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Abstract

Despite the association of prevalent health conditions with coronavirus disease 2019 (COVID-19) severity, the
disease-modifying biomolecules and their pathogenetic mechanisms remain unclear. This study aimed to understand the
influences of COVID-19 on different comorbidities and vice versa through network-based gene expression analyses. Using
the shared dysregulated genes, we identified key genetic determinants and signaling pathways that may involve in their
shared pathogenesis. The COVID-19 showed significant upregulation of 93 genes and downregulation of 15 genes.
Interestingly, it shares 28, 17, 6 and 7 genes with diabetes mellitus (DM), lung cancer (LC), myocardial infarction and
hypertension, respectively. Importantly, COVID-19 shared three upregulated genes (i.e. MX2, IRF7 and ADAM8) with DM and
LC. Conversely, downregulation of two genes (i.e. PPARGC1A and METTL7A) was found in COVID-19 and LC. Besides, most of
the shared pathways were related to inflammatory responses. Furthermore, we identified six potential biomarkers and
several important regulatory factors, e.g. transcription factors and microRNAs, while notable drug candidates included
captopril, rilonacept and canakinumab. Moreover, prognostic analysis suggests concomitant COVID-19 may result in poor
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outcome of LC patients. This study provides the molecular basis and routes of the COVID-19 progression due to
comorbidities. We believe these findings might be useful to further understand the intricate association of these diseases as
well as for the therapeutic development.
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Introduction
The ongoing COVID-19 pandemic has plagued the entire world
[1–4] with a 3.55% global case fatality rate (CFR), as of 17 August
2020 (Source: Statista). The etiological agent of this international
outbreak is an RNA virus known as severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) that belongs to the Coron-
aviridae family [1, 2, 5]. Depending on the demography and envi-
ronments, the spectrum of clinical manifestations ranges from
the common cold to respiratory failure [6–9]. Importantly, the
persistence and prognosis of COVID-19 are greatly influenced
by the underlying health conditions and age of the patients [10,
11]. Two or more coexisting health conditions are comorbidities
when they influence each other with their shared pathogen-
esis [12, 13]. Remarkably, the most frequent comorbidities in
COVID-19 are hypertension (HT) (27–30%), diabetes (19%) and
coronary heart disease (6–8%) [5, 8, 11, 14]. Their associations
may lead to the discovery of other potential risk factors that
might help in identifying and managing high-risk populations
[11, 15]. Although comorbidities are associated with the severity
of COVID-19, the specific disease-modifying mechanisms need
to be investigated [8].

The clinical manifestations of COVID-19 occur once the
Spike (S) protein of SARS-CoV-2 binds to its cell surface
receptor angiotensin-converting enzyme 2 (ACE2) that activates
the innate immune system, leading to catastrophic cytokine
storms, excessive release of pro-inflammatory cytokines and
chemokines [16–19]. ACE2 expresses in most metabolic tissues
and organs, including the lung, pancreas, intestine and kidneys
[19]. Recent studies revealed HT as one of the most frequent
comorbidities in COVID-19 patients [5]. In a study, about 23.4%
of the severe COVID-19 patients (N = 1099) were reported to have
HT [20]. Previously, clinical studies suggested HT as a risk factor
for high death rates in SARS and MERS as well [21]. Patients
with HT and cardiovascular disease are usually treated with
ACE inhibitors and angiotensin receptor blockers (ARBs) that
increase the expression of ACE2 which in turn attracts more viral
load [22]. Therefore, disease severity may arise due to the role of
ACE2 in the pathogenesis of HT and cardiovascular diseases [5].
Though the coexistence of HT and SARS-CoV-2 showed a higher
mortality rate, there is insufficient evidence to establish the link
between the prevalence of HT and the susceptibility for SARS-
CoV-2 infection [5]. Hence, the specific molecular mechanism of
high blood pressure that may be responsible for the severity of
COVID-19 is yet to be studied.

Being the most prevalent global disease, diabetes has become
the most common risk factor in COVID-19 patients [23]. Nation-
wide analysis in China showed that 34.6% of diabetic patients
have developed a severe form of COVID-19 [24]. However, cur-
rent data indicate that diabetic individuals are not prone to be
infected with SARS-CoV-2 compared to the general population;
rather, it could provoke the severity of COVID-19 [19, 25, 26].
Although earlier studies were focused on type 2 diabetes, recent
studies suggested that COVID-19 patients with type 1 diabetes
could also be at a potential risk of disease severity [27]. As

mentioned earlier, ACE2 receptors are expressed in metabolic
organs/tissues/cells, for example, pancreatic beta cells associ-
ated with controlling glucose metabolism; hence, entry of SARS-
CoV-2 may lead to altered glucose metabolism, which possibly
complicates the pathophysiology of predominant diabetes [19,
27, 28]. Furthermore, patients with lung cancer (LC) are prone
to the severity of COVID-19 [29, 30]. In a homogenous study, a
significant spike in CFR (52.3%) has been observed in LC patients
with COVID-19 infection as compared to the general population
[31]. Considering the predisposition of lung infection and com-
promised immunity in LC patients, the higher CFR from COVID-
19 in LC patients is not surprising. Therefore, identification of the
genetic determinants that may have worsened the LC outcome is
important for optimal care during this pandemic. Hence, genetic
determinants that are triggered by the COVID-19 and lead to a
poor prognosis should be determined.

In our previous study, we determined the pathogenetic pro-
file and comorbidities related to COVID-19 and SARS-like viruses
[32]. We identified different risk factors and biomarkers involved
in the disease progression. Therefore, this study aims to reveal
the molecular basis for the prevalence of COVID-19 with the
four major comorbidities (i.e. diabetes, cardiovascular disease,
HT and LC) as well as the routes of their shared pathogenesis fol-
lowing the workflow depicted in Figure 1. Functional enrichment
of their shared pathogenesis will provide a specific disease-
modifying mechanism that may link these comorbidities with
COVID-19 progression and vice versa.

Materials and methods
Datasets

To assess the impact of COVID-19 and its genetic association
with other prevalent diseases, we retrieved and analyzed the
relevant RNA-Seq and microarray datasets from the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/). We utilized the
gene expression data of COVID-19 and four relevant diseases i.e.
diabetes mellitus (DM), LC, myocardial infarction (MI) and HT. In
total, five different datasets with accession numbers GSE147507,
GSE95849, GSE136043, GSE24519 and GSE113439 were used in
this study [33–36]. The COVID-19 dataset (GSE147507) is an
Illumina NextSeq 500 (Homo sapiens) platform-derived RNA-Seq
data of lung epithelial cells treated with SARS-CoV-2 and healthy
tissues in triplicates. The diabetes dataset (GSE95849) is a gene
expression profile of six DM patients and six normal individuals,
which has been developed using the Phalanx Human lncRNA
OneArray v1_mRNA platform. The LC dataset (GSE136043) is
a messenger ribonucleic acid (RNA) (mRNA) microarray using
Agilent-026652 Whole Human Genome Microarray 4x44K v2,
which includes five fresh tissues from LC patients and normal
controls. The MI dataset (GSE24519) is an expression microarray
that has been derived from 17 patients with their first acute MI
compared with healthy individuals using the CodeLink™ Human
Whole Genome Bioarray. Finally, the HT dataset (GSE113439) is
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a gene expression profile that has been derived from the lung
tissue from 15 patients with pulmonary arterial HT and from
11 normal controls using the Affymetrix Human Gene v1.0 ST
Array.

Analysis of differential expression and shared DEGs

In this study, we employed publicly available RNA-Seq and
microarray datasets. Initially, the RNA-Seq data were normalized
and converted to microarray equivalent using the DSeq2 R
package to facilitate easy comparison. To identify differentially
expressed genes (DEGs) in each dataset, we applied the Limma
R package using two criteria, such as log2 fold change (FC) and
adjusted P-value. We have considered log2FC ≥ 1 for upregulated
genes and log2FC ≤−1 for downregulated genes. Further, an
adjusted P-value ≤ 0.05 was used to filter out significant DEGs.
Next, to determine the shared DEGs, we compared COVID-19
dataset with four other selected diseases using Venny v2.1
web tool (https://bioinfogp.cnb.csic.es/tools/venny/). The gene–
disease network (GDN) was created using bipartite graph theory
[13, 32] and was visualized with Cytoscape v3.7 [37].

Distribution of DEGs and comorbidity profiling

Chromosomal location and expressional distribution of a gene
are important to understand the pathophysiology of specific
genes and to identify drug targets. Therefore, the chromosomal
location of the DEGs was anticipated with the ShinyGO web
tool [38]. Further, we utilized the PaGenBase dataset via the
Metascape web server [39] for the tissue-specific distribution
of DEGs. To determine the comorbidities associated with the
DEGs, we used the DisGenNet database via the Metascape server
[39]. Statistical significance was set to adjusted P-value ≤ 0.05.
The expression pattern of the shared DEGs in other diseases
was assessed with the Expression Atlas database [40]. The co-
expression data were retrieved based on the log2FC of each gene
for which disease versus normal datasets were considered. A
clustered heatmap was created with the disease-wise expres-
sion value (log2FC) of shared DEGs using the Morpheus web tool
(https://software.broadinstitute.org/morpheus/).

Enrichment of GO and signaling pathways

We predicted the signaling pathways and gene ontologies asso-
ciated with the shared DEGs by using different databases via
the Enrichr web server [41]. For pathways, we considered Reac-
tome (2016), KEGG pathways (2019) and WikiPathways (2019)
databases, while we considered biological process (2018), cellular
component (2018) and molecular function (2018) for gene ontolo-
gies. The significant pathways were filtered with the adjusted P-
value and the cutoff score was set to 0.05. The enrichment plots
were visualized using the ImageGP web tool (http://www.ehbio.
com/ImageGP/).

Analysis of protein–protein interaction

Protein–protein interaction (PPI) of the shared DEGs was ana-
lyzed using the STRING database via NetworkAnalyst v3.0 web
server [42]. The PPI network was constructed by using the generic
PPI option, where the organism was specified to H. sapiens,
STRING with experimental evidence as the dataset and confi-
dence score cutoff was set to 900. To determine potential hubs
within the PPI network, we then applied different local- and
global-based methods using cytoHubba plugin [43] in Cytoscape

v3.7 [37]. While the local method ranked hubs based on the
relationship between node and its direct neighbor, the global
method ranked hubs based on the interaction between the node
and the whole network [43]. In total, five different methods were
considered, including three local rank methods, i.e. degree, max-
imum neighborhood component (MNC), maximal clique central-
ity (MCC), and two global rank methods, i.e. edge percolated
component (EPC) and betweenness [43]. Next, we compared the
results and identified the common nodes as the most potential
hubs. Finally, the networks were customized with Cytoscape
v3.7.

Identification of regulatory biomolecules

Regulatory molecules such as transcription factors (TFs) and
microRNAs (miRNAs) are responsible for significant changes in
transcription and expression outcomes. Therefore, we employed
experimentally verified JASPAR [44] and miRTarbase v6.0 [45]
datasets via the NetworkAnalyst v3.0 web tool [42] to anticipate
TF–gene and miRNA–gene interactions. To eliminate non-major
signature molecules, we filtered the TF–gene and miRNA–gene
networks with degree centrality of 5 and 2, respectively. Both
networks were customized with Cytoscape v3.7 [37].

Protein–drug interaction network

One of the primary objectives of this line of research focuses on
pinpointing the potential drug molecules. With the shared DEGs,
we determined the protein–drug interaction (PDI) network using
NetworkAnalyst v3.0 web server [42] equipped with DrugBank
v5.0. The network data were downloaded and customized with
the Cytoscape v3.7 [37].

Survival analysis of the LC-associated genes

The effect of shared DEGs on LC patient’s survival was evalu-
ated with PrognoScan server [46] and the survival plots were
generated. The PrognoScan is a widely used server for survival
analysis based on the genomics datasets from multiple cancers.
It uses quickly confirmed disease prophecies, including overall
survival (OS), relapse-free survival (RFS), distant metastasis-free
survival (DMFS) and post-progression survival (PPS). The Cox
P-value less than 0.05 was considered statistically significant.

Results
Differentially expression and distribution of DEGs

We analyzed and identified 108, 3022, 1532, 1361 and 618
significant DEGs (Adj. P ≤ 0.05) in COVID-19, DM, LC, MI and
HT, respectively. Among them, the number of upregulated genes
was 93, 2878, 722 and 853, respectively, while the number of
downregulated genes was 15, 144, 810 and 508, respectively
(Supplementary File S1-5). After comparing the COVID-19 with
other datasets, we found 49 unique shared DEGs in which 42
genes were upregulated (Figure 2E) and only 7 genes (i.e. CXCL14,
CYP4F3, MAP7D2, METTL7A, NANOS1, PPARGC1A and VTCN1)
were downregulated (Supplementary File S6). To understand
the pathogenetic involvement of COVID-19 with the aforesaid
diseases, we performed a cross-comparative analysis among the
gene expression profiles. The Venn diagram of Figure 2A shows
that COVID-19 shares 28, 17, 6 and 7 genes with DM, LC, MI
and HT. To visualize their association, we constructed a gene–
disease relationship network (GDN) centered on the COVID-19
as shown in Figure 2E. Particularly, three genes (i.e. ADAM8, IRF7
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Figure 1. The proposed workflow for deciphering genetic determinants in COVID-19 pathophysiology. The RNA-Seq and microarray datasets of COVID-19 and four

other diseases (i.e. DM, MI, LC and HT) were collected and analyzed for comparative gene expression analysis. In doing so, R package DSeq2 and Limma were applied for

RNA-Seq normalization and differential expression, respectively. Herein, log2FC ≥ |1| was used to identify DEGs, and statistical significance was set to adjusted P-value

≤ 0.05. Next, the DEGs were subjected to functional enrichment in terms of distributions, GO and pathways, comorbidities, PPI, regulatory biomarkers, PDI and survival

analysis. For PPI, the network was constructed with STRING confidence cutoff of 900 and potential hubs were identified using five different methods, while regulatory

factors (e.g. TFs and miRNAs) were determined with degree centrality of 5 and 2, respectively. To detect the top-ranked factors, additional filtering was done using

betweenness centrality of 50 and 100, respectively. For pathways, we considered Reactome (2016), KEGG (human; 2019) and WikiPathways (human; 2019) databases,

while GO terms were determined with Biological Process (2018), Cellular Component (2018) and Molecular Function (2018) databases. In both cases, the adjusted P-value

≤ 0.05 was considered statistically significant.

and MX2) were upregulated among COVID-19, DM and LC, while
a single gene SLC6A14 was common among COVID-19, MI and
HT. Likewise, upregulation of TLR2 was observed in COVID-19,
DM and HT. Further, CCL20 expression was shared with LC and
HT. Conversely, COVID-19 shares downregulation of two genes
(i.e. PPARGC1A and METTL7A) with LC and NANOS1 with MI.

Targeting a protein at the transcription level requires the
exact cellular and molecular locations of the respective genes as
depicted in Figure 2B and C). Most of the shared DEGs (11) were
located at chromosome 11, while chromosomes 1 and 12 contain
5 DEGs each. Rest are distributed throughout the genome except
for 3, 9, 16, 18 and Y chromosomes. Shared DEGs were also absent
in the mitochondrial (MT) genome (Figure 2B). The expressional
distribution of DEGs throughout the cells and tissues reveals that
most of the DEGs are expressed in lung tissue (12), followed by
spleen (8), liver (6) and blood (5), while the lowest number of
genes (3) is expressed in the bone marrow tissue and dorsal root
ganglion (DRG) cells (Figure 2C; Supplementary File S7).

Expressions of DEGs in other diseases
and comorbidities
Based on the gene–disease dataset, we identified the top 20 dis-
eases that are highly relevant to our shared DEGs (Supplemen-
tary File S8). Figure 2D shows the number of genes involved with
significant diseases. Herein, most of the shared DEGs were found
to be related to causing liver cirrhosis (10), followed by influenza
(8), colonic neoplasms (7) and other diseases. Importantly, five
DEGs were found to be involved in rheumatoid arthritis, liver
injury, DM, MI and reperfusion injury (Figure 2D). Out of a total of
49 shared DEGs, co-expression data of 48 genes were available in
the Expression Atlas for 33 different health conditions as shown
in Figure 3 (Supplementary File S9). Based on the heatmap, we
found that the expression of shared DEGs varies with diseases.
For instance, most DEGs were positively regulated in respiratory
diseases, arthritis, psoriasis, glioblastoma, Crohn disease,
ulcerative colitis, colorectal cancer, skin diseases, pneumonia,
keratosis, lupus erythematosus, esophageal cancer, etc. as

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab197#supplementary-data
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Figure 2. Comparison, distribution and comorbidities of shared dysregulated genes. Herein, (A) comparison of gene expression: (i) COVID-19 with DM and LC and (ii)

COVID-19 with MI, and HT using Venn diagram, (B) chromosomal location of genes, (C) tissue- and cell-specific distribution of genes, (D) top-20 diseases associated

with shared DEGs and (E) infectome–diseasome network where the octagon-shaped nodes represent five diseases, while circular nodes delineate the genes involved.

Nodes with light violate color indicate upregulated genes and light blue indicate downregulated genes.

evidenced by the pink-colored cluster (Figure 3). Conversely,
DEGs were negatively regulated in erythroleukemia, prostate,
LC, pituitary disease, etc. as evidenced by the green clustered at
the top of the heatmap (Figure 3).

Signaling pathways and gene ontologies

In a complex disease, a diverse range of signaling pathways
and GO terms are involved in the orchestration and progres-
sion of diseases. In this process, we used 49 shared DEGs to
determine significant pathways and gene ontologies that may
link COVID-19 and the four considered diseases. Figures 4 and
5 show 30 significant pathways and 30 GO terms from three
datasets (top-10 terms from each; Supplementary File S10-11).
Pathways and GO terms were selected based on the number of
genes involved and adjusted P-value less than or equal to 0.05.
Most of the pathways are related to inflammatory responses (15)
followed by bacterial/viral infections (9). Other pathways include
angiogenesis/cancer (two), brain disease (two) and metabolisms
(two) as shown in Figure 4. Top-10 pathways are immune system,
cytokine signaling in the immune system, innate immune sys-
tem, herpes simplex virus 1 infection, neutrophil degranulation,
interferon-alpha/beta signaling, interferon signaling, signaling

by interleukins, IL-17 signaling pathway and cytokine–cytokine
receptor interaction (Figure 4).

In addition to signaling pathways, over-presented GO groups
were predicted for shared DEGs. Totally 30 GO terms were
selected based on the number of genes and adjusted P-value
less than or equal to 0.05. Top-10 GO terms were identified
as immune system process (35), cellular response to chemical
stimulus (34), immune response (33), response to stress (32),
response to external stimulus (31), cell surface receptor signaling
pathway (29), response to organic substance (29), defense
response (28), regulation of signal transduction (28) and multi-
organism process (27) as shown in Figure 5. These ontological
features were common in SARS-CoV disease and COVID-19
complications. Therefore, they could either be risk factors or
regulatory checkpoints in COVID-19 disease.

PPI network and hub-proteins

A PPI network has been built from the common DEGs’ interac-
tions, which consists of 185 nodes and 201 edges (Figure 6A). We
employed five methods to determine the hub-proteins, where
each method identified the top-10 hub-nodes within the PPI
network (Figure 6B–E). Interestingly, 6 out of 10 hub-proteins

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab197#supplementary-data
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Figure 3. Heatmap showing the level of expression of shared DEGs in various diseases. Herein, green- and pink-colored boxes indicate the over- and underexpression

of the genes in respective diseases, respectively, while the clustering feature shows the related co-expression of the genes based on the log2FC values of the shared

DEGs.

were common in all methods except for MNC (data not shown
here). As anticipated by four different methods and exhibited
a minimum of eight interconnections, we recognized six
hub-nodes as potential hub-proteins, i.e. SOCS3, TLR2, BIRC3,
PPARGC1A, HELZ2 and IRF7. The biological functions of these
hub-proteins are tabulated in Table 1. Conversely, MNC method
predicted only three proteins (i.e. MMP13, NFKB1 and LIF) from
the shared DEGs as hubs that were not found by other methods.

Transcriptional and post-transcriptional biomarkers

Using the shared DEGs, we found 45 miRNAs and 29 TFs that
might influence the expression pattern of those genes and lead
to the progression of diseases as depicted in Figure 7 and Sup-
plementary File S12. Among all the miRNAs, we identified seven
miRNAs (i.e. miR-98-5p, miR-146a-5p, miR-335-5p, miR-204–5p,
miR-34a-5p, miR-26b-5p and miR-106b-5p) with betweenness
centrality ≥ 100 (Figure 7A). These miRNAs may involve in the
progression of COVID-19 and other diseases. Out of a total 29
TFs, the top 10 TFs (i.e. FOXC1, GATA2, NFKB1, YY1, PPARG, RELA,
USF2, JUN, CREB1 and E2F1) were identified with betweenness
centrality ≥ 50 as shown in Figure 7B. Apart from these, our study
includes TFs and miRNAs that are highly relevant to COVID-19
and other disease progressions as described in the Discussion
section.

Potential drug candidates

Using the PDI approach, we found a total of 36 drug molecules
acting against three proteins (i.e. IL1B, MMP9 and MMP13) out
of 49 protein-coded genes. Figure 8 showed the interactions
among the target proteins and drug candidates. Among all, 14
drugs showed antagonistic relationships to MMP13, followed by
IL1B (13) and MMP9 (11). Only six drugs were found approved
(i.e. rilonacept, canakinumab, gallium nitrate, minocycline, glu-
cosamine and captopril), while others were either experimental
(18) or investigational (12). Importantly, most of the molecules
were anti-inflammatory drug candidates, such as rilonacept,
canakinumab, gevokizumab, andrographolide, VX-702, etipred-
nol dicloacetate, SCIO-469 and dilmapimod.

Effect of COVID-19 on the prognosis of LC patients

Out of 17 shared DEGs between COVID-19 and LC, significant
patient survival statistics were found for 15 genes (Supplemen-
tary File S13). Figure 9 shows the probability of OS for each gene
based on their positive and negative expressions. In most cases,
the analysis revealed a significant positive correlation for the
OS rate. For COVID-19-like expression, for instance, the chances
of survival in LC patients tend to reduce due to the COVID-19-
related expression of nine DEGs (i.e. ADAM8, C3, CCL20, CXCL14,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab197#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab197#supplementary-data
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Figure 4. Signaling pathways involved with the shared dysregulated genes. For important pathways, we used Reactome (2016), KEGG (2019) and WikiPathways (2019)

datasets and presented 30 most relevant pathways (top-10 from each of three databases) with adjusted P-value less than 0.05.

FAM167A, METTL7A, PPARGC1A, SAA2 and TYMP), while the sur-
vival rate increases for five DEGs that include IFITM1, IRF7, LIF,
MAP7D2 and VTCN1. The OS outcome was not affected by the
MX2 gene regardless of its dysregulation. Therefore, the results
suggested that genetic expression in COVID-19 may lead to a
poor prognosis in LC patients.

Discussion
In this study, we analyzed and compared gene expression data
of COVID-19 and four related comorbidities to understand their
shared pathogenesis leading to the severity of SARS-CoV-2 infec-
tion. We found that COVID-19 showed higher relevance to DM
and LC as suggested by their shared gene expression. Besides,
six key proteins were identified, which are central to COVID-
19 and associated comorbidities. Furthermore, the shared DEGs
determined in this study were found to have an impact on the
survival of LC patients. Finally, we identified notable gene reg-
ulatory components, such as TFs and miRNAs, that essentially
control the major pathways involved in these diseases.

Based on the comparative analysis, the COVID-19 transcrip-
tome revealed 49 DEGs that are common to the considered four
comorbidities. Out of 49 shared DEGs, most of the genes were
upregulated while very few were downregulated (i.e. CXCL14,
CYP4F3, MAP7D2, METTL7A, NANOS1, PPARGC1A and VTCN1).

Interestingly, we found that COVID-19 shares most of the DEGs
(28) with diabetes and 17 DEGs with LC. While the latter case is
not surprising given the site of pathogenesis, such association
with the former is quite interesting. It could be orchestrated by
several genes acting in concert. For example, the upregulated
IRF7 gene is associated with the pathogenesis of LC and type
1 diabetes [58, 59]. Further, the elevated expression of ADAM8
was observed in type 2 diabetes [60]. It also causes malignant
cell growth and leads to poor outcomes in cancer patients [61].
The poor survival associated with ADAM8 expression is also sup-
ported by our survival analysis. In our study, ADAM8 was upreg-
ulated in COVID-19, DM and LC, and its upregulation revealed
a poor prognosis in LC patients. Therefore, the results coincide
with the previous study. Another gene MX2 encodes for inter-
feron (IFN)-induced GTP-binding protein, which is found to be
overexpressed in lung adenocarcinoma [62] and is involved in
a better survival rate in skin cancer [63]. However, we did not
find any significant difference in the survival outcome in LC with
the expression of MX2 gene. COVID-19 shares the upregulation
of CCL20 gene with LC and HT. It promotes LC through the
proliferation and migration of cells using the PI3K and ERK
signaling pathways [64]. Its overexpression is also involved in
airway inflammation leading to severe asthma, HT, liver injury
and LC [64–67]. Furthermore, we found upregulated CCL20 which
is associated with better survival in LC patients. We observed
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Figure 5. Gene ontological groups related to the shared dysregulated genes. For GO terms, we used biological process (2018), cellular component (2018) and molecular

function (2018) databases. The figure depicted the 30 most relevant GO terms (top-10 from each of three databases) with an adjusted P-value less than 0.05.

that the upregulation of KRT6B is shared between COVID-19 and
MI patients. Being a key mediator of the Notch signaling path-
way, KRT6B enhances atherosclerosis by promoting endothelial
dysfunction [68], which in turn may lead to the MI episode [69].

The manipulation and control of genes require their specific
locations in the genome on which the expression depends. The
majority of the shared DEGs are located at chromosomes 1, 11
and 12. Interestingly, in a study on a mouse model, chromosome
12 is found to be linked with airway hyper-responsiveness [70].
Besides, chromosome 11 holds fundamental genes related to
metabolism and cell proliferation that are involved in a variety
of cancers, especially in LC [71]. Moreover, most of the genes
were found to be related to lung and spleen tissues. Therefore,
our finding is supported by the characteristic features of COVID-
19. To further validate the association of COVID-19 with selected
comorbidities and other diseases, we applied the shared DEGs,
which revealed potential risk factors and diseases. In addition
to the selected comorbidities, the Metascape server suggested
the top 20 complications, including reperfusion injury, liver cir-
rhosis and injury, psoriasis, dermatitis, rheumatoid arthritis,
inflammation, ulcerative colitis, hypersensitivity, cancers, etc.
Interestingly, recent reports are in line with our findings. For

instance, the COVID-19 severity is prevalent in patients with liver
cirrhosis and associated injuries [72, 73]. Studies suggested that
psoriatic patients could be more susceptible to COVID-19 [74,
75]. Kutlu and Metin [76] recently reported that 9.6% of COVID-
19 patients had a history of psoriasis. This is plausible since
psoriasis developed due to the hyper-inflammatory reactions,
which are highly prevalent in COVID-19 [74, 75]. Further, the
shared DEGs were submitted in the Expression Atlas to deter-
mine their expression levels in associated comorbidities. Like
in COVID-19, most of the shared DEGs were highly upregu-
lated in various identified diseases, i.e. skin diseases, glioblas-
toma, psoriasis, Crohn disease, ulcerative disease, pneumonia
and keratosis. Therefore, this finding coincides with the predic-
tion done by the Metascape server, hence, validates our study
as well.

Further, we selected the top 30 pathways that may play a
crucial role in disease development. Notably, most of the genes
and identified pathways are related to pro-inflammatory reac-
tions (i.e. cytokine productions) and response to viral infections,
which explains the cytokine storms in COVID-19 severity [16,
19]. The predicted pathways include Th1-secreted cytokines (i.e.
lFN-γ , IL-1 and IL-2), Th2-mediated cytokines (i.e. IL-4, IL-13 and



COVID-19 impact on health conditions 9

Figure 6. The PPI network. This network contains (A) a total of 185 proteins, including 13 shared DEGs in which hubs were predicted and indicated according to

degree method using STRING database (confidence cutoff of 900). Four smaller networks are depicting hub-proteins anticipated by (B) degree, (C) MCC, (D) EPC and (E)

betweenness methods. For all methods, top-10 hub-nodes are ranked with red- to yellow-colored gradient.

Table 1. The name and biological significance of the potential hub-nodes

Hub-Proteins Name Functions UniProt ID References

SOCS3 Suppressors of cytokine
signaling 3

SOCS3 is a negative regulator of the JAK–STAT
signaling pathway. It promotes macrophage
polarization that plays a key role in lung
inflammation as well as in LC

O14543 [47]

TLR2 Toll-like receptor 2 TLR2 recognizes viral proteins and involves in APC
activation. It may also recognize Spike of
SARS-CoV-2. In type 1 diabetes, TLR2 signaling
modulates CD4 + CD25+ Tregs and promotes
inflammation to prevent diabetes

O60603 [48, 49]

BIRC3 Baculovial inhibitor of
apoptosis (IAP)
repeat-containing 3

BIRC3 is a member of the IAP protein family. It
plays a crucial role in NF-κB signaling pathway. It is
upregulated in glioblastoma which causes
therapeutic resistance

Q13489 [50–52]

PPARGC1A Peroxisome
proliferator-activated
receptor-gamma
coactivator-1α

PPARGC1A plays a vital role in myocardial energy
metabolism. In hypertensive individuals, the
PPARGC1A Gly482Ser polymorphism is engaged in
hypertrophy and diastolic dysfunction which may
incline to heart failure. The upregulation of
PPARGC1A also facilitates LC metastasis

Q9UBK2 [53, 54]

HELZ2 Helicase with zinc finger 2 HELZ2 modulates the activity of IFN to counteract
viral infection. Also, it is a transcription coactivator
of PPAR-γ , and HELZ2-deficient mice exhibited
improved insulin resistance through enhancing
lipid burning in the liver

Q9BYK8 [55, 56]

IRF7 Interferon regulatory
factor 7

IRF7 is an authentic target of p53 to produce type 1
interferon upon viral infection. It is upregulated in
COVID-19 and also facilitates the progression of LC

Q92985 [57, 58]
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Figure 7. Gene regulatory networks associated with the shared dysregulated genes. The figure showing (A) gene–miRNA interacting network and (B) gene–TF interacting

network. The interacting network of miRNAs and TFs were filtered with degree centrality less than and equal to 2 and 5, respectively. In these networks, hexagons are

shared DEGs, while lime and blue circles represent associated miRNAs or TFs, respectively.

Figure 8. PDI network. Of the total 39 nodes, circles represent the shared

dysregulated genes (red), while squares indicate the interacting drugs molecules

(blue).

IL-10), IL-17 and tumor necrosis factor alpha (TNF-α) signaling
pathways which cause widespread damage, respiratory failure
and mortality [77, 78]. Interestingly, pro-inflammatory cytokines,
especially Th1 cytokines, are known to increase insulin
resistance [79, 80] that may facilitate additional complexities
in a COVID-19 patient. Increased cytokine production is also
associated with HT [81]. The preexisting cytokine imbalance
in HT could make COVID-19 even worse and vice versa.
Therefore, these pathways could be linked to COVID-19 and
may reveal crucial checkpoints for drug targets. Due to the high
prevalence of IL-17 in COVID-19, for instance, anti-IL-17 therapy
has been considered as a potential treatment for COVID-19 [82].
Like pathways, GO terms pathways included the immune system
process, defense response, cell surface receptor signaling, etc.,
which are relevant to SARS-CoV-2 infection.

Using the common DEGs, a PPI network was constructed to
visualize their association and to determine the key disease-
modifying players (hubs) in COVID-19 and comorbidities. Hubs
are defined as proteins with eight or more interactions, while
proteins with less than four interactions are named non-
hubs [83]. Since they have many interacting partners within a
network, hub-proteins are considered as functionally significant
[84]. Using different methods, we identified six common hub-
proteins (i.e. SOCS3, TLR2, BIRC3, PPARGC1A, HELZ2 and IRF7)
involved in SARS-CoV-2 infection and the risk factors related
to COVID-19. In our previous study, we identified SOCS3 as a
hub-protein and observed its upregulation in SARS-like viral
infections [32]. Another hub-protein BIRC3 is an apoptotic
inhibitor and plays a crucial role in regulating NF-κB signaling
and apoptosis [51]. It facilitates the malignant transformation
of gliomas, a type of brain tumor, which is also evident in our
study [52]. Therefore, the upregulation of BIRC3 due to COVID-
19 may also initiate the progression of LC. Furthermore, the
expression of SOCS3 downregulated the JAK2/STAT3 pathway to
promote macrophage polarization that plays a key role in lung
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Figure 9. The relationship between the expression of shared DEGs and survival of LC patients. In survival curves, red- and blue-colored lines represent overexpression

and underexpression of the respective genes in patients’ survival, where (A–O) show OS of shared genes between COVID-19 and LC. Herein, five genes, such as CXCL14,

MAP7D2, METTL7A, PPARGC1A and VTCN1, are downregulated in COVID-19 and the rest are upregulated.

inflammation [47]. A previous study also identified MMP9 as an
important biomarker in SARS-CoV-2 infection and respiratory
failure [85]. Interestingly, MMP9 is also suggested as a hub-
protein by several methods used in this study. This protein is
well known for its involvement in both acute and chronic lung
diseases [86]. In acute lung injury, MMP9 degrades cell matrices
in lung tissues through neutrophil-mediated inflammation
and destruction of the alveolar–capillary barrier [85, 87].
Therefore, these hub-proteins can be regarded as candidate
biomarkers or, if their biological role in COVID-19 is confirmed,
as potential drug targets. However, hub-proteins detected by
the MNC method are completely different from other methods,
which is conceivable since MNC scores the network differently
[43].

Furthermore, TF controls the rate of transcription [88], while
miRNA is a key player in RNA silencing and regulation of gene
expression at the post-transcription level [89]. Hence, both are
essential to understand particular disease development. This
study unfolded relationships among the shared DEGs and their
respective TFs and regulatory miRNAs. We identified several
TFs, such as NFKB1A, E2F1, TP53 and CREB1, which are known
to involve in viral-mediated acute respiratory diseases [90–92].
Among the 45 miRNAs, 10 were related to LC (i.e. miR-9-5p,
98-5p, 34a-5p, 30a-5p, 21-5p, 155-5p, 19a-3p, 19b-3p, 132-3p and
124-3p). The epithelial–mesenchymal transition (EMT) is crucial
for the invasion, migration and metastasis of cancers, which
is regulated by miR-19a-3p and 19b-3p [93]. The miR-155-5p
controls the apoptosis and deoxyribonucleic acid (DNA) damage
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using the Apaf-1-mediated pathway [94]. Again, miR-21-5p is
upregulated in non-small LC, while its downregulation reduces
cell proliferation [93]. Likewise, miR-21-5p, 34a-5p and 143-3p
are found to be associated with different cardiovascular dis-
eases, including stroke, heart failure, coronary artery disease and
HT [95, 96]. Specifically, miR-21 involved in cardiac remodeling
by targeting the ERK/MAP pathway, while miR-143 targets NF-
κB and ACE-related pathways for macrophage differentiation
and polarization [95]. The presence of miR-122 is observed to
be upregulated briefly after the initiation of ischemia. Further,
miR-125b-5p is upregulated in DM patients and is involved in
insulin resistance as well as the immune response to viral infec-
tions [97].

In DM patients, miR-30c is downregulated and it increases
the activation of P53 pathway and apoptosis [98]. Conversely,
upregulated miR-34a-5p increases high glucose-mediated
apoptosis in cardiomyocytes by reducing anti-apoptotic BCL2
protein [99]. Thus, the upregulation of miR-34a-5p in the
diabetic condition is most likely to increase apoptosis [98].
Interestingly, the elevated level of miRNA-34a was also observed
in patients who experience acute MI leading to heart failure
[98]. Moreover, some miRNAs associated with asthma (i.e. miR-
155-5p) and pneumonia (i.e. miR-30a-5p) were also found,
which are highly prevalent in COVID-19 [92, 100, 101]. Overall,
these data and those included in the respective supplementary
file(s) are of clinical interest and may shed light on the cause
and progression of COVID-19 as well as any new prospective
therapeutic strategies. By considering the common DEGs, several
drug candidates are also proposed. As expected, several drugs
have already been found to have therapeutic effects against
the SARS-CoV-2 infection. For example, pre-treatment with
captopril, an angiotensin-converting enzyme inhibitor (ACEI),
has shown to reduce the level of ACE2 and promote anti-
inflammatory reactions that may contribute to the better
outcome of the COVID-19 patients [102]. We also identified
rilonacept which is an approved IL-1 inhibitor. In a recent
study, mortality risk from COVID-19 was significantly reduced
among the patients treated with IL-1 inhibitor [103], hence,
rilonacept should further be assessed for its anti-COVID-
19 action. Another identified drug is canakinumab, which
restored normal oxygen level in patients suffering from COVID-
19-related pneumonia [104]. Therefore, the identified drug
candidates should be evaluated for their protective effect on
COVID-19 patients.

Finally, we evaluated the effect of COVID-19 on the prognostic
outcome of LC patients. Importantly, the expression pattern
of most DEGs in COVID-19 was found to be associated with
poor survival outcomes in patients with LC. In earlier studies,
for instance, downregulation of METTL7A and upregulation of
CXCL14 had been found to be associated with the worst OS [105,
106]. Most crucially, CXCL14 was reported to be involved in the
progression of LC from chronic obstructive pulmonary disease
(COPD) [106]. Therefore, it may also be a key determinant in
transforming the COVID-19 into LC metastasis. We observed that
the PPARGC1A is downregulated in COVID-19 and is associated
with a poor LC prognosis. Further, we identified PPARGC1A as
a hub-protein in COVID-19 and LC. A previous study suggests
PPARGC1A as a potential biomarker in LC prognosis [54]. There-
fore, other identified hubs could also be potential biomarkers
in COVID-19 and LC prognosis. However, unlike in this study,
the upregulation of PPARGC1A facilitates LC metastasis [54].
Likewise, COVID-19 results in IRF7 overexpression, which was
subsequently found to deteriorate the LC prognosis. Neverthe-
less, an early study suggested that the silencing of IRF7 may

increase the virus-mediated killing of LC cells, therefore, better
survival outcome [58]. Furthermore, IFITM1 is upregulated in
COVID-19 and LC metastasis [107]. Proliferation, migration and
invasion in LC can be inhibited by silencing the IFITM1 gene
suggested in a previous in vitro study [107]. Therefore, genes that
are related to poor LC outcomes can be targeted to hinder/stop
the development of LC following the COVID-19 as well as to
ameliorate the OS outcome.

Conclusion
To sum up, we compared the gene expression profile of COVID-
19 with associated four comorbidities to understand the possible
synergistic outcome. Using the network-based approach, we
identified important proteins, regulatory molecules, signaling
pathways and gene ontologies as well as other potential risk
factors. While these networks may reveal important disease-
modifying elements as potential drug targets, the signaling path-
ways can unfold important molecular checkpoints for the devel-
opment of novel therapeutics in COVID-19 eradication. The iden-
tified biomarkers can be utilized to design new diagnostic tools
and as drug targets based on their role in the progression of
diseases. Furthermore, as suggested by the prognostic analysis,
poor survival outcome in LC patients may result due to the
altered gene expression caused by SARS-CoV infection. These
genes can be silenced to inhibit the LC progression and to ame-
liorate the overall prognosis. Nevertheless, the feasibility to use
and/or target the genetic determinants in fighting the pandemic
requires further experimental validation.

Key Points
• This transcriptome-based cross-comparative analysis

unfolded genetic determinants causing severity and
progression of COVID-19 in patients with predominant
diseases.

• The PPI network revealed important hub-proteins that
might play key roles in disease development and can
be evaluated for prognostic biomarkers.

• Gene ontological groups and signaling pathways
provided information about the processes that are
involved in pathogenic progression and their implica-
tion in prevalent diseases.

• The regulatory molecules identified in gene–miRNA
and gene–TF networks could improve our understand-
ing of the disease development and can be used as a
possible drug target.

• Protein–drug interactome suggests potential drugs
molecules that should be evaluated for their protective
actions in COVID-19 and associated complications.
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