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Abstract

Background: Early detection of SARS-CoV-2 circulation is imperative to inform local

public health response. However, it has been hindered by limited access to SARS-CoV-2 di-

agnostic tests and testing infrastructure. In regions with limited testing capacity, routinely

collected health data might be leveraged to identify geographical locales experiencing higher

than expected rates of COVID-19-associated symptoms for more specific testing activities.

Methods: We developed syndromic surveillance tools to analyse aggregated health facil-

ity data on COVID-19-related indicators in seven low- and middle-income countries

(LMICs), including Liberia. We used time series models to estimate the expected monthly

counts and 95% prediction intervals based on 4 years of previous data. Here, we detail

and provide resources for our data preparation procedures, modelling approach and

data visualisation tools with application to Liberia.

Results: To demonstrate the utility of these methods, we present syndromic surveillance

results for acute respiratory infections (ARI) at health facilities in Liberia during the initial

months of the COVID-19 pandemic (January through August 2020). For each month, we

estimated the deviation between the expected and observed number of ARI cases for

325 health facilities and 15 counties to identify potential areas of SARS-CoV-2 circulation.

Conclusions: Syndromic surveillance can be used to monitor health facility catchment

areas for spikes in specific symptoms which may indicate SARS-CoV-2 circulation. The
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developed methods coupled with the existing infrastructure for routine health data sys-

tems can be leveraged to monitor a variety of indicators and other infectious diseases

with epidemic potential.

Key words: Syndromic surveillance, disease monitoring, COVID-19, infectious disease, time series modelling

Background

Limited infrastructure and testing capacity in many low- and

middle-income countries (LMICs) requires the use of novel

approaches to disease monitoring.1–3 Over the past several

years, many LMICs have invested in developing routine

health information systems. These systems collect data on the

presentation of particular symptoms, health service utilization

and treatment outcomes at the patient level or aggregated at

the facility level for a given time period. These data systems

provide important operational support to LMIC health sys-

tems, nad recent reviews have found they have been under-

used in research and intervention monitoring.4–6

Globally, the COVID-19 pandemic response has been

challenged by limited information on the magnitude and

spread of the virus. To that end, syndromic surveillance can

be used to identify potential SARS-CoV-2 hotspots and

thereby inform resource allocation, lockdown strategies and

enhanced seroprevalence testing strategies. Many symptoms

of COVID-19—including fever, cough, diarrhoea and diffi-

culty breathing—are captured in existing routine health sys-

tem data, making these data ideal for monitoring purposes.7

Although syndromic surveillance cannot replace direct mon-

itoring of the disease with specific SARS-CoV-2 diagnostics,

this approach can be used as a rapid, cost-effective strategy

that could help identify areas for more specific testing when

resources are limited. In addition, such methods can be inte-

grated within regular monitoring activities across a variety

of indicators, potentially leading to early identification of fu-

ture emerging diseases.

In the early months of the COVID-19 pandemic, the

Cross-Site COVID-19 Syndromic Surveillance Working

Group, including researchers and representatives from sites

in Liberia, Lesotho, Malawi, Haiti, Mexico, Rwanda and

Sierra Leone, collaborated to develop syndromic surveil-

lance tools appropriate for aggregated health facility data.

In this paper, we detail: (i) the processes of data prepara-

tion; (ii) the statistical modelling approach, including the

adaptation of the parametric bootstrap approach for con-

structing prediction intervals; and (iii) data visualization

tools. These are supported with links to resources to sup-

port replication. We demonstrate these methods with an

example of monitoring acute respiratory infections at

health facilities in Liberia. Finally, we conclude with rec-

ommendations to support syndromic surveillance activities

in other locations and for other outbreaks using these

methods.

Methods for COVID-19 syndromic
surveillance using monthly aggregate data

This research only contained data aggregated at the health

facility level. Ethical approval was not required.

Health information systems with monthly

aggregate data

Different types of routine health information systems are

used in different countries, and each requires a different

Key Messages

• Routine health information systems data can be leveraged for disease monitoring and detection of emerging

infectious diseases with epidemic potential.

• We used time series modelling to detect health facility catchment areas experiencing higher than expected rates of

COVID-19-associated symptoms, potentially indicating SARS-CoV-2 circulation.

• Although syndromic surveillance cannot replace the use of SARS-CoV-2 diagnostics for direct monitoring of the

disease, it can be used as a rapid, cost-effective strategy to identify local areas for more specific testing when

resources are limited.

• Our methods and resources were developed in open access software and can be readily applied to other regions or

diseases with minimal adaptation.
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approach for syndromic surveillance. Here, we focused on

monthly counts aggregated at the health facility level for a

given indicator. The format of these data is typical of

Health Management Information Systems (HMIS) in

LMICs, such as the popular District Health Information

Software 2 (DHIS2) which has been endorsed for disease

surveillance by the World Health Organization.8,9 Five of

the seven country sites (Liberia, Lesotho, Malawi, Rwanda

and Sierra Leone) report monthly aggregated data for their

syndromic surveillance indicators, and therefore were

equipped to use the approach described herein.

Choice of indicators

The availability of health indicators varied by country

(Table 1). The most common indicator selected for

COVID-19 syndromic surveillance was acute respiratory

infection (ARI). As persons with COVID-19 often present

with symptoms typical of ARI, we hypothesized that

COVID-19 infected individuals would possibly be classi-

fied as ARI cases in the health systems data—meaning that

the presence of SARS-CoV-2 circulation in a facility catch-

ment area could plausibly appear as an increase in cases of

ARI at that health facility.10 Fever and pneumonia were

also common indicators tracked across countries.

Data processing

We developed an automated data processing pipeline to

systematically clean, model and visualize routinely col-

lected data on respiratory infection indicators for each

country. Annotated R code was developed for each coun-

try indicator to streamline data cleaning for future monthly

extractions. Cleaned indicators typically included raw

counts, such as the number of ARI cases reported to a

health facility in a given month. Since March 2020, sites

have submitted new indicator data on a monthly basis to

be run through the data processing pipeline. Potential out-

liers were reported to the in-country monitoring and evalu-

ation (M&E) officers for review. If the outlier data were

suspected to be miscounted and determined by the M&E

officer to be unresolvable, the value for the specific health

Table 1 Syndromic surveillance indicators by country with the specific indicators grouped by bolded indicator categories and X

indicating availability for that country

Haitia Lesotho Liberia Malawi Mexicoa Rwanda Sierra Leone

Any type of pneumonia X X X X

Pneumonia X X X

Severe pneumonia X X X

Aspiration pneumonia X

Respiratory infection or disease X X X X X X

ARIb, any type X X X X X

Lower ARIb X

Upper ARIb X

Severe ARIb X

Asthma X

Other respiratory tract diseases X

Flu & cold symptoms X X X X X X

Cough X X

Common cold X X

Temperature X X

Influenza-like illness X

Fever X Xc X X X

Headache X

Fast breathing Xc X

Chills X

Gastrointestinal symptoms X X X X

Diarrhoea X X X

Bloody diarrhoea X X

Vomiting/nausea X

Abdominal pain X

aData from electronic health record, which has individual-level demographic information.
bARI denotes acute respiratory infection.
cOnly available among children under 5.
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facility was coded to missing for that month. Detailed in-

formation about the implementation of this data process-

ing pipeline is available in the Supplementary File 1,

available as Supplementary data at IJE online.

Establishing baseline models for count indicators

We considered 1 January 2016 to 31 December 2019 as

the baseline period across all sites, and data from this win-

dow were used to establish an expected (predicted) base-

line count. For facility-level assessments, we fit a

generalized linear model with negative binomial distribu-

tion and log-link to estimate expected monthly counts:

log E Yj year; t½ �ð Þ ¼ b0 þ b1yeart

þ
XK

k¼1
b3k cos

2pkt

12

� �

þ b4k sin
2pkt

12

� �
(1)

where Y indicates monthly indicator count, t indicates the

cumulative month number, K indicates the number of har-

monic functions to include (we take K ¼ 3). The year term

captures long-term annual trend and the harmonic terms

capture seasonality. This mean model was chosen to allow

smoothing without imposing strong assumptions on the

seasonal behaviour, and also aligns with other models used

during the pandemic.11 We could have alternatively chosen

to model trend as a monthly (t) or quarterly linear term,

but this specification was chosen as it performed well

across indicators and facilities. Further, if information is

available on external covariates, such as annual rainfall, it

would be possible to incorporate this information into the

modelling procedure. We chose to use a negative binomial

distribution (instead of Poisson) to account for

overdispersion.

The baseline model provided a predicted count with

corresponding 95% prediction intervals for each health fa-

cility in a given month. To calculate the prediction inter-

vals, we used a parametric bootstrap procedure, drawing

realizations for the model coefficients from a multivariate

normal distribution and using this to then compute pre-

dicted counts from a negative binomial distribution. This is

similar to the methodology employed by the ciTools R

package but uses a negative binomial distribution instead

of quasi-Poisson.

Assessing deviations from expected during the

evaluation period

We defined the evaluation period as beginning on 1

January 2020, based on the first investigation of atypical

pneumonia cases in Wuhan, China by the World Health

Organization in early January.12 We used the baseline

model, which was fit using only data from the baseline pe-

riod, to predict indicator counts with 95% prediction

intervals for months during the evaluation period. This

prediction reflects what we would expect to observe at a

specific facility in a given month in the absence of any im-

pact from COVID-19. We defined a deviation as the differ-

ence between the predicted and observed count (or

proportion) for a given month. To facilitate interpretation

across months, indicators and facilities of different sizes,

we standardized the deviation measure by dividing by the

predicted count. A negative value indicated a count (or

proportion) less than expected and a positive value indi-

cated a count (or proportion) higher than expected based

on the baseline model. In our data visualizations, we

reported this scaled deviation measure and indicated if the

observed count fell outside the 95% prediction interval.

Addressing missing monthly counts

Facilities with 20% or more missing observations from the

baseline period (equivalent to 10 out of 48 months) were

excluded from this facility-level syndromic surveillance ac-

tivity. The consensus of the M&E officers at our collabo-

rating sites is that higher levels of missing data likely

indicated broader data reporting issues that may (i) com-

promise the baseline model and resulting prediction inter-

vals and (ii) potentially perpetuate in the reported counts

during the COVID-19 evaluation period. For the facilities

included in the analysis, we assumed residual missing

monthly counts were at random and conducted a complete

case analysis for the baseline model. This missing-at-ran-

dom assumption would be violated if counts were missing

for a reason related to the count value (e.g. values more

likely to be missing during high patient load months).

Accounting for changes in overall health-seeking

behaviours

Importantly, health-seeking behaviour may change during

the course of a disease outbreak, which can affect the

expected number of cases of a particular syndrome pre-

senting to a health facility. During the Ebola Virus Disease

outbreak, health care utilization declined by 18% across

Liberia, Guinea and Sierra Leone over 2013–2016.13 To

account for such changes in overall health service utiliza-

tion, we also modelled the proportion of indicator counts

at that health facility, with a generalized linear model with

negative binomial distribution and log-link using an offset

term, Dt, the total number of monthly outpatient visits:
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log E Yj year; t½ �ð Þ ¼ b0 þ b1yeart

þ
XK

k¼1
b3kcos

2pkt

12

� �

þ b4k sin
2pkt

12

� �
þ log Dtð Þ (2)

Similar to the counts, we performed a parametric boot-

strap procedure to calculate the prediction intervals. If

there were missing values for the monthly outpatient visit

count (denominator), we conducted an additional step to

impute the missing outpatient visit value in the parametric

bootstrap. We repeated the imputation procedure 500

times and took the median count for each month to be the

predicted value and the 2.5th and 97.5th percentiles as the

95% bootstrap prediction interval. Further details on this

procedure are provided in the Supplementary File 2, avail-

able as Supplementary data at IJE online.

Reporting over wider geographical areas

It may be of interest to report syndromic surveillance

results on a wider geographical level, such as a district or

county, that contain multiple health facility catchment

areas. If there are no missing monthly counts at the facility

level, one could simply sum the count indicator for each

month across all facilities within a geographical region and

fit the model in Equation 1. In this case, although both the

regional and health-facility models may be valid, the pre-

dicted counts from each set of models would not be equiva-

lent: see Supplementary File 2 for explanation.

However, in the presence of missing monthly data, re-

gional models need to account for missingness at the facil-

ity level for a given month. We continued to exclude

facilities that had more than 10 months (20%) or more of

missing data during the baseline period. Even after this ex-

clusion, there was still some missingness at the facility level

which would impact on the summed counts at the wider

geographical level. We used a parametric bootstrap to im-

pute any missing values from the facility level models. We

drew realisations of the predicted indicator counts from

the facility-level model for each month and facility and

then summed these values for a district- (or county) level-

estimate. We repeated this procedure 500 times and took

the 2.5th and 97.5th percentiles to create 95% prediction

intervals.

For proportions, the numbers of outpatient visits were

summed across facilities and a proportion was computed.

If there were missing values in the outpatient visits, another

step was included in the above parametric bootstrap proce-

dure where missing outpatient visits were generated from

equation (1) where Y indicates monthly outpatient visit

count. The details on this procedure are given in the

Supplementary File 2. We note that bootstrap procedures

have been used to account for missing values in previous

literature14 but have not yet been used to aggregate time

series results in multi-level data, such as aggregative facil-

ity-level data to the county-level.

Evaluating the time series model

To ensure that the specified regression models do not have

autocorrelation in the residuals, we performed several di-

agnostic procedures. For the residuals from facility- and

county-level models, we generated plots of residuals by

time, autocorrelation functions and partial autocorrelation

functions. We also conducted the Breusch-Godfrey test for

serial correlation for the facility-level models.

Data visualizations

Data visualizations were an essential tool for communicat-

ing results back to country sites. Time series plots provide

information on all observed data points in the baseline and

evaluation periods in addition to the predicted values and

95% prediction intervals. Although this provides granular

information for individual health facilities and indicators,

it is difficult to compare information across multiple health

facilities or indicators. To facilitate comparison data, we

report the difference in case counts between observed and

predicted per 100 000 persons. In the Supplementary mate-

rials, we provide two additional visualizations: tiled heat

maps (Supplementary File 3, available as Supplementary

data at IJE online) and interactive geographical maps

(Supplementary File 4, available as Supplementary data at

IJE online). Tiled heat maps were coloured based on the

deviation from expected during the evaluation period

months and flagged when counts (or proportions) were

outside the 95% prediction intervals. Geographical maps

show the deviation from expected across geographical

regions for a single time point. These maps were made in-

teractive to allow for toggling between indicators and

months using the leaflet R package. All analyses and figure

generation were done in R V3.6.0. Our code with working

examples is available on our public GitHub repository to

facilitate adoption of this methodology in related contexts

[https://github.com/isabelfulcher/global_covid19_

response].

Application of ARI syndromic surveillance in
Liberia

We present an application of the syndromic surveillance in

Liberia for January through August 2020. Specifically, we

detail the monthly counts of acute respiratory infection
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(ARI) cases and proportion of outpatient visits with a focus

on Maryland County, the seventh largest county in

Liberia. We present results at the facility level for JJ

Dossen Hospital, the largest health facility in Maryland

County [median of 262 monthly ARI cases with an inter-

quartile range of (228, 299) during baseline] and at the

county level for Liberia’s 15 counties. We use the time se-

ries models presented in Equations (1) and (2) with K¼ 3

and a baseline period of January 2016 through December

2019 for the facility- and county-level models.

We report the facility-level models for ARI counts and

proportions (Figure 1). In January 2020, JJ Dossen Hospital

had a higher than expected number of ARI cases with 470

cases observed [compared with an expected 258 cases with

a 95% prediction interval of (145, 414)] which promptly

dropped to below expected after February 2020. However,

from January through April 2020 the proportion of ob-

served outpatient visits that were ARI cases (13–14%) was

consistently higher than the proportion that was expected

(7–8%). Similarly, at the Maryland county level, which

includes JJ Dossen Hospital and 23 other facilities, the ARI

case count and proportion remained higher than expected

through March and then promptly fell within or slightly be-

low the predicted range until July (Figure 2). Residual plots

for these time series models are provided in Figure 3 and do

not exhibit signs of residual autocorrelation. Breusch-

Godfrey tests were performed for JJ Dossen Hospital with a

p-value > 0.05 for both counts and proportions.

For the 15 county-level models, 325 facilities met

the criteria for inclusion, with at least 80% complete acute

Figure 1 (A) Number and (B) proportion of acute respiratory infection cases at JJ Dossen Hospital in Maryland County, Liberia. The black line repre-

sents the observed value and grey line the predicted counts with 95% prediction intervals in light grey

Figure 2 (A) Number and (B) proportion of acute respiratory infections in the Maryland County model with the black lines representing the observed

value and grey line the predicted counts with 95% prediction intervals in light grey
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respiratory infection data in the baseline period and no

missing months in the evaluation period. Table 2 shows

the breakdown of included facilities by county. Maryland,

Bong, Grand Kru and River Gee have at least 90% of their

facilities included, whereas Montserrado, Margibi, Grand

Bassa and Rivercess have less than 40% of facilities in-

cluded. The percentage of facilities missing ARI counts in

2020 was similar to 2019 with the exception of Margibi,

which had more facilities with incomplete data in 2020,

and Bomi, which had less facilities with incomplete data in

2020 (Figure 4).

In January 2020, all 15 counties reported higher than

expected ARI case counts, with seven counties’ counts out-

side the 95% prediction interval (Figure 5). Of the seven

counties, the largest deviations were in Rivercess and

Maryland with 842 and 556 higher than expected cases per

100 000 persons, respectively. For the proportion measures,

only four of these counties—Maryland, Grand Kru,

Rivercess and Sinoe—had deviations larger than the 95%

prediction interval, which persisted in Maryland and Grand

Kru through March 2020 (Figure 6). Interestingly, five

counties—Bong, Montserrado, Nimba, River Gee and

Lofa—had consistently lower than expected ARI propor-

tions after April 2020.

The first confirmed COVID-19 case was on 16 March

2020 in Liberia.15 The higher than expected number of

ARI cases in January 2020 across multiple counties is un-

likely due to COVID-19, as global evidence indicates that

there was not sustained transmission of SARS-CoV-2 out-

side China during this time.16 However, in the case of

Maryland County, which had a large spike in ARI cases

from January through March, it is possible that the con-

tainment measures taken for COVID-19 following the na-

tional health emergency contributed to a reduction in ARI

cases in the months of April through August.17

The lack of significant increases detected in the number

and proportion of ARI cases seems to align with the low

number of confirmed COVID-19 cases in Liberia during

March through August 2020. Cumulatively from 16

March to 31 August, there were only 38 confirmed cases

per 100 000 persons (1305 total) in Liberia, with 24 cases

per 100 000 persons (32 cases total) from Maryland

County (see Supplementary File 5, available as

Supplementary data at IJE online). To detect a significant

deviation in ARI cases in Maryland County, there would

need to have been at least 362 additional ARI cases per

100 000 persons on a monthly basis—more than 75 times

the number of confirmed COVID-19 cases in the county.

Although the comparison between confirmed COVID-19

cases and ARI cases helps contextualize the interpretation

of these syndromic surveillance results, there are two im-

portant caveats: (i) the number of confirmed COVID-19

Figure 3 Residual, autocorrelation function and partial autocorrelation function plots corresponding to the baseline period in Figure 1 (JJ Dossen

Hospital) and Figure 2 (Maryland County)
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cases may be underestimated if testing capacity is low; and

(ii) individuals with COVID-19 may not present as an ARI

case at a health facility, either because they are not exhibit-

ing ARI symptoms or they did not seek care.

Discussion

We developed methodology to automate data cleaning,

time series modelling and data visualizations for identifica-

tion of deviations in COVID-19-associated symptoms.

Although the presented results were for an 8-month period,

we continue the data processing and modelling procedure

on a monthly basis when new data become available. The

monthly updates are shared with the country’s health man-

agement team to investigate facilities that have higher than

expected ARI cases. The results will now inform which fa-

cilities will be chosen for a seroprevalence study among

health care workers in Maryland and Montserrado coun-

ties to validate these methods.

The use of data on COVID-19-associated symptoms for

syndromic surveillance is subject to several limitations that

should be considered before employing such methods. First

and foremost, syndromic surveillance is not equivalent to

directly monitoring a disease via widespread viral or anti-

body testing, and the choices of indicators by each country

have not yet been validated for monitoring purposes. We

are currently validating these methods and indicators in

regions that had high levels of COVID-19 testing. Second,

this exercise relies on the availability of both previous data

to establish a baseline and future data to detect devia-

tions—large amounts of missing data, variations in the

quality of data over time and lack of information on im-

portant COVID-19-related symptoms will hinder this ef-

fort. Changes in indicator definitions during outbreaks

may also affect the utility of these methods; for example,

patients with suspected COVID-19 may no longer be in-

cluded in the acute respiratory infection indicator.

Importantly, this was not the case in Liberia. Third, sub-

stantial changes in health-seeking behaviour or in data en-

try during the pandemic will impact on the interpretation

of any deviations (or lack thereof). In the case of Liberia,

as patients became informed and/or educated on COVID-

19 case definition, they may have under-reported ARI

symptoms or chosen not to go to a facility for fear of being

quarantined. Additionally, clinicians may not have for-

mally diagnosed clinical symptoms as an ARI because of

concern that would trigger COVID-19 investigation; this

could potentially explain some of the much lower than

expected ARI cases and proportions. Last, countries must

also have the capacity to develop a streamlined process for

data cleaning, analysis and visualization that can be readily

updated when new data are available.

To facilitate a streamlined model fitting every month,

the same parametric model specification for counts and

proportions was used across all facilities (i.e. Equations 1

and 2). In principle, one could fine-tune each model for

Table 2 Number of facilities included in analysis by county

County Total facilities Complete baselinea Complete evaluationb Included in analysisc Mean ARIe caseload at baselined

N n (%) n (%) n (%) Median [min, max]

Maryland 25 24 (96) 25 (100) 24 (96) 31.0 [21.4, 266.0]

Bong 46 43 (93) 45 (98) 43 (93) 31.4 [3.0, 165.0]

Grand Kru 20 19 (95) 18 (90) 18 (90) 36.7 [16.3, 89.9]

River Gee 20 19 (95) 19 (95) 18 (90) 39.0 [11.1, 133.0]

Gbarpolu 15 15 (100) 13 (87) 13 (87) 51.9 [11.9, 183.0]

Grand Cape Mount 34 31 (91) 31 (91) 28 (82) 35.8 [13.6, 149.0]

Sinoe 37 35 (95) 29 (78) 27 (73) 21.8 [6.7, 88.4]

Grand Gedeh 25 23 (92) 17 (68) 16 (64) 24.1 [9.7, 77.1]

Bomi 27 14 (52) 14 (52) 12 (44) 41.5 [21.2, 297.0]

Lofa 60 45 (75) 25 (42) 25 (42) 68.5 [14.0, 131.0]

Nimba 78 55 (71) 36 (46) 32 (41) 60.1 [11.2, 198.0]

Rivercess 20 14 (70) 7 (35) 7 (35) 26.3 [11.8, 40.5]

Grand Bassa 37 17 (46) 13 (35) 10 (27) 63.1 [17.9, 226.0]

Margibi 71 28 (39) 10 (14) 10 (14) 52.0 [24.8, 141.0]

Montserrado 397 82 (21) 54 (14) 41 (10) 55.5 [5.4, 576.0]

aFacility has number of acute respiratory infections for at least 80% of months during January 2016-December 2019.
bFacility has all months available in the evaluation period during January 2020-August 2020.
cFacility has complete baseline and evaluation data.
dAverage number of acute respiratory infection (ARI) cases for each included facility are calculated during the baseline period. The mean, minimum (min) and

maximum (max) across the county’s facilities are then reported.
eARI denotes acute respiratory infection.
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each facility and indicator by investigating autocorrelation

functions and comparing various model specifications.

However, this was not feasible in our setting with seven

countries and a multitude of facilities and indicators within

each. We instead recommend using the Breusch-Godfrey

test for serial correlation as a way to flag facility-level

models that need additional investigation (based on a pr-

determined significance cut-off). In addition, we found it

beneficial to have the granular time series plots for all facil-

ities and indicators accessible on an online tool hosted by

Shiny App. This enabled site leads to visualize the results

and flag potentially ill-fitting models to the study team.

Further, we note that excluding facilities with high levels

of missingness may underestimate the raw indicator counts

at wider geographical levels (e.g. Montserrado County in

Liberia). However, because facilities with high levels of

missingness are excluded from both the baseline models

and the observed count, comparing deviations from

expected counts can still be used for the purposes of syn-

dromic surveillance, as long as reporting rates are indepen-

dent of ARI caseloads and time period. We attempted to

alleviate this concern by Figure 4 which showed similar

reporting rates across most counties during the COVID-19

pandemic and the preceding year.

Figure 4 Proportion of facilities with complete data in 2020 compared to 2019 by county
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Figure 5 Deviation in number of acute respiratory infections standardized per 100 000 persons in each county from January to August 2020. The black

dotted lines represent the difference between the observed and predicted counts (deviation), with corresponding 95% prediction intervals in light

grey. County population sizes scaled to account for excluded facilities.

Figure 6 Proportion of acute respiratory infections for each county from January to August 2020. The black lines represent the observed count and

grey line the predicted counts, with 95% prediction intervals in light gray
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Finally, although these models were developed in re-

sponse to the COVID-19 pandemic, this approach could be

used and adapted for ongoing surveillance on a wide range

of health indicators that are included in most health informa-

tion systems. In general, deviations from expected should

warrant further investigation by local public health officials,

but do not necessarily indicate an outbreak or emerging in-

fectious disease. When tracking symptoms related to a spe-

cific disease, such as COVID-19, deviations from expected

can identify local areas for more specific testing when resour-

ces are limited, but need to be further validated before being

used to inform resource allocation or lockdown strategies.

In conclusion, syndromic surveillance can be used to

monitor for potential COVID-19 or other disease out-

breaks in health facility catchment areas. We leveraged

data from existing data collection systems and developed

data science tools in open access software to routinely

monitor for COVID-19 symptoms on a monthly basis. The

methods and accompanying resources can be applied to

other regions or diseases with minimal adaptation.
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Supplementary data are available at IJE online.
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