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Abstract

This article demonstrates an approach to Multi-Criteria Decision Analysis that compares non-

monetary ecosystem service (ES) outcomes for environmental decision making. ES outcomes are 

often inadequately defined and characterized by imprecision and uncertainty. Outranking methods 

enrich our understanding of the imperfect knowledge of ES outcomes by allowing decision makers 

to closely examine and apply preference measures to relationships among the outcomes. We 

explain the methodological assumptions related to the Preference Ranking Organization METHod 

for Enrichment Evaluation (PROMETHEE) method, and apply it to a wetland restoration planning 

study in Rhode Island, USA. In the study, we partnered with a watershed management 

organization to evaluate four wetland restoration alternatives for their abilities to supply five ES: 

flood water regulation, scenic landscapes, learning opportunities, recreation, and birds. Twenty-

two benefit indicators were identified for the ES as well as one indicator for social equity and one 

indicator for reliability of ES provision. We developed preference functions to characterize the 

strength of evidence across estimated indicator values between pairs of alternatives. We ranked the 

alternatives based on these preferences and weights on ES relevant to different planning contexts. 

We discuss successes and challenges of implementing PROMETHEE, including feedback from 

our partners who utilized the methods.
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1. Introduction

Interest in the non-monetary valuation of ecosystem services (ES) is growing, especially in 

the context of evaluating environmental management alternatives for decision-making 

purposes (Bagstad et al., 2013; Chan et al., 2012). A significant research challenge concerns 

how to effectively capture and evaluate the different ways people benefit from natural 

ecosystems using non-monetary or non-dollar estimates (Wainger and Mazzotta, 2011). An 
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additional challenge is how to cope with uncertainty in non-monetary ES outcomes and 

measures (Hamel and Bryant, 2017).

There are many sources of uncertainty in modeling and measuring ES (e.g., measurement 

error, sampling error, systematic error, natural ecosystem variation, model assumptions, 

subjective judgments; Regan et al., 2002). While statistical or Bayesian techniques are 

typically applied to address these sources of uncertainty, uncertainty must also be 

acknowledged and addressed when choosing between alternative courses of action. In 

approaches to environmental decision making, it is customary to integrate multiple monetary 

and non-monetary metrics to assess tradeoffs in ES outcomes in terms of the potential costs 

or benefits gained or lost by choosing one management alternative over another (Nelson et 

al., 2009; for a recent review, see Grêt-Regamey et al., 2017). Evaluating tradeoffs can be 

easier if alternatives are compared using a common metric; however, this requires ES 

analysts to transform ES data into commensurable measures.

In this article, we examine approaches to making choices among management alternatives 

using Multi-Criteria Decision Analysis (MCDA). In the context of ES assessments, these 

approaches transform ES measures into a common metric and apply preference measures to 

ES, so that alternatives can be more effectively evaluated for decision-making purposes. 

Linear and non-linear value functions (e.g., multi-attribute value functions; Keeney and von 

Winterfeldt, 2007) and qualitative value functions (e.g., analytic hierarchy process; Saaty, 

1990) are popular methods to develop common metrics that can be aggregated and easily 

compared, especially for ES assessments (Langemeyer et al., 2016). Value functions produce 

numerical representations of preference (i.e., scores) for each measured outcome. Additive 

value functions are commonly used to aggregate scores and rank alternatives, which tells us 

the “value” or “worth” of each alternative relative to others.

ES outcomes are, to a large extent, imperfectly known, meaning that they can be ambiguous, 

difficult to define, imprecise, and/or uncertain (Roy et al., 2014). MCDA approaches aim to 

cope with the imperfect nature of measures of ES outcomes in various ways. While a 

preferred approach may be to seek more complete information about the outcomes 

themselves, this may not be possible or feasible. Some approaches assign prediction 

probabilities to scores to reflect uncertainties that arise from measurements (e.g., decision 

trees with multi-attribute utility functions; Keeney and Raiffa, 1976; for a relevant 

application, see Maguire and Boiney, 1994). Other approaches account for imprecision by 

allowing for fuzziness in the way decision makers score outcomes (e.g., distance-based 

functions based on the concept of a best compromise for each outcome; Benayoun et al., 

1970; Zeleny, 1973; for a relevant application, see Martin et al., 2016). These approaches fit 

within the family of additive aggregation functions, which are the most common methods 

for MCDA and especially useful when decision makers want a single cumulative score for 

each management alternative.

The usefulness of additive aggregation functions relies on the assumption that a single score 

adequately takes decision maker preferences over imperfectly-known ES into account (Roy, 

1971). There are limitations to these types of approaches, especially when decision makers 

do not have strong preferences when comparing some or all of the ES outcomes.. Once the 
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scores are aggregated, any inherent ambiguity, imprecision, or uncertainty in the outcomes 

has been masked, and the degree to which the magnitude of changes in outcomes across 

management alternatives influences their ranking may be masked as well (Roy, 1989). 

Additive aggregation functions treat a larger aggregated score as unambiguously better than 

a smaller aggregated score; yet, it may not make sense to say that one alternative is strictly 

better than another based on its overall score alone (Roy, 1990). For example, decision 

maker preferences may not be well-defined for choosing an alternative that saves 100 

species over an alternative that saves 99 species. Although sensitivity analysis can address 

some of these challenges, results are sensitive to the choice of scoring and aggregation 

technique (Martin and Mazzotta, 2018), and it is not always clear whether decision makers 

are aware of the implications of the mathematical assumptions that underlie scoring and 

aggregation. In this paper, we present the use of outranking methods for MCDA as an 

alternative approach to addressing imperfect knowledge in ES outcomes when making 

choices among alternatives.

1.1. Outranking methods

The main objective of outranking methods for MCDA is to deconstruct the way decision 

makers make choices. In the context of ES assessments, this is achieved by assigning 

different types of preferences to relationships between ES outcomes. This makes the role of 

ambiguity, imprecision, and uncertainty in how ES are measured and used for decision 

making more transparent (Roy, 1989). With outranking methods, decision makers assign 

preference measures directly to comparisons across ES outcomes, based on explicit 

consideration of strength of evidence across those outcomes (Roy, 1991).

Using traditional additive aggregation, two types of preference relationships exist for making 

choices between two alternatives a,b (Table 1): strict preference (aPb) and indifference (aIb), 

which may refer to comparisons of numerically different and identical aggregated scores, 

respectively. Outranking methods were developed to allow for two additional preference 

relationships (Table 1; Roy and Vincke, 1987): fuzzy preference (a⧘P⧘b), meaning that it is 

difficult to say that one alternative is strictly preferred to another because the strength of 

evidence is incomplete (i.e., there are thresholds where decision makers vacillate between 

indifference and strict preference); and incomparability (aRb), meaning that some 

comparisons cannot be clearly distinguished because of insufficient strength of evidence. 

These latter two relationships allow decision makers to incorporate insufficient information, 

allowing for choices to be more nuanced in some cases of comparing ES outcomes.

Outranking methods can provide more flexibility than scoring and aggregation, for instance, 

in situations where aggregated scores are too close to judge that one alternative is better than 

another, or where decision makers want to closely examine the actual differences in ES 

outcomes. Decision maker preferences for a large change in outcome (100 vs. 1 species 

saved) can be much stronger than for a small change (100 vs. 99 species saved). Accounting 

for such differences eliminates some of the undesirable effects of aggregation (Brans and 

Mareschal, 2005). Outranking methods force decision makers to focus their judgment on 

actual measurements and the degree of change, not scores, which can more fully inform 

choices among alternatives.
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In the remainder of this article, we describe the basics of outranking methods, focusing on 

the PROMETHEE methods (Preference Ranking Organization METHod for Enrichment 

Evaluation; Brans et al., 1986). Applications of ES assessments using outranking methods 

are rare and require empirical testing (Langemeyer et al., 2016). We describe the 

PROMETHEE methods and their assumptions using a real-world ES assessment to plan for 

wetland restoration in Rhode Island, USA.

1.2. Study area

The Woonasquatucket River flows southeast through northern Rhode Island, into the city of 

Providence, the state’s capital (Fig. 1). The river is threatened by development pressures and 

water quality degradation. We partnered with the Woonasquatucket River Watershed Council 

(WRWC), a non-profit watershed organization whose mission is to support and promote 

sustainable development in the watershed. Among its many initiatives, the WRWC is 

seeking to research and plan for wetland restoration in the watershed. Following guidelines 

set forth in The American Heritage Rivers initiative, the WRWC is considering options to 

restore previously damaged or destroyed wetlands for their social benefits. Implementing 

restoration requires the WRWC to secure funding. Because they often have opportunities to 

write grant proposals to perform restoration, having a set of “shovel-ready” projects 

identified with potential ES benefits to provide justification is most useful for them. 

Therefore, our objective with the partnership was to develop research methods, including a 

rapid assessment approach (Mazzotta et al., 2016), estimate the social benefits of ecological 

restoration, and test how decision-focused methods are applied to aid the WRWC in 

ecological restoration planning (Martin et al., 2018).

Many conversations within and outside the WRWC (Druschke and Hychka, 2015) were used 

to select five ES to analyze candidate wetland restoration sites (Fig. 1; Mazzotta et al., 

2016): flood risk reduction (FR), scenic views (SV), environmental education (E), recreation 

(R), bird watching (BW). The ES are not comprehensive; they were identified based on 

availability of information and preferences of the WRWC and other restoration managers in 

Rhode Island. ES benefits and 22 associated benefit indicators were identified with 

conceptual modeling and measured using spatial analysis at the restoration sites (Table 2; 

Martin et al., 2018). Two additional benefit indicators were developed and measured using 

spatial analysis to reflect social equity – referring to whether socially vulnerability 

populations could have access to and benefit from ES – and reliability – referring to whether 

an ES will continue to be available at a site in the future (Table 2). Because this assessment 

was based on a rapid approach, there are various potential sources of inaccuracy in 

developing the performance measures and uncertainty in measuring the indicators (Mazzotta 

et al., 2016).

In previous work, we developed a tool to evaluate 65 candidate restoration sites using the 

compromise programming method for MCDA (Zeleny, 1973), which scored and aggregated 

the benefit indicator values for each site based on their geometric distance to a best 

compromise set of indicator values in multidimensional space (Martin et al., 2018). The tool 

was developed so that our partners could evaluate the sites under different planning 

scenarios. Each scenario incorporated different WRWC-defined importance weights for the 
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indicators. The weights attributed to the ES were equally distributed among the indicators 

for each service. Numerous scenarios were evaluated in many informal meetings and based 

on specific preferences for getting restoration funded. This resulted in sorting and ranking 

the candidate sites. However, we and the WRWC noticed that four of the restoration sites 

were often the highest ranking sites in many different scenarios (Fig. 2; Martin et al., 2018). 

Likewise, when we applied equal weights to all indicators, we noticed that the aggregated 

indicator values of the four sites were close to uniform, which made it hard to discriminate 

which site was better than another.

Building on our previous work, we and the WRWC investigated the four candidate 

restoration sites to further distinguish their preferences between the sites. We tested the 

outranking approach to make this distinction transparent. The additional evaluation 

incorporated the PROMETHEE methodology and preference measures attributed to the 

differences in indicator values among the four sites, hereafter referred to as alternatives.

2. Methods

We used the following set of assumptions and notations for applying PROMETHEE in the 

study:

• We consider the problem to rank a finite set A of four alternatives a, b, c, d ∈ A, 

where each alternative is characterized by a finite set F of benefit indicators 

j = 1, …, 24. Since set A is finite, we can organize the data into an evaluation 

table of indicator values xj a, b, c, d , shown in Table 3.

• Outranking methods develop numerical representations of binary strength-of-

evidence relationships between alternatives, for each indicator. To simplify our 

explanation of the methods, we use the notation a, b  to signify one alternative 

being compared to another in the set A. In practice, we performed pairwise 

comparisons between all alternatives a, b, c, d ∈ A.

• Most of the methods for MCDA assign numerical weights wj to each indicator. 

Weights generally reflect the relative importance of each indicator for decision 

making. Weights can be directly assigned by decision makers or other 

stakeholders based on their preferences for the indicators, or they may be 

constructed based on tradeoffs that stakeholders are willing to make among the 

indicators. The concept of weights and possible uncertainty associated with 

appropriately assigning weights will not be discussed in this article (see Choo et 

al., 1999; Belton and Stewart, 2002).

2.1. PROMETHEE

The most common outranking methods for MCDA are ELimination and Choice Expressing 

the REality (ELECTRE; Figueira et al., 2013) and PROMETHEE. The PROMETHEE 

methods require decision makers to specify fewer parameters, and therefore include less trial 

and error than other common outranking methods (e.g., ELECTRE). For these reasons, we 

chose to implement PROMETHEE for the planning study. In this section, we cover basic 

principles of the first two PROMETHEE methods, PROMETHEE I and PROMETHEE II. 
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These basic principles are used in the remaining PROMETHEE methods (III-VI), which are 

more specific to decision contexts (Brans and Mareschal, 2005). A spreadsheet with 

calculations for this study is available in the Supplementary material.

In PROMETHEE, a preference function Pj a, b  is selected for each indicator to represent 

intensity of preference. The preference function uses the decision maker’s evaluation of 

strength of evidence to assign a binary numerical (0–1) relationship to comparisons between 

pairs of alternatives a, b, c, d ∈ A per indicator. This relationship is a function fj of the 

positive distance dj between two indicator values (Brans et al., 1986):

Pj a, b = fj dj ∀a, b, c, d∈A (1)

dj = xj a − xj b if xj a outperforms xj b
0 otℎerwise

(2)

for all indicators j = 1, …, 24; where xj is the indicator value for a given alternative in the set 

jϵF .

In this context, a preference function value of Pj a, b = 0 indicates that alternative a is not 

preferred to alternative b for a specific indicator j. When this is true, it is also true that either 

Pj b, a = 0 (b is not preferred to a) or Pj b, a > 0 (b is preferred to a), for that indicator. A 

preference function value of Pj a, b = 1 indicates strict preference of a over b, and 

0 < Pj a, b < 1 indicates fuzzy preference of a over b; these relationships imply that 

Pj b, a = 0 (b is not preferred to a). In terms of fuzzy preference, preference function values 

closer to 0 indicate a weaker preference relationship between alternatives, whereas values 

closer to 1 indicate a stronger preference relationship.

Preference function relationships can take many forms (Fig. 3). Depending on decision 

maker preferences and strength of evidence between indicator values, preference functions 

require the specification of three threshold parameters: indifference parameter q, strict 

preference parameter p, and standard deviation parameter σ (Fig. 3).

We aided the WRWC in identifying preference function relationships and threshold 

parameter values for each benefit indicator (Table 3, columns 7–9). To illustrate, we consider 

the first four benefit indicator values xj for flood risk reduction benefits (FR indicators; 

Table 3).

To express their preferences across the predicted outcomes, the WRWC chose to compare 

the beneficiaries indicator (FR1; number of addresses within 4km downstream radius; Table 

2) using the linear (type III) preference function (Fig. 3) with strict threshold parameter p = 

100 (Table 3). According to WRWC preferences, alternative a was undoubtedly the better 

alternative for this indicator; its value was   xFR1 a = 662, which exceeds the values for the 

other three alternatives by more than 100. The type III preference function allows for fuzzy 

preferences for differences that are less than 100; this allowed the WRWC to account for 
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potential variability and imprecision in the indicator values between alternatives b, c, and d, 

with values xFR1 b = 423, xFR1 c = 389, and xFR1 d = 434. Because the differences in 

these measures were close, and given that the exact consequence cannot be fully known, 

WRWC did not want the small differences to control how the alternatives were compared 

and, consequently, the results. By assigning this preference function, alternative d was 

weakly preferred, but not indifferent, to b, or PFR1 d, b = 434 − 423
100 = 0.11; alternative d was 

moderately preferred over c, or PFR1 d, c = 434 − 389
100 = 0.45; and alternative b was weakly 

preferred over c, or PFR1 b, c = 423 − 389
100 = 0.34.

For the water retention capacity indicator (FR2; size of site; Table 3), two alternatives were 

close in indicator value: a = 0.63 hectares, and b = 0.68 hectares. Estimates for alternatives c 
(1.38 hectares) and d (1.91 hectares) were notably better than alternatives a and b. However, 

these measures are from spatial data using existing conditions, and it is unknown whether 

the size of alternatives will change after implementing restoration. Therefore, we assigned 

an indifference and linear (type V) preference function (Fig. 3) with indifference threshold 

parameter q = 0.06 and strict threshold parameter p = 0.2 (Table 3). This preference function 

resulted in an indifference preference relationship between alternatives a and b, or 

PFR2 a, b = 0 and PFR2 b, a = 0 and strict preference relationships between alternatives c 

and d and a and b, or PFR2 c, a = 1, PFR2 d, a = 1, PFR2 c, b = 1, and PFR2 d, b = 1.

For the first substitution indicator (FR3; number of dams in the floodplain and within 4km 

downstream; Table 2), alternatives a, c, and d had the same indicator values (3 dams), 

whereas there are no dams downstream from b (Table 3). Because fewer downstream dams 

theoretically indicates a higher value, alternative b is clearly better than the others. The 

WRWC chose not to consider more complete information about the dams downstream from 

each alternative and compared the alternatives for this indicator using the insensitive (type I) 

preference function (Fig. 3) with no specification of a threshold parameter (Table 3). This 

means that alternative b was strictly preferred to the other alternatives and the other 

alternatives were indifferent to each other.

For the second substitution indicator (FR4; percent area of wetlands within 200m; Table 2), 

the differences in indicator values for all alternatives were too close to judge that one 

alternative was better than another based on the potential imprecision and variability in these 

point estimates (Table 3): xFR4 a = 5.63, xFR4 b = 4.04, xFR4 c = 5.56, and xFR4 d = 5.38. 

Therefore, the WRWC chose to count those comparisons as equal by assigning an 

indifference (type II) preference function (Fig. 3) with indifference parameter q = 5 (Table 

3).

In a similar manner to that described above, we worked with the WRWC to assign 

preference functions to all other indicators (Table 3). Although we could have performed a 

sensitivity analysis on the types of preference functions and threshold parameters (e.g., 

Martin et al., 2015), the WRWC were comfortable in defending these preferences in cases in 

which they had the opportunity to implement restoration. Therefore, they did not see the 

need for such a sensitivity analysis. We then computed the preference functions for every 
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paired comparison of alternatives in the multidimensional dataset (Table 3). Using the 

PROMETHEE method, we computed a weighted global preference function π a, b  as a 

weighted sum of these calculations. This provides a measure of the strength of evidence that 

one alternative outranks another, over all indicators:

π a, b = wjPj a, b (3)

for all indicators j = 1, …, 24, alternatives a, b, c, d ∈ A, where wj = 1.

We arranged the weighted global preference function values for each pairwise comparison in 

a square table with rows and columns A × A (Table 4). The table depicts a set of numbers 

related to decision maker preferences, which are used to identify two different summations 

of strength of evidence that an alternative is preferred to others, referred to as outranking 

flow relationships. These are calculated for each alternative by summing each row and 

column. The positive outranking flow value ϕ+ quantifies the extent to which a single 

alternative a outranks all others z, whereas the negative outranking flow value ϕ− quantifies 

the extent to which a single alternative a is outranked by all others z:

ϕ+ a =
zϵA

π a, z (4)

ϕ− a =
zϵA

π z, a (5)

for all alternatives a, b, c, d ∈ A, where z refers to all other alternatives being compared to a 

single alternative. In our study context, ϕ+ denotes the WRWC’s strength of preference for 

one alternative’s ability to maximize the performance of ES compared to all other 

alternatives. Likewise, ϕ− denotes the WRWC’s strength of preference for all other 

alternatives’ ability to maximize the performance of ES as compared to a single alternative. 

According to this logic, higher ϕ+ values and lower ϕ− values represent better alternatives 

(Brans et al., 1986).

We performed variations of these calculations based on a series of informal meetings with 

the WRWC, where they selected different importance weights for each benefit indicator, 

using the same preference function relationships. In one meeting, we walked through the 

preference function types and assignments; in the next meeting we generated a prototype 

spreadsheet to illustrate the method; and in several subsequent meetings we walked through 

a more complete spreadsheet, directly applying weights to the indicators with sensitivity 

analysis according to several WRWC points of view, and discussed results. We and WRWC 

performed this informal case study to test how outranking methods might be used to evaluate 

ES tradeoffs that resulted from our previous work (Martin et al., 2018).

Weighting was based on specific planning contexts of interest to the WRWC, to identify 

alternatives that would be good choices for funding programs they are likely to encounter 

(e.g., funding to reduce risk of flooding of urban residents, to enhance recreational access, or 
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to provide educational benefits). An initial scenario iteration used equal weights for each of 

the ES, social equity, and reliability indicators (Table 4) to illustrate obvious choices based 

on the preferences functions alone, referred to as within-indicator preferences. This scenario 

was contrasted with weighting scenarios that used a combination of importance weights 

across indicators to meet the needs of a planning context. We were directed by the WRWC 

to modify these weighting schemes in sub-iterations, to distinguish whether the results were 

sensitive to slight changes in indicator weights. A subset of results of the different weighting 

scenarios are discussed in Sections 3 and 4.

2.1.1. PROMETHEE I – partial ranking—PROMETHEE is based on three types of 

binary outranking relationships among the alternatives (Brans et al., 1986):

aPb a   outranks   b
if   ϕ+ a > ϕ+ b   and   ϕ− a < ϕ− b ,
or   ϕ+ a > ϕ+ b   and   ϕ− a = ϕ− b ,
or   ϕ+ a = ϕ+ b   and   ϕ− a < ϕ− b

aIb a   indifferent   to   b if   ϕ+ a = ϕ+ b   and   ϕ− a = ϕ− b
aRb a   and   b   incomparable otℎerwise

(6)

Several features of PROMETHEE I are noteworthy. The method does not guarantee a 

complete ranking relationship; some alternatives may remain incomparable. For this reason, 

we refer to results from PROMETHEE I as a partial ranking outcome. This point is critical 

because useful information about the alternatives could be obscured by combining metrics, 

as with PROMETHEE II (Section 2.1.2). Often a partial ranking outcome can be used to 

identify preferred alternatives without lumping information together for a complete ranking 

relationship (Brans et al., 1986).

In addition to this feature, the magnitudes of the outranking flow values do not influence the 

partial ranking outcome, which is a useful non-compensatory feature of the method. In an 

MCDA context, compensation refers to the extent to which undesirable indicator values are 

compensated by desirable values of other indicators (Bouyssou, 1986). Defining non-

compensation, according to the axioms of Fishburn (1976), requires that the overall 

preference of an alternative a over b is not due to the magnitude of the differences between 

the within-indicator relationships of those alternatives; few methods for MCDA strictly 

conform to this conception (Bouyssou et al., 1997). That conception was revised to a simpler 

axiomatic foundation such that methods can maintain features on some continuum between 

possessing purely compensatory and purely non-compensatory features (Bouyssou et al., 

1997). In Eq. (6), the global preference relationships of a over b are put into the same class 

of outranking relationship as global preference relationships of b over a; that is, the summed 

global preference relationships between all pairs of alternatives a, b, c, d ∈ A are assigned one 

of three outcomes: aPb, aIb, aRb. This feature of PROMETHEE I, and most outranking 

methods in general, satisfies this non-compensatory property (Bouyssou et al., 1997).

2.1.2. PROMETHEE II – complete ranking—Decision makers may desire a complete 

ranking of the alternatives such that there are no instances of alternatives being 
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incomparable. In these situations, PROMETHEE II establishes a net outranking flow ϕ a , 

which is the difference between positive and negative outranking flow values (Table 4):

ϕ a = ϕ+ a − ϕ− a (7)

for all alternatives a, b, c, d   ϵ   A.

Two binary outranking relationships are possible using the net outranking flow values:

aPb   if   ϕ a > ϕ b
aIb   if   ϕ a = ϕ b (8)

We performed these calculations to yield a complete ranking outcome of the alternatives in 

order of maximizing ϕ.

Like standard aggregation techniques (e.g., value functions), PROMETHEE II provides a 

complete ranking of alternatives. However, the PROMETHEE methodology is based on 

comparing each alternative in turn to all others in the set, while standard aggregation 

techniques develop independent scores for each alternative and then rank them (Brans and 

Mareschal, 2005). We would expect rankings to differ based on these and other 

methodological assumptions (sensu Martin and Mazzotta, 2018). It is also important to note 

that combining the positive and negative outranking flow values into a single metric results 

in a loss of information on their individual values. Brans and Mareschal (2005) suggested 

considering results from both partial ranking (PROMETHEE I) and complete ranking 

(PROMETHEE II) so that any incomparability in partial ranking outcomes can be further 

clarified using complete ranking outcomes.

3. Results

A sub-set of results from the scenario analysis is given in Fig. 4. We were unable to 

distinguish between alternatives b and c with PROMETHEE I calculations using equal 

weights, although PROMETHEE II calculations with equal weights provided a complete 

ranking of all four alternatives (Fig. 4a). For all other calculations, a preferred alternative 

could be identified using both PROMETHEE I and PROMETHEE II.

In each iteration of PROMETHEE I, there were incomparable alternatives (aRb), although 

many scenarios still allowed us to select a preferred alternative. Only strict preference 

relationships (aPb) were encountered using PROMETHEE II. When the WRWC chose a 

scenario that weighted flood risk and social equity, with more weight on flood risk as a 

benefit and less weight on social equity (all other indicators given zero weight), alternative d 
was clearly preferred for planning restoration, using both methods (Fig. 4b; Supplementary 

material). The results of this weighting scenario are likely to influence which sites the 

WRWC will choose to implement stormwater management projects in the future. Similarly, 

in a scenario focusing on recreation, education, and social equity, by putting more weight on 

recreation and less weight on education and social equity (all other indicators given zero 

weight), alternative b is clearly preferred for planning restoration (Fig. 4c). The results of 

this weighting scenario are likely to influence which alternatives the WRWC will use to 
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support community projects near or in the city of Providence. Although alternatives b and d 
are preferred in two of the weighting scenarios, they are incomparable according to the 

partial ranking outcome using equal weights (Fig. 4a).

4. Discussion

We used the planning study with the WRWC to test the application of MCDA methods for 

ES assessment. Applying PROMETHEE facilitated the comparison of candidate wetland 

restoration alternatives and their benefit indicator values in a more detailed way than our 

previous use of additive aggregation techniques. The results were easier to explain to our 

partners than our previous work, which scored and aggregated the indicator values to a 

common scale (Martin et al., 2018). We determined that screening the 65 candidate sites 

using additive aggregation was useful to sort through a large number of alternatives and 

eliminate less valuable ones, but the WRWC acknowledged the benefit of comparing the 

actual indicator values using preference functions on a reduced number of sites (Table 3) to 

determine which comparisons were significant and which were not. It is important to note, 

however, that decision makers who use preference functions and assign discriminating types 

of thresholds will likely require decision aides, or experts who have built trust with decision 

makers and can work in close collaboration to inform them about ways to address the 

imperfect knowledge of ES outcomes, taking into account the way that the outcomes were 

developed and may perform after they have been implemented, for decision making 

purposes (Roy et al., 2014).

The results provided our partners with additional information they found helpful in 

evaluating the alternatives. For instance, we could suggest that, based on within-indicator 

preferences (using preference functions) and across-indicator preferences (using weights), 

the WRWC would not be taking a risk if they eliminated alternative a from further 

consideration because it is outranked by other alternatives in most scenario iterations (Fig. 

4). Analytically, this alternative had very high negative outranking flow values ϕ− in most 

scenario iterations and negative net outranking flow values ϕ in all scenario iterations (Table 

4; Supplementary material), meaning that there is good strength of evidence that alternatives 

b, c, and d outrank a given the WRWC’s preferences on the indicator values. If the WRWC 

wanted to equally balance all ES indicators rather than placing more importance on specific 

ES (using equal weights), then they could be taking a risk if they eliminated alternative b 
because it is incomparable to c based on strength of evidence that alternative b outranks the 

other alternatives but also strength of evidence that alternative d is not outranked by the 

other alternatives, over all indicator values (Table 4). This result occurred in comparisons 

among many alternatives in other scenario iterations.

These examples point to a more intuitive assessment of choices among management 

alternatives using outranking methods. PROMETHEE allowed us to explicitly compare the 

indicator values as expressions of decision maker preferences, and the methods were 

beneficial to construct the WRWC’s point of view and create meaningful results, rather than 

using scoring and aggregation methods to discover results (Roy, 1990).
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The partial ranking outcome using equal weights shows that alternatives c and b are 

incomparable; yet, the complete ranking outcome shows that those alternatives rank first and 

third, respectively (Fig. 4a). The differences in result between partial and complete ranking 

are due in part to the uncombined non-compensatory features of PROMETHEE I, which is 

related to how each method uses the same outranking flow calculations to evaluate the 

alternatives (Section 2.1.1). This is a general advantage of PROMETHEE I over some of the 

additive aggregation functions for MCDA (e.g., linear value functions), especially in 

situations where decision makers do not desire to offset poor ES outcomes by sufficiently 

large ES outcomes. The non-compensatory feature can be traced to decision maker 

preferences on actual ES outcomes, which makes PROMETHEE I a meaningful non-

compensatory technique versus some non-linear additive aggregation functions that also 

have non-compensatory features (e.g., compromise programming; see Martin and Mazzotta, 

2018). The choice of appropriate method will depend on decision makers, how comfortable 

they are with the methodological assumptions of each method, and how much effort they 

want to invest in incorporating within- and across-indicator preferences.

This evaluation appeared to be straightforward and understandable to our partners, with the 

exception of conveying the meaning of fuzzy preference function numbers of 0 < Pj a, b < 1
for some of the indicator comparisons. We found that describing fuzzy preference functions 

was uncomplicated to the extent that they represented a preference of one alternative over 

another that is not “strict” or “indifferent,” but deciding what function to assign a “weak” or 

“strong” preference for a specific pairwise relationship was a challenge.

Although it makes sense to scale non-monetary values to comparable units (sensu additive 

aggregation techniques), establishing numerical representations of strength of evidence 

between alternatives requires additional effort and justification as to which comparisons 

should be assigned weakly preferable or strongly preferable numbers of 0 < Pj a, b < 1. For 

these reasons, threshold parameters (p/q/σ; Fig. 3) are critical for analyzing and 

communicating the relationships between ES outcomes in a transparent way. We all agreed 

that incorporating some level of preference in the comparison of indicator values was 

needed, and WRWC decided that threshold parameters associated with a linear function 

(preference function types III and V; Fig. 3) was an appropriate assumption for the analysis. 

In some cases, however, it might be useful to conduct sensitivity analysis on the threshold 

parameters (e.g., Martin et al., 2015).

It is important to note that incorporating different ES weights into the method resulted in 

easily identifying preferred alternatives. In our experience, we find that using weights to 

emphasize the importance of particular ES can yield a similar ranking of alternatives, no 

matter which method for MCDA is used (additive aggregation or outranking methods) 

because weights tend to override the analytical features of the methods. Analysts may 

choose a method that could rank alternatives in the same way as other methods but without 

meaningful assumptions. In other words, the results may reflect across-indicator preferences 

but not within-indicator preferences, including the mathematical assumptions underlying the 

selected method, which have different implications for results (Martin and Mazzotta, 2018). 
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We benefitted from maintaining trust and transparency with the WRWC, and our results 

were meaningful for their needs and in reflecting within- and across-indicator preferences.

7. Conclusions

Non-monetary valuation of ES is an emerging field. Incorporating non-monetary values into 

environmental decision making can allow for more comprehensive assessments, but 

addressing uncertainty in potential ES outcomes, among other sources of imperfect 

knowledge, is a challenge. Using outranking methods for MCDA that assign decision maker 

preferences to outcomes is a promising approach that contributes to addressing this 

challenge, alongside the more traditional statistical approaches to measurement and 

modeling uncertainty.

Outranking methods require analysts to aid decision makers in selecting parameters that 

determine the degree to which imperfect knowledge in outcome matters in choices among 

management alternatives. This allows for a more nuanced comparison of ES outcomes, 

where small changes can be parameterized to have less of an effect on results than more 

substantial changes. In this way, outranking methods can deal with imprecision and 

uncertainty in ES measures. They also allow for fuzzy preference orderings, incomparability 

between outcomes, and non-compensation between outcomes. While these features may 

make the decision process seemingly less straightforward, it provides a more realistic 

assessment and allows for better incorporation of decision makers’ knowledge and 

preferences for implementing environmental management.

Ecosystem service assessments such as the one described in this article may be contained 

within planning and decision-making frameworks (e.g., Gregory et al., 2012). The research 

and planning study described herein is part of such a process (Martin et al., 2018), which is 

of practical significance to environmental conservation and restoration worldwide (Schwartz 

et al., 2017). The outranking approach aims to dig deeper into what we are actually 

measuring and to allow decision makers to resolve a lack of information in a transparent and 

logical way. This can contribute to the growing body of work on evaluating ES using both 

monetary and non-monetary measures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Map of Woonasquatucket River watershed, with 65 candidate restoration sites shown as 

black points. Reproduced with permission from Martin et al. (2018).
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Fig. 2. 
Four highest ranking candidate restoration alternatives based on previous work (reproduced 

with permission from Martin et al., 2018). In the upper left panel, locations are identified by 

letter, the Woonasquatucket River is identified by a blue line, and locations of other damaged 

and destroyed wetlands in the area are shown as black points. Polygons for each alternative 

are shown in the other panels. Alternative a is located on a former mill complex along the 

river and near an urban park and residential development, b is located near a tributary to the 

river and on a public school property and near a golf course and residential development, c 
and d are located along the river and adjacent to urban commercial and residential 

development.
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Fig. 3. 
Preference functions in the PROMETHEE methodology that specify the degree of 

preference that one alternative a outranks another b for each indicator (adapted from Brans 

et al., 1986). The parameter d is defined by Eq. (2).
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Fig. 4. 
PROMETHEE results for candidate wetland restoration alternatives using different 

combinations of indicator weights. Arrow points from preferred alternative to non-preferred 

alternative, indicating a preference relationship (e.g.,aPb); no arrow indicates an 

incomparable relationship (e.g.,aRb). Panel a shows the iteration using equal weights as a 

baseline. Panel b shows an iteration where reducing flood risk and social equity were 

weighted, with greater weight assigned to flood risk benefit indicators than to the social 

equity benefit indicators. Panel c shows an iteration where recreation, education, and social 

equity were weighted, with greater weight assigned to recreation benefit indicators than to 

education and social equity benefit indicators. See the Supplementary material for indicator 

weights and calculations.
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Table 1.

Binary preference relationships between two alternatives a,b (adapted from Figueira et al., 2013).

Relationship Notation Description

Indifference aIb no difference in preference between alternatives a and b

Strict preference aPb alternative a is strictly preferred to b

Fuzzy preference a⧘P⧘b the degree to which alternative a is preferred to b is distinguished by some function reflecting ambiguity in 
preferences over uncertain outcomes

Incomparable aRb special situation in which a preference relationship cannot be determined without additional information
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Table 2

Benefit indicators and metrics for planning study.

Category Benefit indicator Description/Metric
1 Preference 

direction References

Flood risk 
reduction

FR1 beneficiaries Number of addresses (homes and businesses) in the 
floodplain within 4km radius and downstream from 
site

Maximize Bousquin et al. (2015)

FR2 retention capacity Size (hectares) of site Maximize

FR3 substitution Number of dams/levees 4km radius and downstream 
from site

Minimize

FR4 substitution Percent area of wetlands within 4km radius of site Minimize

Scenic views SV1 beneficiaries Number of addresses (homes and businesses) within 
50m of site

Maximize Mazzotta et al. (2016)

SV2 beneficiaries Number of addresses (homes and businesses) 
between 50–100m of site

Maximize

SV3 access Roads or trails within 100m of site Yes

SV4 complementarity Number of natural land use types within 200m of 
site

Maximize

SV5 substitution Percent area of wetlands within 200m of site Minimize

Education E1 beneficiaries Number of educational institutions within 402m 
radius of site

Maximize Mazzotta et al. (2016)

E2 substitution Percent area of wetlands within 805m of site Minimize

Recreation R1 beneficiaries 
(walking)

Number of addresses (homes and businesses) within 
536m of site

Maximize Mazzotta et al. (2016)

R2 beneficiaries 
(driving)

Number of addresses (homes and businesses) 
between 536–805m of site

Maximize

R3 beneficiaries 
(driving)

Number of addresses (homes and businesses) 
between 805m-10km of site

Maximize

R4 access Bike trails within 536m of site Yes

R5 access Bus stops within 536m of site Yes

R6 recreational quality Size (hectares) of site and adjacent green space Maximize

R7 substitution Percent area of green space within 1.1km but not 
adjacent to site

Minimize

R8 substitution Percent area of green space between 1.1–1.6km but 
not adjacent to site

Minimize

R9 substitution Percent area of green space between 1.6–19km but 
not adjacent to site

Minimize

Bird watching BW1 beneficiaries Number of addresses (homes and businesses) within 
322m of site

Maximize Mazzotta et al. (2016)

BW2 access Roads or trails within 322m of site Yes

Social equity S1 social vulnerability Proximity-based percent of total area of social 
vulnerability to environmental hazards within 4km 
of site; based on demographics (e.g., race, class, 
wealth, age, ethnicity, employment) and other 
factors

Maximize
2

NOAA
3

Reliability RE1 reliability Assurance that a site will continue to provide 
benefits over time, in the face of development 
stressors. Measured in size of property within 152m 
of site designated with conservation, parks & open 
space, reserve, or water land use categories

Maximize Mazzotta et al. (2016)

1
All metrics were converted from English units
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2
We used the “Medium” vulnerability percentages as non-monetary values. Higher values for this category are less able to recover from 

environmental hazards because they are areas identified as lower income and ethnically diverse. A higher percentage is preferable because the site 
provides access to people who are less able to access benefits otherwise.

3
National Oceanic and Atmospheric Administration: https://coast.noaa.gov/dataregistry/search/collection/info/sovi
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Table 3

Non-monetary indicator values of restoration alternatives (a,b,c,d) and preference function relationships for 

planning study.

Benefit indicator Min/Ma
x 

(Yes/No)

a b c d Preference 
function type 

(Fig. 3)

Threshold q 
(Fig. 3)

Threshold p 
(Fig. 3)

FR1 beneficiaries (addresses) Max 662 423 389 434 III -- 100

FR2 retention capacity 
(hectares)

Max 0.63 0.68 1.38 1.91 V 0.06 0.2

FR3 substitution (number of 
dams)

Min 3 0 3 3 I -- --

FR4 substitution (percent) Min 5.63 4.04 5.56 5.38 II 5 --

SV1 beneficiaries (addresses) Max 1 15 18 14 II 2 --

SV2 beneficiaries (addresses) Max 30 34 38 42 III -- 10

SV3 access (roads or trails) Yes Yes Yes Yes Yes I -- --

SV4 complementarity 
(number of natural land use 
types)

Max 4 2 4 4 I -- --

SV5 substitution (percent) Min 5.94 0 2.71 4.03 II 5 --

E1 beneficiaries (number of 
institutions)

Max 0 2 1 1 I -- --

E2 substitution (percent) Min 2.57 0.25 3.55 2.63 II 5 --

R1 beneficiaries (addresses) Max 1,006 1,025 1,014 852 II 100 --

R2 beneficiaries (addresses) Max 1,336 1,203 828 933 II 100 --

R3 beneficiaries (addresses) Max 139,151 143,780 135,326 137,402 III -- 5,000

R4 access (bike trails) Yes Yes No Yes Yes I -- --

R5 access (bus stops) Yes Yes Yes Yes Yes I -- --

R6 recreational quality 
(hectares)

Max 3.48 68.83 15.88 17.53 II 4.05 --

R7 substitution (percent) Min 18.37 30.84 30.22 31.04 II 3 --

R8 substitution (percent) Min 18.24 13.74 18.38 18.40 II 3 --

R9 substitution (percent) Min 52.19 52.91 53.64 53.41 II 3 --

BW1 beneficiaries 
(addresses)

Max 418 402 470 398 III -- 100

BW2 access (roads or trails) Yes Yes No Yes Yes I -- --

S1 index (percent) Max 67.80 67.77 75.43 73.27 II 3 --

RE1 index (score) Max 14.31 52.52 14.98 12.30 II 3 --

Note: indicator values are rounded to nearest hundredths; Yes/No values were transformed into 1/0 numbers for analytical comparison
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Table 4

Square table showing global preference function calculations for the planning study using Eq. (3) and 

outranking flow values using Eq. (4,5,7) using equal weights.

a b c d ϕ+ ϕ− ϕ

a 0 0.19 0.08 0.10 0.38 1.05 −0.67

b 0.37 0 0.33 0.33 1.03 0.91 0.12

c 0.36 0.39 0 0.1 0.84 0.49 0.35

d 0.32 0.33 0.09 0 0.74 0.53 0.21

Note: numbers are rounded to hundredths
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