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Abstract: We report an automated differentiation model for classifying malignant tumor, fibro-
adipose, and stroma in human breast tissues based on polarization-sensitive optical coherence
tomography (PS-OCT). A total of 720 PS-OCT images from 72 sites of 41 patients with
H&E histology-confirmed diagnoses as the gold standard were employed in this study. The
differentiation model is trained by the features extracted from both one standard OCT-based metric
(i.e., intensity) and four PS-OCT-based metrics (i.e., phase difference between two channels (PD),
phase retardation (PR), local phase retardation (LPR), and degree of polarization uniformity
(DOPU)). Further optimized by forward searching and validated by leave-one-site-out-cross-
validation (LOSOCV) method, the best feature subset was acquired with the highest overall
accuracy of 93.5% for the model. Furthermore, to show the superiority of our differentiation
model based on PS-OCT images over standard OCT images, the best model trained by intensity-
only features (usually obtained by standard OCT systems) was also obtained with an overall
accuracy of 82.9%, demonstrating the significance of the polarization information in breast tissue
differentiation. The high performance of our differentiation model suggests the potential of using
PS-OCT for intraoperative human breast tissue differentiation during the surgical resection of
breast cancer.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Cancer is the second leading cause of death globally, with an estimated 1.9 million new cancer
cases to be diagnosed in the United States in 2021 [1]. Breast, colorectal, lung, cervical, and
thyroid cancer are the most common among women. Among all of these, breast cancer is the
second leading cause of cancer death in women after lung cancer, accounting for an estimated
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284,200 new cases diagnosed and 44,130 deaths in the United States reported in 2021 [1]. The
current standard of care for early-stage breast cancer is breast conserving surgery (BCS), which
is equivalent to mastectomy in long-term survival rate, preserves more appearance and sensation
of the breast, and offers a shorter recovery time [2,3]. Tumor margin evaluation is a crucial issue
during BCS in order to avoid margin re-excision and to reduce the risk of local recurrence of the
disease. Some evaluative methods have been adopted for intraoperative tumor margin assessment
to strive for complete resection of the tumor. Frozen section is time-consuming and provides
evaluation results with low accuracy due to difficulties in sectioning adipose tissue [4]. Touch
preparation cytology provides faster assessment than frozen section but is associated with sample
preparation artifacts [5]. Therefore, there is a significant need for real-time (<1 s) evaluation of
the tumor margin during BCS.

Various intraoperative methods based on optical techniques have been reported for breast
tumor margin evaluation, including handheld probe-based radiofrequency spectral analysis [6,7],
quantitative diffuse reflectance imaging [8,9], confocal mosaicking microscopy [10], point
spectroscopy [11,12], and optical coherence tomography (OCT) [13–17]. OCT is a promising
method for intraoperative breast tumor margin evaluation because of the high resolution, high
acquisition speed for large-area imaging, and millimeter-scale imaging depth [18,19]. Recently
with the development of handheld [20] and needle probes [21,22], or utilizing a single fiber [23],
portable OCT systems have showed great potential for breast tumor margin evaluation during
BCS, especially with the help from advanced artificial intelligence algorithms [24,25]. The
criterion for margin evaluation using standard OCT is image contrast and textures, which are
dependent on the variations of refractive index and the optical scattering properties of tissues.
For breast tissues, it is possible to differentiate between malignant tumor and fibro-adipose tissue
types because malignant tumor tissue appears denser and highly scattering than healthy tissue
and disrupts the normal low-scattering honeycomb-like architecture of fibro-adipose tissue found
in the normal breast [26]. However, normal stroma, which is comprised largely of collagen
and connective tissue in the breast, is also dense and highly scattering under standard OCT,
making it challenging to differentiate normal stroma from malignant tumor tissue. Recently,
OCT-based elastography (OCE) was also applied in breast cancer imaging which showed good
performance at detecting normal stroma from malignant tumor tissue by measuring stiffness
quantitatively [27]. The promising potential of OCE-based breast tumor margin detection [28–31]
was demonstrated and some automated morphological segmentation methods were proposed for
breast tissue subtypes differentiation [32–34]. In addition, some works focused on the comparison
and combination of OCE and polarization-sensitive OCT [35,36].

In our previous work [37], a bench-top polarization-sensitive OCT (PS-OCT) was demonstrated
for detecting and quantifying birefringence contrast between healthy and cancerous tissues based
on collagen content, and a portable intraoperative PS-OCT system was used for enhancing
the detection and differentiation of invasive ductal carcinoma (IDC) [38]. By using the
complementary information provided by standard OCT-based metrics and PS-OCT-based metrics,
an overall accuracy of 89.4% was achieved to differentiate fibro-adipose tissue, stroma, and
IDC, demonstrating the potential of PS-OCT as an adjunct modality for enhanced intraoperative
differentiation of breast cancer. In this paper, we newly report an automated approach for
breast tissue differentiation from intraoperative PS-OCT images. Both standard intensity and
polarization images were post-processed for further feature extraction. Based on the extracted
features, a robust diagnostic model validated by leave-one-site-out-cross-validation (LOSOCV)
was built by support vector machine (SVM) to differentiate malignant tumor, fibro-adipose, and
stroma tissues using histopathology as the gold standard. The diagnostic model based on features
extracted from the combination of one standard OCT-based metric (i.e., intensity) and four
PS-OCT-based metrics (i.e., phase difference between two channels (PD), phase retardation (PR),
local phase retardation (LPR), and degree of polarization uniformity (DOPU)) lead to a high
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overall accuracy of 93.5%. The high performance of the classifier suggests that PS-OCT is
a promising modality for automated and robust diagnosis of breast cancer, particularly in the
intraoperative setting.

2. Materials and methods

2.1. Tissue sample acquisition and preparation

A total of 41 human subjects undergoing surgery for either breast cancer (lumpectomy or
mastectomy, all invasive ductal carcinoma (IDC)) or breast reduction surgery (healthy controls,
no history of cancer) were recruited for this study. The study protocol was approved by the
Institutional Review Boards (IRB) of both Carle Foundation Hospital in Urbana, IL and the
University of Illinois at Urbana-Champaign. Tissue specimens from 17 subjects were imaged
immediately after surgical resection by the PS-OCT system in the surgical pathology room
adjacent to the operating room. The other 24 specimens provided by the Cooperative Human
Tissue Network (CHTN) were transported in saline and kept on ice and were imaged within 24
hours of initial surgical resection . After PS-OCT imaging, the imaged sites were marked with
surgical ink and the tissue specimens were placed in formalin per standard pathologic protocol.
After standard tissue processing and staining with hematoxylin and eosin (H&E) for histological
evaluation, diagnoses were made by a board-certified pathologist, and diagnostic results served
as the gold standard ground-truth for breast tissue classification.

2.2. PS-OCT imaging

A portable custom-designed PS-OCT system was employed for tissue imaging, which is described
in detail in our previous work [38]. Two coupled superluminescent diodes (SLDs) were used
in this intraoperative PS-OCT system to cover a spectral range of 1200∼1400 nm. The axial
resolution and transverse resolution were 5 µm and 8 µm, respectively. Two spectrometers each
using a 2048 pixel linescan camera were used for interference signal detection, resulting in a
76 kHz A-scan rate, and the sensitivity of the system was 89 dB. To assess each specimen, one or
multiple sites were imaged according to the size of specimen. Each imaged site comprised 512 ×

512 × 2048 pixels in the X, Y and Z directions, respectively, corresponding to 2.8 × 2.8 × 4 mm
or 4.2 × 4.2 × 4 mm. The scan length in the X and Y directions was determined by the galvo
control voltage, which was set to either 4 V or 6 V for different sites, depending on the specimen
size.

For each B-scan image, one standard OCT-based metric (i.e., intensity) and four polarization-
based metrics (i.e., phase difference between two channels (PD), phase retardation (PR), local
phase retardation (LPR), and degree of polarization uniformity (DOPU)) were calculated for the
breast tissue classification. For our intraoperative PS-OCT system, the standard OCT intensity I
is expressed as the total intensity of the two output channels [39]:

I =
|︁|︁Eout,1

|︁|︁2 + |︁|︁Eout,2
|︁|︁2, (1)

where
|︁|︁Eout,1

|︁|︁ and
|︁|︁Eout,2

|︁|︁ are the intensities measured by two spectrometers. The phase difference
between the two output channels PD was calculated as

PD = arg(Eout,2 × E∗
out,1), (2)

where “*" donates the complex conjugate and “arg" represents the argument.
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The PS-OCT enabled PR is represented by

PR = actan(
|︁|︁Eout,1

|︁|︁ /|︁|︁Eout,2
|︁|︁), (3)

and the local phase retardation LPR is represented by [17]

LPR =

∥︁∥︁∥︁∥︁∥︁ 1
ωz

∫ ωz/2

−ωz/2
[m

′

32(z + ν)m
′

13(z + ν)m
′

21(z + ν)]
Tdz

∥︁∥︁∥︁∥︁∥︁ , (4)

where m′

= m−G · mT · G, m is the matrix logarithm of retardation over a differential depth, ωz
is an axial distance, G = diag(1,−1,−1,−1) is the Minkowski matrix, and z is a given depth.

To obtain DOPU, the Stokes vectors are first calculated by [40]

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

Q

U

V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eout,1E∗
out,1 + Eout,2E∗

out,2

Eout,1E∗
out,1 − Eout,2E∗

out,2

2
|︁|︁Eout,1

|︁|︁ /|︁|︁Eout,2
|︁|︁ cos(arg(Eout,1E∗

out,2))

2
|︁|︁Eout,1

|︁|︁ /|︁|︁Eout,2
|︁|︁ sin(arg(Eout,1E∗

out,2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

where the DOPU is then defined as

DOPU =
√︂

Q̄2 + Ū2 + V̄2, (6)

with
(Q̄, Ū, V̄) = (

∑︂
i

Qi

Ii
,
∑︂

i

Ui

Ii
,
∑︂

i

Vi

Ii
), (7)

where i indicates the i-th pixel within a spatial kernel by which DOPU is defined.

2.3. Dataset construction

For multiple sites from the same sample, correlation analyses were conducted in order to ensure
data independence and eliminate classification artifacts arising from images with high spatial
proximity [38]. The final dataset is summarized in Table 1, noting that 2 subjects contributed
to both fibro-adipose and stroma datasets. Therefore, a total of 72 independent sites obtained
from 41 patients were finally included in this study. Additionally, we imaged at evenly spaced
intervals at each tissue site to get labeled images, but the number of valid labeled images varied
significantly among different sites depending on the size and shape of the specimen. To avoid
our dataset being partial to subjects/sites with more labeled B-scan images, only 10 images were
selected from each site based on the lowest number of labeled frames for all sites. For sites with
more than 10 labeled images, we randomly selected 10 images for our dataset.

Table 1. Number of patients, sites, and PS-OCT images included in
this study.

Patients Sites PS-OCT images

Malignant tumor 10 24 240

Fibro-Adipose 15 24 240

Stroma 18 24 240

Total 41a 72 720

aNote that 2 patients contributed to both fibro-adipose and stroma datasets.
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After obtaining raw data from two PS-OCT detection channels, 5 numerical metrics (I,
PD, PR, LPR, and DOPU) described in Section 2.2 were calculated in MATLAB for every
selected B-scan image. Therefore, 5 metrics matrices of each B-scan image, rather than only the
intensity matrix, were used for further feature extraction to take full advantage of the polarization
information provided by the PS-OCT system. Figure 1 shows these five metric images along
with representative H&E-stained histology results for three tissue types. Thus, the total dataset
consisted of 3,600 metric images (720 B-scan images × 5 metrics) in this study.

Fig. 1. Representative structural OCT images (a-1, b-1, c-1), local phase retardation (LPR)
images (a-2, b-2, c-2), phase difference (PD) images (a-3, b-3, c-3), phase retardation (PR)
images (a-4, b-4, c-4), degree of polarization uniformity (DOPU) images (a-5, b-5, c-5) and
H&E-stained histology images (a-6, b-6, c-6) of malignant tumor (a-1 to a-6), fibro-adipose
(b-1 to b-6) and stroma (c-1 to c-6) tissue, respectively. Scale bars represent 500 µm. The
color scale unit for PD, PR, and LPR is radian, the color scale unit for DOPU is a.u.

2.4. Region of interest (ROI) selection

In OCT systems, signal-to-noise ratio (SNR) decreases in for deeper layers of a sample due to the
multiple scattering and overall attenuation in biological tissues. In order to build a model with
high reliability, a region-of-interest (ROI) was selected for our dataset to exclude data with low
SNR. The upper boundary of the ROI was automatically determined by a greedy algorithm for
surface extraction [41]. The lower boundary was determined as a fixed number of pixels below
the upper boundary. In this paper, 256 pixels below the upper boundary were chosen, empirically
aimed at excluding pixels with low SNR. The number of pixels is constant for every A-scan in
this fixed ROI, which is beneficial for further feature extraction.
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2.5. Feature extraction

For each selected B-scan image, feature extraction was performed using all 5 of the metrics:
I, PD, PR, LPR, and DOPU. Features were extracted from both A-scan line data and B-scan
image data to provide local and global information at the same time, where A-scan line data
was extracted from B-scan image data in this study. A feature matrix was first built with all the
extracted features to cover more image properties, and then a feature subset was selected by
forward searching to achieve the highest accuracy and limit overfitting.

2.5.1. A-scan features

Two-dimensional median filters with 8 pixel and 20 pixel kernels in the lateral and axial directions,
respectively, were applied to all the B-scan images after ROI selection. The size of the filter
was decided heuristically to filter some noise while maintaining and reinforcing the structure of
the breast tissue. In this study, the total image dataset contained 3,600 metric images, and each
image was comprised of 512 A-scan lines. Thus, it was time-consuming to extract features from
all the A-scan lines. While preserving the characteristics of tissue structure, all the image data
was down-sampled (retaining every eighth A-scan line) to accelerate A-scan feature extraction.
Therefore, there were 64 A-scan lines in each down-sampled B-scan image data.

Two groups of features: global features and local features, were calculated for each A-scan
line. For global features, polynomial fitting was implemented to all data in the ROI for capturing
the changing trend of structures. The polynomial order was primarily determined by tissue type
and metric selected. The honeycomb structure of fibro-adipose tissue usually introduced multiple
peaks in the depth direction which resulted in a higher order polynomial for better fitting. In
addition, in contrast to the intensity metric, some metrics (i.e., PR) became larger for some tissue
types at greater depths, which meant that linear regression was not suitable for fitting. In this
study, the polynomial fitting order was heuristically set as 5th for all five metrics data. In total, 7
features (6 fitting coefficients and 1 fitting error) were extracted for each metric data as A-scan
global features, as shown in Fig. 2(b).

Fig. 2. A-scan line feature extraction. An original A-scan line data from one image metric is
shown in (a). The red dashed line in (b) is the global fitting result after 5th-order polynomial
fitting. (c) Short-range linear fitting results in 8 adjacent windows. Peaks and valleys are
shown by the red line trace in (d).
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Local features consisted of two types: short-range features and peak-valley features. For
short-range features, as illustrated in Fig. 2(c), A-scan line data in the ROI was split into 8
consecutive short-range subsets, with 32 pixels in each. Linear fitting was performed in each
subset, providing 3 features (slope, intercept, and fitting error) carrying local tissue structure.
Five statistical operations: mean, standard deviation (STD), mode, maximum, and minimal were
performed among all 8 short-range subsets. Peak-valley features were previously proposed for
identifying oral malignancy in the hamster cheek pouch [42]. This type of feature also had
the potential to differentiate fibro-adipose from other tissue types due to the regular adipocyte
boundaries. By performing morphological closing and opening by flat structuring elements of
size 5 and 2 pixels, respectively, A-scan lines were filtered and then normalized. H-maxima
transformation was performed for the suppression of those spurious peaks with normalized values
less than 0.1. Local maxima and minima were defined as “peak" and “valley", as shown in
Fig. 2(d). Seven features were calculated from all the detected peaks and valleys: (1)

∑︁
pi, (2)∑︁

pi −
∑︁

vi, (3)
∑︁

pi +
∑︁

vi, (4) Ap1 : A-scan data value at p1, (5) Ap2 : A-scan data value at p2, (6)
Av2 : A-scan data value at v1, (7) Av2 :A-scan data value at v2, where pi and vi represented i-th
peak and valley, respectively.

For all the extracted A-scan features, an intermediate feature matrix was built [43], and four
statistics (mean, STD, minimum, and maximum) were calculated among all A-scan lines in the
down-sampled B-scan images. In the proposed model, we extracted a total of 116 A-scan features.
((7 global features + 15 short-range features + 7 peak-valley features) × 4 statistics).

2.5.2. Texture features

Representing the local variations in one small region of an image, texture is a powerful quantify
metric for image analysis. Here, a statistical texture analysis technique based on a gray-level
co-occurrence matrix (GLCM) method was implemented for texture features extraction [44]. For
L uniform gray levels, GLCM is based on the estimation of the second order joint conditional
probability density function, f (i, j |d, θ), which means the probability of a pixel with a gray-level
value i being d pixels away from a pixel with a gray-level value j in the θ direction. In our study,
we first scaled image data to eight uniform levels, then let d = 1, 2, 4, and 6, and θ = 0, 45,
and 90 deg. Therefore, for a given distance d, an 8 × 8 matrix, sθ (i, j |d) was calculated from
f (i, j |d, θ) for different θ. For each combination of d and θ, two features, energy and entropy,
were calculated as per Eq. (8) and Eq. (9) [44],

energy =
L−1∑︂
i=0

L−1∑︂
i=0

sθ (i, j |d)2, (8)

entropy =
L−1∑︂
i=0

L−1∑︂
i=0

sθ (i, j |d)log[sθ (i, j |d)], (9)

where sθ (i, j |d) is the (i, j)th element of the GLCM for distance d, contributing to a total of 24
features for 3 directions with 4 different distances.

2.5.3. Morphological features

Morphological analysis of OCT images has been reported in the discrimination of freshly-excised
specimens of gastrointestinal tissue [45]. Region segmentation was first achieved by a k-means
method [46], which partitioned the observation of the image data into k clusters. Typically, three
steps were involved in the k-means method. An initial k cluster centroid was first chosen, followed
by computation of point-to-cluster distances of all observations, and moving each observation
to the closest cluster, finally, the average of the observations in each cluster was recalculated to
obtain new k centroid locations. This process was repeated until cluster assignments did not
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change. In this study, all 5 metrics data for one B-scan were segmented into two to four clusters,
which meant that the k-means method was performed three times and in total, 9 regions were
obtained. Six features were then extracted per region, as follows:

mean = M =
1
N

N∑︂
i=1

Mi, (10)

normalized mean : MN =
M − min(M)

max(M) − min(M)
, (11)

absolute deviation : ∆M =
N∑︂

i=1

|︁|︁|︁Mi − M
|︁|︁|︁ , (12)

STD : σM = (
1
N

N∑︂
i=1

(Mi − M)2)
1
2 , (13)

skewness : SM =

1
N
∑︁N

i=1(Mi − M)3

σ3
M

, (14)

kurtosis : KM =

1
N
∑︁N

i=1(Mi − M)4

σ4
M

. (15)

The term Mi is the specific metric value of a pixel within the region and N is the number of
pixels of the region. Accordingly, the total number of morphological features is 54 (9 regions
times 6 features) for each metric image data.

2.5.4. Feature set combination

After the feature extraction mentioned above, a total of 970 features were extracted for further
classifier training and cross-validating, summarized in Table 2.

2.5.5. Feature set fine selection

In order to improve the performance of the classifier and the computing efficiency, the best subset
of the features was required for further classification and validation. First, features with the
same values for B-scan data from all tissue sites were excluded since they provided no useful
information for classification. After that, only 754 features remained for the next step. As the
initial features were extracted to capture more tissue properties, some of the remaining 754
features may not be independent or carry little information about the image labels. Features with
a large dependency may ensure a high accuracy when taken separately, however, the combinations
of them may not necessarily lead to a better performance because they do not give independent
information. Therefore, the minimal-redundancy-maximal-relevance (mRMR) criterion [47] was
applied, giving a candidate list of features which attributed more relevant information to the labels,
and fewer correlation with other features. During mRMR-based feature selection, features were
first selected based on the maximal relevance (Max-Relevance) criterion, in which the selected
features were required, individually, to have the largest mutual information with the labels. It
is likely that features selected by Max-Relevance may have rich redundancy because of the
large dependency among these features. Therefore, the minimal redundancy (Min-Redundancy)
condition was added to select mutually exclusive features. The resulting classifier built on this
fine selected feature subset can achieve both high accuracy and faster speed.
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Table 2. Features list for each image metric data in the classifier.

2.6. Classification and validation

Supervised learning was employed here for classification, which uses a training set with known
labels to predicate the testing set. Support vector machine (SVM) was used here for developing
a diagnostic model. As introduced in Section 2.5.5 high-rank features selected by mRMR,
were utilized for classifier training. All extracted features varied greatly due to the different
sorts of statistical operations. Therefore, all features needed to be normalized to zero mean
and unit variance to prevent some features carrying greater weight. By forward searching [48],
classification accuracy with different numbers of features for the classifier can be obtained for
the final decision on the feature subset. During the forward searching, the evaluation direction
was decided by the feature rank after mRMR feature selection. If several features gave the same
overall accuracy in one evaluation step, the feature with the highest mRMR rank among these
features was selected as the best individual feature for this step because it carried the highest
relevance to the labels and the minimal redundancy with other features.

In order to accurately estimate the performance of the classifier, leave-one-tissue-site-out
cross-validation (LOSOCV) was used here to avoid potential correlations among one single tissue
site. This approach eliminated the dependency of the classification result on training or on the
testing set selection and reduced the risk of over-fitting. Based on the site number, 72 iterations
for validation were needed in this study. In each iteration, features from one tissue site were
selected as the validation set, while features from the remaining 71 sites were employed as the
training set. After all the cross validation, accuracy, sensitivity, specificity, negative predictive
value (NPV), and positive predictive value (PPV) were calculated per diagnostic category from
all others to evaluate the performance of our classifier.
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3. Results and discussion

The accuracy of the classifier for differentiating breast tissue mainly depends on the number
of features in the subset selected by mRMR criterion. The top 100 high-rank features (47 are
from intensity, 11 are from PD, 12 are from PR, 14 are from LPR, and 16 are from DOPU), as
illustrated in Fig. 3(a), were first selected based on consideration of the required computing time.
Validated by LOSOCV, the overall accuracy for this 100-features-based classifier is 87.2%.

Fig. 3. Results for best feature set selection. For the PS-OCT-based classifier, (a) is the top
100 high-rank feature distribution sorted by mRMR rank, and (b) is the feature distribution
after forward searching, where the best 17 features are marked in red. For the intensity-only
classifier, (c) is the top 100 high-rank feature distribution sorted by mRMR rank, and (d)
is the feature distribution after forward searching, where the best 10 features are marked
in red. Colored regions represent features from degree of polarization uniformity (DOPU,
purple), local phase retardation (LPR, blue), intensity (I, turquoise), phase difference (PD,
dark yellow) and phase retardation (PR, yellow), respectively.

In order to select the best feature subset with the best classification performance, the forward
searching algorithm was implemented, and the overall accuracy was calculated as the evaluation
metric of classification performance. The feature selected in each forward searching step is
shown in Fig. 3(b). The overall accuracy during the forward searching is illustrated as the blue
line in Fig. 4(a), where the accuracy reaches a maximum of 93.5% when selecting 17 features
(marked in red in Fig. 3(b)) for classifier training. There is no evidence to prove that these 17
features are totally independent, but according to the procedure of mRMR, these features are
mutually exclusive features that carried more relevant information to the labels.

The 17 features in the final classifier are summarized in Table 3. All of the 17 features were
derived from the PS-OCT image metrics (PD: n=2, PR: n=6, LPR: n=3, DOPU: n=6), which
also demonstrates that polarization information provided by PS-OCT carried more information
about the tissue type. Among the 4 PS-OCT metrics, PR and DOPU contributed more to increase
the overall accuracy of the classifier compared to the OCT intensity-only classifier. A total of
13 features in the morphological group made up the largest proportion in the final feature set,
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Fig. 4. Prediction performance based on classifier. (a) Overall accuracy during forward
searching, using a model trained by 5-metrics-integrated PS-OCT features and intensity-only
features, illustrated by the blue and orange lines, respectively. (b)-(d) Receiver operating
characteristic (ROC) curves of the 5-metrics-integrated classifier with (b) malignant tumor,
(c) fibro-adipose, and (c) stroma as the positive class, respectively.

mainly because they are more relevant to breast tissue classification, and they occupied a large
proportion of the initial feature set (54/194).

Table 3. Number of final selected features in each category.

Feature group Metrics

I PD PR LPR DOPU

Global 0 0 0 0 0

A-scan Short-range 0 0 2 0 0

PV 0 0 0 0 1

Texture 0 0 1 0 0

Morphological 0 2 3 3 5

Subtotal 0 2 6 3 6

Total 17

The prediction result for this 17-feature-based classifier training is given in Table 4. Among
240 malignant tumor tissue images, 222 were correctly classified, while the remaining 11 were
misclassified as adipose and 7 as stroma. For tissue diagnosed as adipose, 221 of 240 were
correctly classified as adipose, while 17 were misclassified as malignant tumor and 2 as stroma.
Finally, for the stoma group, 230 of 240 were correctly classified as stroma, 9 were misclassified
as malignant tumor, and 1 was misclassified as adipose. Based on these results, the obtained
sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV), and
accuracy for differentiating a breast tissue type from all others are listed in Table 4.
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Table 4. Confusion matrix of model trained by integrated features from PS-OCT images with
highest overall accuracy by forward searching.

Histopathology
Malignant tumor Fibro-adipose Stroma

Malignant tumor 222 17 9

Predicted Fibro-adipose 11 221 1

Stroma 7 2 230

Sensitivity 92.5% 92.1% 95.8%

Specificity 94.6% 97.5% 98.1%

NPV 89.5% 94.9% 96.2%

PPV 96.2% 96.1% 97.9%

Accuracy 93.9% 95.7% 97.4%

To investigate the improvement of classification performance brought by polarization-based
information obtained with the use of the PS-OCT system, only intensity data was used for building
a simplified classifier for comparison. Feature selection by mRMR, as illustrated in Fig. 3(c),
and forward searching were also performed for this intensity-only classifier, whose performance
is illustrated by the orange line in Fig. 4(a). Trained by 10 features, as indicated by the red points
in Fig. 3(d), the intensity-only classifier reached its best result with an overall accuracy of 82.9%.
The receiver operating characteristics (ROC) curves achieved by the 17-feature-based integrated
classifier are illustrated by the blue lines in Fig. 4(b)-(d), with malignant tumor (Fig. 4(b)),
fibro-adipose (Fig. 4(c)), and stroma (Fig. 4(d)) as the positive classes, and the area-under-curve
(AUC) values of 0.98, 0.98, and 0.99, respectively. The ROC curves for the intensity-only
classifier are illustrated by the orange lines in Fig. 4(b)-(d), and the AUC values were 0.90,
0.92, and 0.97 for malignant tumor, fibro-adipose, and stroma, respectively. The differentiation
model based on the integrated features has higher credibility than intensity-only model. This
demonstrated that with the polarization data provided by a PS-OCT system, more information
about the tissue type can be obtained. With this extra tissue information, the differentiation model
for breast tissue will give a more accurate prediction for an unknown tissue type.

Some limitations of the current differentiation model, and further work for optimization, are to
be noted. Although only 17 features were selected for the final model training, initial feature
extraction (20 s / PS-OCT image × 720 PS-OCT images = 4 hours) and forward searching for the
final subset (5 hours) were time consuming (Note the feature extraction and forward searching
were operated using MATLAB on a Windows desktop with an Intel Core i7 2.9GHz and 16GB
RAM). Additionally, the rank of features determined by mRMR varied considerably for different
training datasets, which introduces additional computational time and effort. However, considered
from another perspective, this large amount of alternative initial feature set parameters gives
more degrees of freedom for the training classifier than those from specific fixed-number feature
extraction, which will also improve the prediction accuracy. The time consuming procedure
of extracting 970 features and forward searching was only executed during the training of the
model. Once the final model was built, for a new unknown breast tissue specimen and image, the
tissue type classification will be very quick (<1 s) because only 17 features need to be calculated,
highlighting the potential for real-time clinical application in the future. Furthermore, if there is
a need to accelerate the testing procedure, we can only select the first several features based on
the forward searching result, after trading off the testing time and overall accuracy.

In addition, because the current model is trained through a supervised learning method, the
three types of tissues included in the training set were quite homogeneous, with little or no
regions within the images being other tissue types. This was intentionally selected to make sure
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further computation of the five numerical metrics used for feature extraction were corresponding
to labels in the classifier training. In clinical settings, the tissues encountered are more likely to
be heterogeneous, with a mixture of malignant tumor and normal regions, as shown in Fig. 5.
Only a very small region was malignant tumor while most of the image was stroma. From a
clinical perspective, the histology result would identify this image as containing malignant tumor,
as indicated by the red arrow in Fig. 5(f). However, it was misclassified as stroma because the
malignant tumor region was very small relative to the other dominant tissue type, and the current
model only performed classification. Image segmentation was not included in our algorithm at
the present stage. However, in the near future, we will add a segmentation algorithm to our model
to find important sub-ROIs. Further sub-ROI selection can be employed for heterogeneous tissue
images, followed by calculating numerical metrics for each sub-ROI. Using the features from
those metrics, the predictions for each selected sub-ROI can be obtained. Another alternative
method would be to train the differentiation model based on weakly-supervised or unsupervised
methods, which is an ongoing project in our group. In weakly-supervised or unsupervised
methods, not all training data needs to be labeled, with the potential for margin assessment in
clinical applications to be achieved with reliable accuracy.

Fig. 5. Structural OCT (a), LPR (b), PD (c), PR (d), DOPU (e), and H&E-stained histology
(f) images for a heterogeneous tissue region. Region indicated by the red ovals and arrows
was identified histologically as malignant tumor.

Finally, all the images in this study were imaged ex-vivo after the tissues were surgically
resected from the recruited subjects. Handhold probes for intraoperative OCT imaging of the
in-vivo surgical resection bed and loco-regional lymph nodes has been demonstrated [20]. Current
efforts are underway for the construction and implementation of a handheld PS-OCT surgical
probe that will be integrated with the intraoperative PS-OCT system for in-vivo imaging during
malignant tumor resection and for real-time margin assessment with the implementation of our
tissue differentiation model.

4. Conclusions

In this work, a differentiation model for breast tissues (malignant tumor, fibro-adipose, stroma)
was obtained based on information provided by a lab-built intraoperative PS-OCT system. A total
of 72 sites from 41 human subjects were included in training set, with 10 B-scan frames from
each site extracted for computing five numerical metrics (I, PD, PR, LPR, DOPU) for each frame.
After fine feature subset selection by mRMR and forward searching, the classifier trained by SVM



Research Article Vol. 12, No. 5 / 1 May 2021 / Biomedical Optics Express 3034

was obtained with an overall accuracy of 93.5% for differentiating malignant tumor, fibro-adipose,
and stroma breast tissues. After comparing with a classifier based only on intensity (usually
obtained from standard OCT systems), our multiple-metrics-integrated classifier showed better
differentiation performance. This demonstrates that with additional polarization information
provided by a PS-OCT system, more information about the tissue can be acquired and utilized
by multiple numerical metrics, illustrating the potential of PS-OCT for enhanced breast cancer
detection. With future integration of a handhold surgical imaging PS-OCT probe, real-time
in-vivo margin assessment with machine-learning-based tissue differentiation is anticipated for
surgical breast tumor procedures.
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