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Wound healing is a multi-step process that includes multiple cellular events such as cell
proliferation, cell adhesion, and chemotactic response as well as cell apoptosis.
Accumulating studies have documented the significance of stromal cell-derived factor-1
(SDF-1)/C-X-C chemokine receptor 4 (CXCR4) signaling in wound repair and
regeneration. However, the molecular mechanism of regeneration is not clear. This
review describes various types of tissue regeneration that CXCR4 participates in and
how the efficiency of regeneration is increased by CXCR4 overexpression. It emphasizes
the pleiotropic effects of CXCR4 in regeneration. By delving into the specific molecular
mechanisms of CXCR4, we hope to provide a theoretical basis for tissue engineering and
future regenerative medicine.
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INTRODUCTION

The skin wound-healing process is complex and dynamic but highly carefully arranged, with
intersecting sequence events between phases. It involves many kinds of cells and factors. C-X-C
chemokine receptor 4 (CXCR4) is one of the most important. CXCR4 can be bound by stromal cell-
derived factor-1(SDF-1), CD4 and CD74, and SDF-1 may be the only endogenous ligand of CXCR4
(1). CXCR4 plays a pivotal role in both physiological processes such as germ cell development (2),
neurogenesis (3), vascular formation (4) and cardiogenesis (5) and pathological processes such as
muscle regeneration (6, 7) and vascular formation (8). CXCR4 can be upregulated during injury,
hypoxia, stress and vascular tissue damage (9). When tissues such as the brain (10), heart (11),
kidney (12), and liver (13) are damaged, the secretion of SDF-1 can significantly increase. With
wounding, CXCR4-positive stem cell/precursor cells are induced to express early tissue markers in
bone marrow and participate in wound repair and regeneration. The SDF-1/CXCR4 axis can
activate the major physiological processes associated with wound healing such as chemotaxis of
inflammatory cells to damaged tissues (14–18), cell proliferation for wounds repair (19–23),
and collagen deposition for tissue remodelling (24). The activated SDF-1/CXCR4 signaling
org May 2021 | Volume 12 | Article 6687581
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pathway in turn activates several signaling pathways, including
phosphoinositide 3 kinase (PI3K)/protein kinase B (PKB) (also
known as AKT, PI3K/AKT), mammalian target of rapamycin
(mTOR), and Janus kinase/signal transduction and transcription
activator pathways as well as nuclear factor-activated light chain
enhancer B cells (NF-kB) involved in regulating intracellular
transcription, Ca2+ efflux, and cell survival (25) (Figure 1).
Thus, the SDF-1/CXCR4 signal axis can transduce multiple
signals to control the biological functions of cell survival,
proliferation, chemotaxis, apoptosis and differentiation (26),
and enhance angiogenesis in targeted diseases (8, 27, 28). So, it
plays an important role in wound healing.

A previous quantitative trait loci mapping study (29) linked
SDF-1 to regenerative capacity (14). Overexpression of CXCR4
improves cell engraftment and survival as well as limb salvage
and tissue regeneration after injury (30). In addition, the SDF-1/
CXCR4 axis can enhance the activation of endogenous tissue
repair pathways (29). Different strategies have been tried to
promote tissue repair by increasing SDF-1 availability to
improve the regeneration of intervertebral discs(IVD) (24),
muscles (7), and liver (31) (Figure 3). Several regeneration
experiments that rely on overexpressing CXCR4 tissue have
achieved great success in mice and humans (6, 8, 24, 32–34).
Guo et al. (32) found that the level of SDF-1 around the wound
edge increased significantly after injury, and blocking this signal
axis in vivo delayed wound healing. Another team (33) found
that the reduced form of high mobility group box 1 can
orchestrate tissue regeneration in liver and muscle. Kim et al.
(6). showed that CXCR4-overexpressing adipose tissue-derived
stem cells (ADSCs) more efficiently contributed to muscle tissue
regeneration than normal ADSCs in a diabetic mouse model.
Frontiers in Immunology | www.frontiersin.org 2
Wei et al. (24) showed that mesenchymal stem cells (MSCs)
could overexpress CXCR4 (CXCR4-MSC), which enhanced their
migration and improved the speed of IVD regeneration.
Activated tissue-resident MSCs can also regulate the expression
of CXCR4 on natural killer cells to promote the regeneration of
vasculature (8). A study of traumatic brain injury reported that
the transplantation system of human umbilical-cord MSCs and
activated astrocytes could be used to repair moderate-sized
lesions by activating CXCR4 (34). These observations suggest
that the exploration of CXCR4 and its functions have brought
insights into tissue regeneration engineering and that using
appropriate methods to enhance CXCR4 signaling can improve
tissue regeneration. However, the specific molecular mechanism
is not yet fully understood, so further experimental exploration
is needed.
CXCR4 CONTRIBUTES TO CUTANEOUS
WOUND HEALING

SDF-1/CXCR4 Signaling Induces the
Inflammatory Response During
Wound Healing
Because tissue damage is often accompanied by acute
inflammation and tissue regeneration and the three are
inevitably entangled, some experts suggest that regeneration
cannot be achieved without inflammation (35). The primary
function of inflammation is to eliminate the invasion of
pathogens and to remove tissue necrosis, to maintain the
homeostasis of tissue. Many studies have shown that CXCR4 is
FIGURE 1 | Schematic diagram of intracellular signal transduction pathways related to wound healing involving SDF-1/CXCR4. Various stimuli in vivo and
in vitro will affect the expression of CXCR4 on the cell membrane, regulate the CXCR4 signaling pathway and participate in various processes of wound repair
including proliferation, differentiation, and migration etc. BL-8040: antagonist of CXCR4; FIR, Far-infrared radiation; VEGF, vascular growth factor; EGF, epidermal
growth factor.
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expressed on inflammatory cells and prime their migration
ability to ischemic tissues, thereby participating in
revascularization and tissue repair (14–18). In parallel, SDF-1,
the ligand of CXCR4, is constitutively expressed in specific
lymphoid or nonlymphoid tissues (16) and thus participates in
inflammation. It seems that neutrophils majorly contribute the
CXCR4/SDF-1 necessary for wound healing. Neutrophils can be
first recruited early during the inflammatory response (36). Some
have suggested that during the acute inflammatory reaction, the
first line of defense against invading pathogens is the CXCR4hi

neutrophil subsets, which rapidly migrate to the site of
inflammation (17, 18, 37–39), followed by monocytes to
reinforce the inflammatory reaction (37–39). Ageing
neutrophils can upregulate the expression of CXCR4 on their
surface, which allows them to return to the bone marrow, where
they are eventually swallowed and eliminated by the resident
macrophages (40), thus contributed to resolve wound
inflammation. Another study found that in wild-type mouse
models after tissue injury, SDF-1 is upregulated in the wound
Frontiers in Immunology | www.frontiersin.org 3
epidermis and recruits CXCR4-expressing leukocytes to the
injury site (14). Then, leukocytes migrate into lesions to
destroy invading microorganisms and clear debris (41)
(Figure 2).

Essentially, wound treatment represents the regeneration of
the epidermis and dermis but also the restoration of skin
function (42). Typically, wound healing in adult mammals,
especially humans, results in scar tissue without regeneration
of skin appendages. A large area of skin scars will affect the
appearance of the patient and can lead to functional dysfunction
such as inability to sweat and dissipate heat, thereby affecting
quality of life. We are aware, however, that inflammatory
responses can be both protective and deleterious in wound
healing. The initiation of the early wound healing response
requires the recruitment of immune cells, but the suppression
of some forms of immunity can accelerate the subsequent
regeneration (43). In the process of inflammation, immune
cells gather at the wound site, which can not only fight against
invading microorganisms, but also produce various growth
FIGURE 2 | Roles of SDF/CXCR4 axis in regulating inflammation during wound repair. Inflammation is one of the major molecular and cellular events at the early
stage of wound healing. CXCR4-expressing neutrophils can be first recruited in response to injury signals to the wound bed, followed by monocytes and Leukocytes
to reinforce the inflammatory reaction. During inflammation, immune cells aggregated at the wound site, which can not only fight against invading microorganisms,
but also produce various growth factors, such as FGF to direct re-epithelialization, fibroblast reconstruction and ECM remodeling. In the middle proliferative phase of
wound healing, autologous or allogeneic stem cells are mobilized and migrate into the wound site, where they proliferate, secret cytokines, and participate in various
cellular events in response to activation of SDF/CXCR4 signaling, including angiogenesis, muscle regeneration, and collagen synthesis. At the final stage of wound
healing, immune cells progressively disappear. The fibroblasts deposit new extracellular matrix, which is gradually remodeled to form scar tissues. Blocking SDF/
CXCR4 axis may result in a reduction in collagen production, thereby alleviating tissue fibrosis at the wound site. ADSCs, adipose tissue-derived stem cells; MSCs,
mesenchymal stem cells. NK Cells; Natural Killer Cells. Blue arrows showing the migration/homing of cells induced by the SDF-1/CXCR4 axis.
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factors, such as FGF to guide re-epithelialization, fibroblast
reconstruction and ECM remodeling (44) (Figure 2). At the
same time, inflammation can limit regeneration by promoting
fibrosis and scar formation, leading to related dysfunction. The
SDF-1/CXCR4 axis can promote inflammation to cause fibrosis
and scar formation (14, 45). The use of the CXCR4 inhibitor
AMD3100 can significantly reduce the subsequent recruitment
of CXCR4-expressing leukocytes and achieve scarless repair of
skin wounds and appendages regeneration in mice (14). There
are also reports that AMD3100 improved wound healing and
scar formation in diabetic mice (46). Thus, regulating the
expression of CXCR4 temporally and spatially can provide a
new and feasible way for complete scarless healing in mammals
and even humans during wound healing.

CXCR4 Promotes Proliferation During
Wound Healing
CXCR4 is involved in cell proliferation, which is the basis of tissue
regeneration. After acute liver injury, SDF-1 and CXCR7 seem to
play a major role in liver regeneration by promoting hepatocyte
proliferation (19). A recent study in vitro showed that SDF-1 can
improve the effect of cytokines on the clonal growth of normal
myeloid progenitors (47). Also, SDF-1 may play a key role in
epithelialization by promoting epidermal stem cell migration and
proliferation (32). Pasha and others (48) proposed that the
advancement of SDF-1a can enhance the survival, engraftment
and proliferation of MSCs treated with SDF-1a/CXCR4 signaling
in infarcted myocardium. Cell proliferation involves many signal
axis pathways; among the numerous signal traffic networks,
CXCR4 seems to play an important role. Many studies have
shown that the CXCR4 signaling pathway is involved in cell
proliferation (20–23). The mitogen-activated protein kinase
(MAPK) pathway has also been implicated in mitogen-
stimulated proliferation (20). CXCR4 binding to its ligand may
lead to receptor internalization and MAPK activation to enhance
cell proliferation (21). Another study suggested that SDF-1–
induced cell proliferation works by activating extracellular
signal-regulated kinase (ERK) (22). Moreover, SDF-1–induced
ERK1/2 activation can be directly mediated by MAPK kinase
1/2 signaling with no need for synthesis of new proteins or Gai
participation (49). After acute liver injury, SDF-1 and CXCR7
seem to play a major role in liver regeneration by promoting
hepatocyte proliferation (19). Far-infrared radiation can
upregulate CXCR4, Nanog, Sox2, c-Kit, Nkx2.5, etc. at the
mRNA and protein levels to promote cell proliferation and
migration; blocking CXCR4/ERK activation can prevent far-
infrared radiation-induced cell proliferation and migration (23).

CXCR4-Directed Cell Adhesion During
Tissue Regeneration
Effective directional migration cannot work without adhesion
(41), and it plays an important role in wound repair. Adhesion
plays a role in cell survival, cell migration, inflammation, and
angiogenesis, and apoptosis. These processes are essential for
wound repair. The CXCR4 signal axis can affect cell adhesion
by regulating the expression of adhesion molecules (50–58).
SDF-1 can upregulate the expression of adhesion molecules
Frontiers in Immunology | www.frontiersin.org 4
such as very late activation antigen 4 (VLA-4[a4b1]), VLA-5,
and lymphocyte function-associated antigen 1 (50–52), thereby
increasing cell adhesion. Adhesion molecules have multiple ways
of regulating wound healing. For example, adhesion molecule–
ligand interactions are the initial process during the proper
homing of hematopoietic stem cells to the bone marrow (52,
59). Cells can use b-integrins, VLA-4 and VLA-5 to bind to
stromal layers, which is important for bone-marrow engraftment
(55). Also, integrins such as VLA-4 can cooperate with
chemokine receptors such as CXCR4 to promote the adhesion
to MSCs (60). Adhesion of MSCs in turn favors cell survival and
growth, proliferation, and tissue retention (60, 61). Alternatively,
integrin–growth factor pairs contribute to angiogenesis via
various signaling pathways, and integrins can be involved in
cell survival or prime the process of apoptosis (62).

Adhesion molecules are closely related to cell migration. Cells
polarize firstly before migrating. Extracellular matrix can connect
to the intracellular cytoskeleton and alter cytoskeletal dynamics,
with the help of integrins (63–65), thus playing a role in changing
their cellular localization during cell polarization. In migrating
cells, a number of adhesion molecules are concentrated in the
uropod to promote the binding of other cells, thus enhancing the
recruitment of leukocyte and migration of transendothelial (66).
Adhesion molecule VLA-4 can be expressed on monocytes,
lymphocytes and most other hematopoietic cells and plays an
important role in lymphocyte trafficking and homing (67), which
control matters for early stages of tissue repair. In addition,
integrins are the main family of migration-promoting receptors
that can significantly promote cell migration (41).

Meanwhile, with stimulation of SDF-1, VLA-4–mediated
adhesion to fibronectin is increased and results in an increased
overall adhesion (55). SDF-1 can not only increase integrin
surface expression but also control adhesion molecules by
enhancing integrin activation (52, 56). The cell adhesion effect
regulated by SDF-1/CXCR4 signaling is mainly regulated by
PI3K, MAPK and ERK signaling pathways, with PI3K playing a
critical role. PI3K appears to be required for SDF-1a–mediated
phosphorylation of focal adhesion proteins, whereas MAPK
ERK1/2 is not (68). The activation of PI3K can lead to the
phosphorylation of several focal adhesion components such as
Crk-associated substrate, proline-rich kinase-2, focal adhesion
kinase, paxillin, Crk-L, Crk, and Nck (69). PI3Ks can also
regulate cell adhesion by phosphorylation of AKT (21). Other
signaling pathways such as MAPK have also been reported. This
adhesive interaction between cells and extracellular matrix of
stromal cells increases the expression of b1, a3, a6, and av
integrins and increases tyrosine kinase activity, which in turn
prevents caspase activation, thus resulting in decreased
chemotherapy-induced cell death (70).
CXCR4-MEDIATED CHEMOTAXIS IS
CRITICAL TO MIGRATION

Chemotaxis is a response produced by organisms to chemical
substances in the external environment. Cell chemotaxis allows
May 2021 | Volume 12 | Article 668758

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. SDF-1/CXCR4 Signaling Pathway
cells to migrate to where the relevant chemicals are located and
generally perform the corresponding biological function. Cell
chemotaxis provides a basis for cell migration, which is also a
prominent component of tissue repair. Chemokines and
chemokine receptors provide directional cues for cell
migration. The hallmarks of ligand-stimulated chemotaxis are
rearrangement of the cytoskeleton, polymerization and
polarization of actin formation, and adhesion of pseudopods
(71), to promote the migration of cells. During wound repair, cell
migration mainly occurs in immune response cells like
lymphocytes and stem cells, such as MSC cells, which
implicated in injury repair.

Migration is a prominent component of chemotaxis. The
main role of chemokines is lymphocyte trafficking (Figure 2).
Cell migration is a highly ordered customized multi-step process
that is also a prominent component of various tissue repair and
regeneration (41). The healing of chronic wounds requires the
migration of stem cells to the diseased area to replace damaged
or lost cells. Effectively inducing their migration to the lesion
area is a problem that requires more investigation. The function
of CXCR4 offers a potential research direction to solve this
problem. SDF-1 at low levels is a chemoattractant for
lymphocytes but at high levels becomes a chemical repellent
(72). In T lymphocytes, SDF-1 appears to depend on PI3-
kinases and Src tyrosine kinases to stimulate the activation or
phosphorylation of Tec kinases Itk and Rlk (73, 74). A loss-of-
function Itk mutant showed impaired induced migration to
SDF-1 (73). Tyrosine kinase ZAP-70 may work to enhance the
migration of SDF-1; when not present in cells, the migration to
SDF-1 is reduced (75). CXCR4 receptor was detected and
expressed on progenitor cells and inflammatory cells, which
can promote their migration to ischemic tissues, thereby
participating in blood remodeling and tissue repair (15).

Stem cell-directed migration to targeted tissues is called
homing. CXCR4 and its ligand SDF-1 are among the most
important chemokines of stem cells (76). The activation of
SDF-1/CXCR4 can induce the migration of stem cells to repair
damaged tissue (77–79) and promote wound healing. CXCR4
and its ligand SDF-1 constitute the most studied chemokine–
chemokine receptor axis in MSC homing (80). CXCR4 can play
an important role in the migration of pre-existing or externally
transplanted stem cells to the damaged site (81, 82). In addition,
MSCs overexpressing CXCR4 can enhance migration to SDF-1,
shown through chemotaxis experiments in vitro (24). The
interaction between transplanted hematopoietic stem cells and
bone-marrow endothelial cells and migration through the
endothelium is the first step for hematopoietic stem cells to
home properly to the bone marrow (52, 59). Kim et al. (6)
considered that the homing and engraftment of ADSCs is related
to the transfection efficiency of CXCR4 because transplantation
of ADSCs overexpressing CXCR4 into the ischemic area of
rats significantly increased ADSCsCXCR4+ homing and
engraftment (Figure 2).

CXCR4-induced migration is regulated by multiple
signaling pathways. Many studies have reported that the
MAPK and PI3K/Akt pathways are involved in cytokine- or
Frontiers in Immunology | www.frontiersin.org 5
chemokine-induced migration of various cell types (21, 26, 83,
84), PI3K may have the more important role in cytokine- or
chemokine-induced migration (68). In some cell systems, PI3-
kinase–dependent signaling contributes to several aspects of the
migratory machinery, including signal amplification, gradient
sensing, actin reorganization and thus, cell motility (41, 85). The
activation of phospholipase C (PLC), diacylglycerol-
dependent protein kinase C (PKC) and calcium mobilization
by chemokines have also been proposed to regulate cell adhesion
and migration (86, 87). Also, CXCR4-mediated migration can be
enhanced by inducing PLC/PKC-Ca2+ signalling (88).
Preclinical data show that bone-marrow MSCs can promote
osteosarcoma growth via PI3K/Akt and Ras/Erk intracellular
cascades and may enhance metastasis via CXCR4 signaling
(89) (Figure 3).
CXCR4 REGULATES CELLULAR
APOPTOSIS DURING
TISSUE REGENERATION

Apoptosis regulated by CXCR4 plays a major biological
modification role in tissue regeneration. The process of tissue
regeneration includes physiological processes such as cell
proliferation and chemotaxis, and of course, cell apoptosis.
Like cell growth, development, and proliferation, apoptosis
plays an important role in the life cycle of cells. The
elimination of apoptotic cells caused by the inflammatory
environment is a key step in wound healing (90, 91). CXCR4
is related to cell apoptosis. Downregulated CXCR4 can induce
cell apoptosis by inhibiting the PI3K/Akt/NF-kb signaling (92).
Also, the activation of Akt can modulate proapoptotic or
antiapoptotic proteins via transcriptional or posttranscriptional
modes (93) (Figure 1). Binding of SDF-1 to CXCR4 and CXCR7
leads to anti-apoptotic signaling via Bcl-2 as well as promotion of
the epithelial to interstitial transition through the Rho-ROCK
pathway and alterations in cell adhesion molecules (72).
Overexpression of miR-9-5p inhibited MAPK/ERK and PI3K/
AKT/mTOR pathways by inhibiting CXCR4, thereby reducing
high sugar induced human umbilical cord endothelial cell
conversion (94). In both in vitro and in vivo experiments,
Abraham et al. (95) showed that the CXCR4 antagonist BL-
8040 could induce cells apoptosis. This apoptosis was mediated
by upregulation of miR-15a/miR-16-1, thus resulting in
downregulation of the target genes B-cell lymphoma 2,
myeloid cell leukemia 1 and cyclin-D1. The authors showed
that BL-8040 can induce apoptosis by inhibiting survival signals
through the AKT/ERK pathway. Moreover, miR-146a can
downregulate CXCR4 expression dose- and time-dependently.
Phenotype experiments revealed that miR-146a mimics can
inhibit cell proliferation and cell migration and promote
apoptosis by targeting CXCR4 (96). Petri’s experiment found
that the ratio of transforming growth factor beta/interleukin 6
(TGF-b/IL-6) ratio is related to the expression of CXCR4 (8). In
addition, Arck and Hecher et al. (97) showed that the two
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cytokines TGF-b and IL-6 are involved in inducing CXCR4 as
well as differentiating lymphocytes while driving senescence.
CONCLUSION AND FUTURE
PERSPECTIVES

Tissue regeneration and its application in regenerative medicine
have always been urgently needed, and much energy and time
have been invested in those topics. However, the form and
function of tissue regeneration achieved is incomplete. CXCR4
clearly plays a pivotal role in tissue regeneration, and
overexpression of CXCR4 in various stem cells can improve
the survival of stem cell transplantation and induce various
wound regeneration processes. At the same time, the activation
of the CXCR4 signaling pathway can induce corresponding
changes in multiple signaling pathways, then participate in the
entire process of wound healing. This is the basis of the
pleiotropic effects of CXCR4. Inhibiting the expression of
CXCR4 can promote wound healing in a scarless manner
during later phases of inflammation. To date, although a large
body of studies deals with promoting wound healing through
SDF-1/CXCR4 signaling pathway in small animals such as rats,
limited progress has been made in neither large animals nor
humans. Given that CXCR4 plays different roles during different
periods of wound healing and regeneration, future therapies
promise to achieve scarless wound healing by transplanting
CXCR4 over-expressing stem cells into the wound post-injury
Frontiers in Immunology | www.frontiersin.org 6
and administrating CXCR4 inhibitors such as AMD3100 during
the later phase of the wound healing. And, transition of research
subjects from small animals to humans is expected to achieve the
goal of perfect wound repair in the future. And, Research into
wound healing may well focus on how to promote or inhibit
CXCR4 signaling to differentiate stem cells into different tissues
and how to provide better function in new tissue. Therefore,
further study of CXCR4 may be an important way to more
readily achieve tissue regeneration. Regulating the SDF-1/
CXCR4 signal axis may provide a feasible method for realizing
optimal wound repair and tissue regeneration.
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