12 in complex with the transcriptional repressors (kdegS12D), 

Far1 dependent degradation of Ste12 (kff), and dephosphorylation of active Far1 (kp3). 

Significance values (*p < 0.5, **p < 0.1, and ***p <0.01) were calculated using a t-test with 

a Bonferroni correction for multiple hypothesis testing. Similar analysis for all parameters is 

available in the supplement (Fig. S7).
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Figure 8. Prediction of response to a different dose of stimulus.
The top 10% of parameter sets found by the evolutionary algorithm fit to all training data 

from wildtype (BY4741–68), far1Δ (BY4741–130), and PSTE5-STE12 (BY4741–103) 

strain responses to 50 nM pheromone (gray lines) were used to predict the response of the 

wildtype strain (BY4741–68) to 10 nM pheromone (blue lines) for (A) constant and (B and 

C) two periodic stimulation profiles (60 and 120 min on-off). Experimental data for 50 nM 

stimulus is represented by circles and experimental data for 10 nM stimulus is represented 

by triangles.
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Table 1.

Plasmids.

Plasmid Allele Reference

pCORE-UK KlURA3::KanMX4 (46)

pCORE-UH KlURA3::Hyg (46)

pEE98 fus3Δ6::LEU2 (54)

pJGsst1 bar1Δ::hisG-URA3-hisG (55)

pNC1136 URA3-UASFUS1-UBI-YΔK-GFP*-SpHIS5-TIM9 (28)

pNC1146 URA3-PFUS1-UBI-YΔK-GFP*-SpHIS5-TIM9 This work

pNC1152 URA3-PFUS1*-UBI-YΔK-GFP*-SpHIS5-TIM9 This work

pYM4 3xmyc::KanMX6 (48)
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Table 2.

Oligonucleotides.

Oligo 1
Sequence (5’ to 3’) Purpose

pNC1136QC_F CCCACTTTACTTTAAtTAATAGATTATGCAG Introduce a PacI site into 
pNC1136

pNC1136QC_R CTGCATAATCTATTAATTAAAGTAAAGTGGG Introduce a PacI site into 
pNC1136

FUS1(XhoI)_F ATGCCTCGAGAATCTCAGAGGCTGAGTCTCA Amplify 1658 bp upstream of 
FUS1 ATG

FUS1(PacI)_R ATGCCTTAATTAATTTGATTTTCAGAAACTTGATGGC Amplify 1658 bp upstream of 
FUS1 ATG

M13F TGTAAAACGACGGCCAGT Sequence pNC1136 and 
pNC1152

M13R CAGGAAACAGCTATGAC Sequence pNC1136 and 
pNC1152

618 CTTCAAACCGCTAACAATACC Confirm ura3Δ58 replacement 
of URA3

822 TTGGGCATTTAAGTCATCGT Confirm dig1Δ0::hyg 
integration

867 CCTTCACCCTCTCCACTGACA Confirm PFUS1-UBIYΔKGFP-
SpHIS5 integration

868 ATACGCTGGGTTAGTCCAGTT Confirm dig2Δ0::kanMX4 
integration

881 AATCAGCATCCATGTTGGAA Confirm far1Δ0::kanMX4 
inetgration

903 GAATCTCGGCCAAATGAAAA Confirm STE12-3xmyc-
kanMX4 integration

946 CGCATATGTGGTGTTGAAGAA Confirm ura3Δ58 replacement 
of URA3

947 TGGCCGCATCTTCTCAAATA Confirm ura3Δ58 replacement 
of URA3

953 GTTGGCCATGGAACAGGTAG Sequence pNC1136 and 
pNC1152

954 GTCAGTGGAGAGGGTGAAGG Sequence pNC1136 and 
pNC1152

966 CTGCCTCTCCAGTTGTCATG Confirm bar1Δ::hisG-URA3-
hisG integration

967 CAGCAAAATAGCATTCCTTGG Confirm bar1Δ::hisG-URA3-
hisG integration

968 CAGCTCTTGCTTGCTCTGTG Confirm bar1Δ::hisG-URA3-
hisG integration

972 GTGCGTGATGATGACATTCC Confirm bar1Δ::hisG-URA3-
hisG integration

990 AATAGCTTGGCAGCAACAGG Confirm URA3 replacement of 
ura3Δ0

1010 TCACCTTCACCCTCTCCACT Sequence pNC1136 and 
pNC1152

1015 TGTCCTTGTTGTTTTCTTCTG Sequence STE12-3xmyc-
kanMX4

Sci Signal. Author manuscript; available in PMC 2021 June 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pomeroy et al. Page 37

Oligo 1
Sequence (5’ to 3’) Purpose

1019 CGTCTCAATAGAAAAAGTGAAACAGATAAACCGCGCGTTGGCCGATTCAT Amplify 3326 bp 
ste12ΔUAS::CORE-UK

1020 ACTATTGGTTATTTGGACTTTCATCCTTGGTTCGTACGCTGCAGGTCGAC Amplify 3387 bp 
ste12ΔUAS::CORE-UK

1047 ACTCAGCCCGAGAAAAAAGCA Confirm fus3Δ6::LEU2 
integration

1048 ATTTCTTGACCAACGTGGTCAC Confirm fus3Δ6::LEU2 
integration

1091 TACGAGTACTTCGATTTATGGTGTCGAGACCTTCGTACGCTGCAGGTCGAC Amplify 3326 bp 
ste12ΔUAS::CORE-UK

1093 CGTAGTGGTACTATGTGCGAGAAAACTAGCGTACGAGTACTTCGATTTAT Amplify 3387 bp 
ste12ΔUAS::CORE-UK

1110 CATAAATTCAAAAATTATATTATATCATGGATGGCGGCGTTAGTATC Amplify 1863 bp 
STE12-3xmyc-kanMX4 tag

1111 ATTCTGGCCCGCATTTTTAATTCTTGTATCATAAATTCAAAAATTAT Amplify 1926 bp 
STE12-3xmyc-kanMX4 tag

1116 CGCCGATTAACCTTAGCG Confirm PSTE5-STE12 
integration

1119 GGTCCGATAAAAACCTTCCAGATGCAACCggatcctctagaggtgaaca Amplify 1863 bp 
STE12-3xmyc-kanMX4 tag

1120 GGAGCTCATTCACTTGAGGTAGATACCAATCGAAGGTCCGATAAAAACC Amplify 1926 bp 
STE12-3xmyc-kanMX4 tag

1121 GAAAAAGTGAGCTCATCTCATCTCTTCTGCTGA Amplify 829 bp PSTE5-STE12

1124 GGACTTTCATTTAAAAGTTGTTTCCGCTG Amplify 829 bp PSTE5-STE12

1125 CCTCTGTTCTACTATTGGTTATTTGGACTTTCATTTAAAAGTTG Amplify 887 bp PSTE5-STE12

1126 CATTATTAGCTTGAACTTTTAAGATTTCCTCTGTTCTACTATTGG Amplify 887 bp PSTE5-STE12

1127 GAAGTTTTCGTGTGTATAAATATATGAACTCTAGAGTGAGCTCATCTCATC Amplify 948 bp PSTE5-STE12

1128 CACTTTCAAGCTGTAGTATGTAAACGATATAGATGAAGTTTTCGTGTGTA Amplify 948 bp PSTE5-STE12

1148 AGGAGCCGTAATTTTTGCTT Sequence pNC1136 and 
pNC1152

1155 GGATCCGTGATAACCACCTCTTAGCCTTAGCACAAGATGTAAGG Sequence pNC1136 and 
pNC1152

1156 ATATGTCACAGCTTCATCACCCG Amplify 1972 bp 
dig2Δ0::kanMX4 allele

1157 ACCAACTGATCCTATCTAACTCTCCC Amplify 1972 bp 
dig2Δ0::kanMX4 allele

1164 CAAGGCCAAAACTATCAGCATCAACAACAGGGTCAGCAGCAGCAACAAGG Sequence pNC1136 and 
pNC1152

1170 GGAAGCCAAAGCTGATAATAAACTGGAGTGGCC Sequence pNC1136 and 
pNC1152

1175 GGTGCGATGATGAAAgAAACATGAAACGTCTG Mutagenesis of FUS1 PRE

1176 CAGACGTTTCATGTTTcTTTCATCATCGCACC Mutagenesis of FUS1 PRE

1177 GTTTCTCAAAGAAGAAAATAGAAAGTGAGACCGCGCGTTGGCCGATTCAT Amplify 1774 bp dig1Δ0::hyg 
allele

1178 GAATCAAATCAGTAACAAATTTTGGTATTGTTTCTCAAAGAAGAAAATAG Amplify 1832 bp dig1Δ0::hyg 
allele
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Oligo 1
Sequence (5’ to 3’) Purpose

1179 GTATGTAAGTTTATAAGTGCCTGTGTGGCTAcgttttcgacactggatggc Amplify 1774 bp dig1Δ0::hyg 
allele

1180 CGTGTGTGAGTAGGTGAGTGTATGCGAGTGTATGTAAGTTTATAAGTGCC Amplify 1832 bp dig1Δ0::hyg 
allele

1181 GCTTATACAGAAGAAACGCACTTAAAAAGAATCAAATCAGTAACAAATTTTGG Amplify 1890 bp dig1Δ0::hyg 
allele

1182 GGTGTGCGAGTGAGAGTGTGTGTGTGAGTGCGTGTGTGAGTAGGTGAGTG Amplify 1890 bp dig1Δ0::hyg 
allele

1194 AGGAGTTTAGTGAACTTGCAAC Confirm ste12ΔUAS::CORE-UK 
integration

1194 AGGAGTTTAGTGAACTTGCAAC Confirm PSTE5-STE12 
integration

1202 GAAGGGCAACGGTTCATCATCTCAT Amplify 1580 bp of the URA3 
locus

1203 GTTCTTTGGAGTTCAATGCGTCCATC Amplify 1580 bp of the URA3 
locus

1210 GACATTGCACTTGCATCACTGTAGG Confirm far1Δ0::kanMX4 
inetgration

1212 CTAGGGAAGACAAGCAACGA Confirm URA3 replacement of 
ura3Δ0

1214 GATGTTAGCAGAATTGTCATGCAAGG Confirm PFUS1-UBIYΔKGFP-
SpHIS5 integration

1231 CTCATTGGCCTCCATGGCTC Sequence pNC1136 and 
pNC1152

1
Base substitutions introduced by oligonucleotides are lower case, bold, and underlined. Restriction recognition sites introduced by 

oligonucleotides are upper case and underlined.
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Table 3.

Strains used in this study.

Strain Genotype Reference or Source Purpose (Model Perturbation)

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Parent strain (56)

BY4741-29 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 dig2Δ0::kanMX4 Yeast knockout collection (Invitrogen, Carlsbad, CA)
Source of dig2Δ::kanMX6 allele

BY4741–64 MATa his3Δ1 leu2Δ0 met15Δ0 URA3 This work
Restores URA3 targeting region in the BY4741 
background

BY4741–65 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 This work
58 bp ApaI-StuI deletion in the URA3 coding sequence

BY4741–66 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG This work
Eliminates Bar1 protease

BY4741–68 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG PFUS1-
UBIYΔKGFP-SpHIS5

This work
Wild-type reference PFUS1-UBIYΔKGFP reporter strain; 
Precursor to BY4741-93, -103, -105, -110, -130, -132, and 
147

BY4741–70 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 far1Δ0::kanMX4 Yeast knock out collection (Invitrogen, Carlsbad, CA)
Source of far1Δ0::kanMX4 allele

BY4741–100 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG 
PSTE12::CORE-UK::STE12 PFUS1-UBIYΔKGFP-SpHIS5

This work
Precursor to BY4741–103

BY4741–103 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG PSTE5-
STE12 PFUS1-UBIYΔKGFP-SpHIS5

This work
Eliminates positive feedback (Fig. 4, motif 2)

BY4741–105 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG 
STE12-3xmyc::KanMX4 PFUS1-UBIYΔKGFP-SpHIS5

This work
Western blot analysis to establish basal STE12-3xmyc 
expression

BY4741–110 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG 
dig2Δ::kanMX4 PFUS1-UBIYΔKGFP::SpHIS5

This work
Precursor to BY4741–147

BY4741–112 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 bar1Δ::hisG-URA3-
hisG

This work
Precursor to BY4741 −114

BY4741–114 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 bar1Δ::hisG This work
Precursor to BY4741–120

BY4741–120 MATa his3Δ1 leu2Δ0 met15Δ0 URA3 bar1Δ::hisG This work
Precursor to BY4741–122

BY4741–122 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG This work
Precursor to BY4741-137, -148 and -152

BY4741–130 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG PFUS1-
UBIYΔKGFP-SpHIS5 far1Δ::kanMX4

This work
Eliminates Fus3 and Far1 dependent negative feed forward 
(Fig. 4, motif 1)

BY4741–132 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG PFUS1-
UBIYΔKGFP-SpHIS5 PSTE5-STE12-3xmyc::KanMX4

This work
Western blot analysis to establish basal PSTE5-
Ste12-3xmyc expression

BY4741–137 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG PFUS1-
UBIYΔKGFP-SpHIS5

This work
Wild-type reference reporter strain

BY4741–147 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ58 bar1Δ::hisG 
dig1Δ::hyg dig2Δ::kanMX4 PFUS1-UBIYΔKGFP::SpHIS5

This work
Eliminate repressor inactivation of Ste12 (Fig. 4, Motif 3)

D502–3C MATΔ ade6 F. Sherman (University of Rochester, Rochester, NY)
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