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Abstract: Brain signal variability (BSV) has shown to be powerful in characterizing human
brain development and neuropsychiatric disorders. Multiscale entropy (MSE) is a novel method
for quantifying the variability of brain signal, and helps elucidate complex dynamic pathological
mechanisms in children with attention-deficit/hyperactivity disorder (ADHD). Here, multiple-
channel resting-state functional near-infrared spectroscopy (fNIRS) imaging data were acquired
from 42 children with ADHD and 41 healthy controls (HCs) and then BSV was calculated for
each participant based on the MSE analysis. Compared with HCs, ADHD group exhibited
reduced BSV in both high-order and primary brain functional networks, e.g., the default mode,
frontoparietal, attention and visual networks. Intriguingly, the BSV aberrations negatively
correlated with ADHD symptoms in the frontoparietal network and negatively correlated with
reaction time variability in the frontoparietal, default mode, somatomotor and attention networks.
This study demonstrates a wide alternation in the moment-to-moment variability of spontaneous
brain signal in children with ADHD, and highlights the potential for using MSE metric as a
disease biomarker.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental
disorder during childhood and adolescence, with approximately 7.2% of school-aged children
meeting diagnostic criteria [1]. The children with ADHD commonly have some typical symptoms
of inattention, hyperactivity and impulsivity [2], and the symptoms continue into adulthood
in approximately 50% to 60% [3]. The exploration of neuropathological mechanism and
development of ADHD is of significant importance.

Neuroimaging technique provides a potential tool for exploring brain function disorder in
children with ADHD. Accumulating evidence has suggested dysfunction in some important brain
functional connectivity and network topology in the children with ADHD. For example, Zhan et
al. found the disconnection between visual and the other brain regions in children with ADHD
[4]. Furthermore, it has also been found that the ADHD patients exhibited decreased global
efficiency [5] and increased local efficiency [6] compared to healthy controls (HCs). These
studies, from the views of large-scale network, demonstrate that brain functional organization is
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disrupted in children with ADHD [5,7,8], which is also associated with the cognitive dysfunction
of the disorder.

Recent progress in variability of moment-to-moment brain signal provided a new avenue for
exploring local brain function using neuroimaging data. The approach of brain signal variability
(BSV) has shown to be powerful in characterizing human brain development, neural function,
cognitive performance and clinical conditions [9]. BSV depicts the magnitude of some aspects
of variability from moment to moment in neuroimaging time series [9] and can be measured in
forms of variance [10], standard deviation [11,12], mean square successive difference [13,14] or
principle component analysis [15,16]. Another common approach to examine BSV is multiscale
entropy (MSE, [17,18]) that quantifies signal complexity or temporal predictability in a time
series [15,16]. The benefit of MSE measure is that it provides a profile of entropy across multiple
time scales and assigns low values to both highly deterministic and completely random signals,
which makes it explicit to measure signal complexity [16].

To quantify regularity and predictability of signals across multiple time scales, MSE requires a
relatively long time series that can adequately capture the scale dependency [15]. As a novel
imaging tool, functional near-infrared spectroscopy (fNIRS) is suitable for MSE analysis due to
its relatively long temporal information and high sampling rate (≥ 10Hz) [19,20]. Furthermore,
fNIRS is an ideal brain imaging tool for children with ADHD because of its natural imaging
environment, portability, and tolerance for subtle head motion [19–21]. Notably, fNIRS has been
previously used in exploring the neural basis underlying different cognitive demands in ADHD,
such as inhibition [22], working memory [23], cognitive flexibility [24], attention [25], and
emotion regulation [26]. However, since most fNIRS studies focused on the task-associated brain
activation of ADHD, the investigations of intrinsic brain activity in ADHD are relatively few.
Further, how the variability of brain signals was associated with the symptoms of children with
ADHD remains unexplored. Recently, resting state, as an important experimental paradigm, has
been introduced to fNIRS studies. The resting state is a natural imaging condition in which there
is neither overt perceptual input nor behavioral output. Compared to traditional task-associated
brain activation, the resting-state fNIRS (rs-fNIRS), which measures spontaneous or intrinsic
neural activity in brain, can generate comparable results across different studies. Meantime, the
operating procedure is relatively easy for both researchers and participants. With the resting-state
fNIRS imaging, one of our previous studies has revealed that the elderly patients exhibited
decreased MSE compared to HCs [27], which demonstrated the potential of fNIRS imaging
technique and this MSE analysis in children with ADHD.

ADHD has been classified as a neurodevelopmental disorder in the Diagnostic and Statistical
Manual of Mental Disorders fifth edition (DSM-5) [2]; what’s more, both imaging and neu-
ropsychological studies have indicated delayed maturation in ADHD [28,29]. Meanwhile, brain
signal variability is widely accepted that it increases with typical development [30]. Based on
the theories mentioned above, we aimed to apply MSE analyses of fNIRS data to investigate the
BSV in children with ADHD. We hypothesized that children with ADHD would show decreased
BSV compared with age-matched healthy children, and that such variability could be associated
with ADHD symptoms and cognitive dysfunction.

2. Materials and methods

2.1. Participants

Forty-two boys with ADHD (aged 8 to 12 years old, Mean± SD= 9.4± 1.1) were recruited from
the clinics of Peking University Sixth Hospital/Institute of Mental Health. The diagnosis of
ADHD was determined by an experienced psychiatrist using the Clinical Diagnostic Interview
Scale (CDIS) [31,32] in a semi-structured interview according to the criteria of the Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition. The inclusion criteria were as
follows: 1) right-handedness; 2) full scale estimated IQ using the Chinese Wechsler Intelligence
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Scale for Children [33] ≥ 80; 3) medication-naïve (stimulant and non- stimulant medications)
and free of other medical interventions. Patients with a diagnosis of schizophrenia, pervasive
developmental disorders, bipolar disorder, epilepsy, mental retardation, or other brain disorders
were excluded. It should be noted that this study only focused on boys with ADHD considering
that ADHD is more frequently prominent in males with a male-to-female ratio of 4:1 in clinical
samples [34].

Forty-one age-matched healthy control boys (aged 8 to 11 years old, Mean±SD= 9.5± 0.8)
were enrolled from a primary school in the local community. Individuals with ADHD, mania,
bipolar disorder, other major psychiatric disorders, family history of psychosis, and severe
physical diseases were excluded.

This study was approved by the Medical Research Ethics Committee of Peking University
Sixth Hospital. Written informed consent was obtained from the parents of all participants (and
participants themselves if they were at least 10 years old) before the experiment.

2.2. Diagnoses and assessment

In addition to the clarification of an ADHD diagnosis, the CDIS was also used to assess ADHD
subtypes and evaluate comorbidities. Among the recruited boys with ADHD, 22 (52.4%) met the
criteria for the predominantly inattentive subtype (ADHD-I), and 20 (47.6%) met the criteria for
the combined subtype (ADHD-C) (Table 1). Regarding comorbidities, 8 (19.0%) had disruptive
behavior disorder (DBD), including 7 (16.7%) with oppositional defiant disorder (ODD) and 1
(2.4%) with DBD-not otherwise specified (DBD-NOS); 1 (2.4%) had social phobia, 1 (2.4%) had
major depression disorder, 8 (19.0%) had a tic disorder, and 19 (45.2%) had a learning disorder.

Table 1. Demographic and clinical characteristics of ADHD and HCs

Characteristics ADHD (n=42) HCs (n=41) T value P value

Age in years (Mean±SD) 9.4± 1.1 9.5± 0.8 -0.23 0.819 a

IQ (Mean±SD) 110.3± 13.5 115.3± 11.6 -1.80 0.076 a

ADHD subtype (n, %)

ADHD-I 22 (52.4) — — —

ADHD-C 20 (47.6) — — —

ADHD symptoms (Mean±SD)

Inattentive 17.8± 3.2 8.8± 4.7 10.32 <0.001 a

Hyperactive/Impulsive 12.7± 6.0 7.3± 4.5 4.66 <0.001 a

Total 30.6± 7.8 16.1± 8.5 8.09 <0.001 a

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; HCs, healthy controls; SD, standard deviation; IQ,
intelligence quotient; ADHD-I, ADHD inattentive subtype; ADHD-C, ADHD combined subtype.
aThe P value was obtained using two-sample t-test.

The cognitive function was assessed using the reaction time variability (RTV) index adopted
from a Stop Signal Task in the Cambridge Neuropsychological Test Automated Battery (CANTAB).
Each participant was asked to complete a 20-min task, in which the participant must respond to
an arrow stimulus by selecting one of two options, depending on the direction at which the arrow
points. The RTV was calculated as the ratio of standard deviation to mean value of the reaction
time for correct responses for analyses [35]. The RTV data were only available for 39 ADHD
patients (21 ADHD-I and 18 ADHD-C) and 24 HCs.

2.3. Data acquisition

A multichannel near-infrared optical imaging system (Hui Chuang, China) with continuous waves
and a 17 Hz sampling rate was used to collect rs-fNIRS data. Similar to our previous study
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[5], twenty-four light sources (each with two wavelengths: 670 and 830 nm) and twenty-eight
detectors were arranged on the participant’s head, with adjacent source and detector pairs being
3 cm apart and composed of 80 different measurement channels (Fig. 1(A)). Using the external
auditory canals and vertex of the participants as landmarks, the position of these probes was
established according to the international 10-20 system. Specifically, measurement channels 35
and 36 were placed around T3 and T4, and the midpoint of the two channels was localized in Cz
(Fig. 1(B)). Considering changes of the averaged head circumference from 51.5 cm in 8-years-old
children to 53.2 cm in 12-years-old children [36], we estimated the measurement inconsistency
across participants was in the range of 0.09 cm (i.e., [(53.2-51.5)/53.2] × 3 cm; 3cm is the S-D
separation). The positions of the measurement channels were validated by the spatial coordinates,
which were acquired from the structural MRI image of an arbitrary participant with a Siemens
3.0 Tesla scanner. The channels were labeled with vitamin E capsules during structural MRI
scanning and were projected on the network templates from Yeo et al. [37] in further analyses.
According to the templates, six functional networks, i.e., default mode (DMN), frontoparietal
(FPN), ventral attention (VAN), somatomotor (SMN), dorsal attention (DAN) and visual (VN)
networks, were involved and displayed with different colors in our study (Fig. 1(C)).

Fig. 1. Schematic illustration of experimental data collection. (A) Photograph of fNIRS data
collection from a participant. (B-C) The arrangement of the whole-head 80 measurement
channels on a structural brain template, the red and blue dots represent the sources and
detectors, respectively. (B) and a functional network template (C) [37].

2.4. Data preprocessing

The in-house FC-NIRS package (http://www.nitrc.org/projects/fcnirs [19]) was used to preprocess
the current resting-state fNIRS data in this study. First, motion artifacts were examined and
removed from the optical signals using a spline interpolation method [38]. This method detected
the motion-induced artifacts by calculating moving standard deviation (MSD) within sliding
time windows in a window length of 2 seconds. The MSD values larger than a predefined
threshold (e.g., 5 MSD [19]) were regarded as artifacts. The time series that represented the
motion artifacts was further modeled via a cubic spline interpolation, which was then subtracted
from the original signal of the time series. The resulting signal was considered to be free of
motion artifacts. Next, the signals were bandpass filtered with a frequency of 0.01 Hz-0.1 Hz
[39] to diminish the interference of low-frequency drift and high-frequency neurophysiological
noise [40]. Subsequently, they were transformed into the concentrations of oxyhemoglobin
(HbO) and deoxyhemoglobin (HbR) using the modified Beer-Lambert law [41] with a differential
path-length factor of 6 for two wavelengths [41–45]. Finally, an eight-minute stable hemoglobin
time series was extracted from each participant. Note that the HbO data were used for subsequent
analysis considering its better signal-to-noise ratio [46].

http://www.nitrc.org/projects/fcnirs
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2.5. Multiscale entropy and brain signal variability

The multiscale entropy (MSE) algorithm, which has been widely used for characterizing neural
signal complexity, was adopted to estimate brain signal variability (BSV) in this study. MSE was
calculated according to the following steps similar to our previous research [27]. First, the HbO
concentration time series {x1, . . . xi, . . . xN} was downsampled to obtain a coarse-grained time
series for different timescales t. The coarse-grained time series ytwas generated by averaging the
data points within nonoverlapping windows of length t. Each value of the coarse-grained time
series, yt

j, was computed using the following equation:

yt
j =

1
t

∑︂jt

i=(j−1)t+1
xi, 1 ≤ j ≤

N
t

. (1)

xi denotes the value of time point i in the original time series; N defines the number of time
points; and j is the index of each coarse-grained time series. Second, the sample entropy of each
downsampled time series, SE, was calculated by:

SE(m, r) = − ln
Cm+1(r)
Cm(r)

, (2)

where

Cm(r) =
number of pairs(i, j) with |vm

i − vm
j |<r × STD(y)

number of all probable pairs
. (3)

In Eqs. (2) and (3), m defines the pattern length indicating that m consecutive data points are
used for pattern matching, and r specifies the similarity criterion indicating the threshold portion
of the time series standard. In this study, pattern length was set to m=2 and the similarity criterion
was chosen to r= 0.2, which were judged to be optimal and statistically valid following the
method used in [27,47,48]. The data points are considered to have indistinguishable amplitude
values when the absolute amplitude difference among them is lower than r. vm

i is the vector
defined as {vm

i = yi, yi+1, . . . yi+m−1}; the definition of vm
j is similar to that of vm

i , and |vm
i − vm

j |

means the Chebychev distance between vm
i and vm

j .
MSE, the sample entropy across different temporal scales, quantifies the signal variability by

estimating the predictability of amplitude patterns across a time series. While lower MSE values
indicate a low complexity and a high degree of determinacy for the signal, higher MSE values
reflect a high complexity and a low degree of predictability or rich information for the signal.

2.6. Statistical analysis

2.6.1. Between-group differences in brain signal variability

To evaluate group differences in BSV, the MSE values of each channel between the ADHD and
HCs were compared using a multiple linear regression model, in which MSE was considered as
dependent variable, group as independent variable, and age, IQ, age× group (i.e., interaction
effect of age and group) and IQ× group as covariates. In the model, significant group differences
were determined by P values lower than 0.05. False discovery rate (FDR) correction [49] was
used to control the multiple testing error by correcting P values.

2.6.2. Correlation between brain signal variability and ADHD core symptoms/reaction time
variability

Pearson correlation analyses were performed between MSE and ADHD symptom scores
(inattentive, hyperactive/impulsive and total scores) as well as between MSE and RTV in the
ADHD and HCs, respectively. Before the correlation analyses, the effects of age and IQ were
removed by multiple linear regression. FDR correction was conducted to correct the multiple
comparisons.
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3. Results

3.1. Demographic and core symptom

The demographic and core symptom data are presented in Table 1. There were no significant
differences in age (P= 0.819) or IQ (P= 0.076) between the ADHD and HCs. The ADHD group
had significantly higher inattentive scores (P< 0.001), hyperactive/impulsive scores (P< 0.001)
and total scores (P< 0.001) than the HCs group.

3.2. Spatial distribution of brain signal variability in the ADHD and HCs

Similar to previous studies [27,47,50], the area under the curve (AUC) according to the sample
entropy across different temporal scales (i.e., MSE) was adopted to evaluate brain signal variability
(BSV). To obtain an intuitive visual presentation, we adopted bilinear interpolation algorithm
to smooth MSE values across the whole brain. The bilinear interpolation algorithm performs
interpolation calculations in both directions and can be extended from the linear interpolation
between variables. Figure 2(A) shows the group-averaged MSE in ADHD and HC groups,

Fig. 2. MSE and its distribution. (A) The spatial maps of MSE in the whole brain for the
ADHD and HC groups, which were smoothed with bilinear interpolation algorithm and
implemented in MATLAB. The red color indicating higher MSE values and the blue color
indicating lower MSE values. (B) Histogram distribution of MSE values among participants.
The MSE distributions of both the ADHD and HC groups display approximately normal
configurations.
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respectively. We found that the ADHD and HC groups showed similar spatial distributions in
MSE, with large values located in regions of frontal, parietal and occipital cortices (Fig. 2(A)).
However, quantitatively, the MSE values in ADHD were much smaller than those in HCs. The
mean MSE values were 0.62± 0.07 (mean and standard deviation) for ADHD patients and
0.65± 0.08 for HCs (Fig. 2(B)).

3.3. Statistical difference in brain signal variability between ADHD and HCs

Group statistical differences in MSE between ADHD and HC were shown in Fig. 3. Specif-
ically, MSE values on 23 measurement channels, mostly involving the default mode (DMN),
frontopatietal (FPN), visual (VN), ventral (VAN) and dorsal (DAN) networks, were significantly
reduced in the ADHD group (Fig. 3(A)), while two channels in default mode-network still
showed significantly increased MSE values in ADHD patients (P values < 0.05, FDR correction)
(Fig. 3(B)). Significant MSE differences in measurement channels between ADHD and HCs
were included in Table S1 in the supplementary material.

Fig. 3. Group difference analysis of MSE in different channels. (A) The measurement
channels with significantly decreased MSE for ADHD participants compared to HCs
(P< 0.05, FDR correction). (B) The measurement channels with significantly increased
MSE for ADHD participants compared to HCs (P< 0.05, FDR correction).

3.4. Correlation between brain signal variability and ADHD core symptoms/reaction
time variability

Figure 4(A) shows the Pearson correlation between MSE values and core symptoms in the
ADHD group, in which the effects of age and IQ were regressed. A significantly negative
correlation with hyperactive/impulsive scores (r= -0.41; P= 0.007; P= 0.044, FDR correction)
and a marginally negative correlation with total scores (r= -0.37; P= 0.017; P= 0.102, FDR
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correction) were found in FPN, which revealed that lower brain signal variability in the FPN
network was associated with more severe symptoms in the ADHD group. The above correlations
were retained only in the ADHD-C subtype when the analyses were repeated in the two subtypes
separately (r= -0.54; P= 0.014; P= 0.085, FDR correction for hyperactive/impulsive scores;
r= -0.47; P= 0.038; P= 0.230, FDR correction for total scores, respectively).

Fig. 4. Correlation of brain signal variability with core symptoms and reaction time
variability. (A) Pearson correlation between brain signal variability and core symptoms after
regressing age and IQ. (B) Pearson correlation between brain signal variability and reaction
time variability after regressing age and IQ in the ADHD-C group

Increased reaction time variability (RTV) was found in ADHD patients compared to that in
HCs [(0.92 ± 0.67) versus (0.39 ± 0.15), t= 3.98, P= 1.9E-04]. The above difference was also
found in both ADHD-I [(0.83 ± 0.66) versus (0.39 ± 0.15), t= 3.21, P= 0.003) and ADHD-C
participants [(1.03 ± 0.68) versus (0.39 ± 0.15), t= 5.01, P= 1.1E-05]. For the correlation
between RTV and MSE values, no significant association was found in the whole ADHD group
or in HCs. When analyzing ADHD subtypes, a negative correlation was found between MSE in
the whole brain (r= -0.58, P= 0.012), VAN (r= -0.67; P= 0.003; P= 0.015, FDR correction),
DMN (r= -0.63; P= 0.006; P= 0.017, FDR correction), FPN (r= -0.49; P= 0.037; P= 0.074,



Research Article Vol. 12, No. 5 / 1 May 2021 / Biomedical Optics Express 3045

FDR correction), somatomotor (SMN) (r= -0.47; P= 0.047; P= 0.070, FDR correction) and
reaction time variability in ADHD-C (Fig. 4(B)).

4. Discussion

In our present study, we used multiscale entropy (MSE) analysis to evaluate fNIRS signal
variability in children with ADHD and typically developed controls. As we expected, categorical
analyses indicated decreased brain signal variability (BSV) measured by MSE in boys with
ADHD compared with age-matched healthy controls. Further quantitative analyses showed a
negative association between altered MSE values and ADHD core symptoms, indicating lower
BSV in the frontoparietal (FPN) network associated with more severe hyperactive/impulsive
symptoms. Another important and interesting finding was that decreased BSV was negatively
associated with increased reaction time variability (RTV) in children with ADHD.

Despite conflicts, strong evidence from recent studies has indicated that signal variability
might increase with maturation. In the study by [16], the authors used two measures to evaluate
BSV: principal component analysis (PCA) and MSE; both indicated increased brain variability
with maturation from childhood (8-9 years old) to young adulthood (20-33 years old). When
extending the analysis to include healthy aging, the authors found an inverted U-shaped curve with
the development of BSV from childhood to old age [51]. For our present study, we focused on
children with ADHD and healthy controls aged 8-12 years old. As supported by a previous study
[16,52], BSV should increase with maturation. ADHD has been considered a neurodevelopmental
disorder with delayed maturation in brain development. Briefly, a marked delay of approximately
3 years of cortical maturation was found in ADHD, with the most prominent delay in the
prefrontal regions [29]. Consistent with this, Qian et al. [28] found that children with ADHD
had development-related delays in inhibition and shifting functions. Considering the delayed
development of ADHD and the ‘increasing BSV’ theory for typical developing individuals [30],
our present study indicated that the MSE values in children with ADHD were indeed lower
compared with HCs.

Another interesting finding is the negative correlation between decreased BSV and the increased
cognitive variability (reaction time variability, RTV) in children with ADHD. The greater BSV
representing well-functioning neural systems could enable the brain to respond to a task or the
environment more accurately and smoothly, leading to more stable behavior or cognitive function
[53]. That is, if the BSV decreases, the brain cannot process the information efficiently and
quickly, leading to increased cognitive variability. This negative correlation has been confirmed
in children with normal development, in which increased BSV accompanies lower behavioral
variability [16]. Numerous studies have indicated increased RTV in patients with ADHD [54–56].
In fact, in a previous study, frontocentral theta-band phase variability was indicated to be closely
linked with RTV in children with ADHD both phenotypically and genetically [57]. However,
frontocentral theta-band phase variability does not account for the temporal disorganization of
neural dynamics, while our findings indicate a correlation between moment-to-moment BSV
and cognitive variability. RTV is an important index of sustained attention. Impaired sustained
attention always occurred in children with ADHD [58], which was even state-independent and
should be an endophenotype of ADHD [59]. Our present study provides the potential neural
evidence underlying increased RTV in children with ADHD. This ‘brain-behavior’ relationship
will also promote our understanding of the pathogenesis of ADHD. Significantly, the deficiency
of sustained attention occurs not only in ADHD, but also in other psychiatric disorders, such as
anxiety disorders [60] and mood disorders [61]. As such, our present finding will also provide
meaningful reference for the research of other psychiatric disorders.

As for the functional brain networks, we found that the children with ADHD showed reduced
BSV in both high-order (DMN, FPN, VAN and DAN) and primary brain functional networks
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(VN). These findings are interesting because they demonstrate a wide alternation in the moment-
to-moment variability of spontaneous brain signal in children with ADHD. These results did not
change when considering ADHD subtypes (Table S2). However, the quantitative analyses of
ADHD symptoms only indicated the association between altered BSV in FPN and hyperactive-
impulsive symptoms. The FPN has been suggested to be a flexible hub for cognitive control [62].
Dysfunction of FPN is a well-confirmed finding in the MRI study of ADHD and ADHD-related
cognitive dysfunction, including impulsive symptoms [8,63] and inhibition [64]. Our current
findings support the critical role of FPN in ADHD, especially the hyperactive/impulsive symptoms,
on a temporal scale. The other networks revealed from the categorical analyses, including DMN,
VAN, SMN, are also worthy of further exploration with respect to other behavioral domains
and cognitive functions. In addition, the brain networks are not isolated but have complex and
multiple connections. Therefore, the investigation of the inter-correlation of BSV among these
brain networks may also be helpful to understand the neural dynamic complexity in participants
with ADHD more comprehensively.

Several limitations should be considered for our current study. First, the sample size is relatively
small, and we could not investigate the potentially explicit confounding effects of comorbidities on
our findings. In addition, most results were marginal after corrections for multiple comparisons,
which may also be due to the limited sample size. Second, we only included males for analyses,
which may limit the generalization of our findings only to males. Third, we only recruited
children as participants. Adults recruited in the future could enable us to better understand the
age-related changes in BSV in participants with ADHD. Finally, although we adopted the spline
interpolation method to remove head motion artifacts, the potential influence of head motion
could still exist. Future studies are expected to combine motion-removing approaches and motion
record system to eliminate the influence of head motions.

5. Conclusion

In summary, we utilized resting-state fNIRS imaging to explore the brain signal variability (BSV)
in children with ADHD and estimated its association with ADHD core symptoms and cognitive
function. The results revealed decreased BSV in children with ADHD compared to typically
developing controls and decreased brain variability in ADHD was accompanied by increased
ADHD core symptoms and disrupted cognitive function. Our results provide novel insights and
potential biomarkers for the diagnosis of ADHD. Replications of these experiments in larger,
independent population samples with wider age ranges are needed to confirm our preliminary
findings.
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