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Abstract

Existing studies have demonstrated that dysregulation of microRNAs (miRNAs or miRs) is

involved in the initiation and progression of cancer. Many efforts have been devoted to iden-

tify microRNAs as potential biomarkers for cancer diagnosis, prognosis and therapeutic

targets. With the rapid development of miRNA sequencing technology, a vast amount of

miRNA expression data for multiple cancers has been collected. These invaluable data

repositories provide new paradigms to explore the relationship between miRNAs and can-

cer. Thus, there is an urgent need to explore the complex cancer-related miRNA-gene pat-

terns by integrating multi-omics data in a pan-cancer paradigm. In this study, we present a

tensor sparse canonical correlation analysis (TSCCA) method for identifying cancer-related

miRNA-gene modules across multiple cancers. TSCCA is able to overcome the drawbacks

of existing solutions and capture both the cancer-shared and specific miRNA-gene co-

expressed modules with better biological interpretations. We comprehensively evaluate the

performance of TSCCA using a set of simulated data and matched miRNA/gene expression

data across 33 cancer types from the TCGA database. We uncover several dysfunctional

miRNA-gene modules with important biological functions and statistical significance. These

modules can advance our understanding of miRNA regulatory mechanisms of cancer and

provide insights into miRNA-based treatments for cancer.

Author summary

MicroRNAs (miRNAs) are a class of small non-coding RNAs. Previous studies have

revealed that miRNA-gene regulatory modules play key roles in the occurrence and devel-

opment of cancer. However, little has been done to discover miRNA-gene regulatory

modules from a pan-cancer view. Thus, it is urgently needed to develop new methods to

explore the complex cancer-related miRNA-gene patterns by integrating multi-omics
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data of multi-cancers. To build the connections between miRNA-gene regulatory modules

across different cancer types, we propose a tensor sparse canonical correlation analysis

(TSCCA) method. Our specific contributions are two-fold: (1) We propose a sparse statis-

tical learning model TSCCA and an efficient block-coordinate descent algorithm to solve

it. (2) We apply TSCCA to a multi-omics data set of 33 cancer types from TCGA and iden-

tify some cancer-related miRNA-gene modules with important biological functions and

statistical significance.

Introduction

Cancer is a complex and heterogeneous disease and the second leading cause of death world-

wide [1, 2]. Although medical advances have made possible earlier diagnosis and more effec-

tive treatments, researchers still face many critical challenges for cancer drug resistance,

combinatorial drug treatment optimization and personalized cancer therapy design and so on

[3, 4]. A number of studies have been conducted to understand the mechanisms underlying

the cancer development for better prevention and treatment.

In the past decade, an increasing number of studies have reported that abnormal micro-

RNAs (miRNAs) play important roles in the occurrence and development of cancer [5, 6], and

some miRNAs can be used as drug targets for cancer treatment [7, 8]. miRNA is a type of

small non-coding RNAs with about 20 bases, which regulates gene expression during post-

transcriptional processes [9]. In cancer cells, miRNAs have been found to be heavily dysregu-

lated [8]. Thus, they are potential candidates for prognostic biomarkers and therapeutic targets

in cancer. For example, Yang et al. have reported that miR-506 plays essential roles in the path-

ogenesis of ovarian cancer, which can be considered as a potential therapeutic interest [7].

Moreover, Lai et al. outlined some miRNAs as monotherapy or adjuvant therapy from a sys-

tems biology perspective [8].

Since miRNAs were found, researchers have studied the regulatory mechanisms between

miRNAs and genes comprehensively. For example, sequence-based methods have been pro-

posed to predict their regulatory relationships [10, 11]. However, such methods fail to capture

the context-specific miRNA-gene regulatory relationship. With the development of miRNA

sequencing technology, a huge number of miRNA expression data of multi-species have been

accumulated (e.g., those in the Gene Expression Omnibus database repository [12]). The Can-

cer Genome Atlas (TCGA) [13] and NCI-60 [14] allow us to obtain matched miRNA and

mRNA expression data in certain cancers. These invaluable database repositories provide new

paradigms to explore context-specific miRNA-gene regulatory relationship. Several computa-

tional methods have been proposed on the basis of modular structure identification [15–21].

Zhang et al. developed a joint non-negative matrix factorization method to discover miRNA-

gene co-modules in ovarian cancer [15]. However, the strength of miRNA-gene relationship

in the identified modules by it is still unclear and the algorithm therein has a high computa-

tional complexity. Min et al. developed a simple two-step method for the same task [16]. This

method firstly reconstructs a sparse miRNA-gene regulation matrix by integrating miRNA

and mRNA expression data and prior miRNA group information. Then, a bi-clustering

method based on a sparse matrix factorization is used to cluster the regulation matrix for dis-

covering miRNA-gene modules. Yoon et al. (2019) also developed a bi-clustering method to

identify condition-specific modules by integrating the gene expression and miRNA sequence-

specific targets information [21]. Although these methods can discover miRNA-gene modules
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for one cancer or tissue to some extent, they fail to identify cancer-specific and shared

miRNA-gene modules when integrating multiple cancer data.

Recently, some studies have focused on the integrative analysis of multiple omics data from

multiple cancers [22–26]. For example, Tan et al. systematically investigated the positive corre-

lation between miRNAs and genes in multiple human cancers [26]. However, little has been

done to discover miRNA-gene regulatory modules from a pan-cancer view. Therefore, it is

urgently needed to develop new methods to explore the complex cancer-related miRNA-gene

patterns by integrating multi-omics data of multi-cancers.

In this study, we present a tensor sparse canonical correlation analysis (TSCCA) method

for the explorative analysis of matched miRNA and gene expression data of multiple cancers

with a focus on identifying cancer-specific and shared miRNA-gene co-expressed modules

(Fig 1). TSCCA first calculates a cancer-miRNA-gene correlation tensor which is a “3D” array

with gene, miRNA and cancer dimensions (Fig 1B). Then it decomposes the correlation tensor

into a number of latent factors (ui, vi and wi, i = 1, � � �, r) that represent major patterns of varia-

tion in the tensor data (Fig 1C). The scores of ui, vi and wi indicate the relative contribution of

genes, miRNAs and cancers, respectively. Based on their non-zero elements of ui, vi and wi for

any i, we can discover a cancer-miRNA-gene module. In short, our main contributions are

two-fold: (1) We design a statistical learning model TSCCA, which is equivalent to a ℓ0-norm

constrained tensor-based model, and develop an efficient block-coordinate descent algorithm

to solve it. (2) We apply TSCCA to a multi-omics data set of 33 cancer types from TCGA data-

base and discover some dysfunctional miRNA-gene modules with important biological func-

tions and statistical significance.

Materials and methods

Biological data

TCGA data. We used the biological data from 33 TCGA cancer types available from the

Broad GDAC Firehose website (http://firebrowse.org/, accessed 28 January 2016). For each

cancer type, we downloaded the processed (Level 3) mRNA-seq and miRNA-seq data, and

Fig 1. Illustration of TSCCA to identify cancer-related miRNA-gene functional modules. (A) Prepare the matched

miRNA and gene expression data of 33 cancer types from TCGA. (B) Compute a cancer-miRNA-gene Pearson

correlation tensor A 2 Rp�q�M , where p, q and M represent the number of genes, miRNAs and cancers respectively.

(C) Estimate multiple sparse latent factors (ui, vi and wi, i = 1, � � �, r) and these non-zero genes in ui, non-zero miRNAs

in vi and non-zero cancers in wi are considered as a cancer-miRNA-gene module.

https://doi.org/10.1371/journal.pcbi.1009044.g001
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clinical data. Before applying our method, we implemented multi-step data preprocessing for

each cancer data set: (1) We removed those genes and miRNAs, which are expressed in less

than 5% samples; (2) Missing elements were imputed using the k-nearest neighbor method by

using the R package “impute”. (3) The expression values were log2 transformed and scaled

with zero mean and unit standard deviation for every gene/miRNA. (4) Differential gene

expression analysis was carried out by using the Wilcox test for each gene when the cancer

type contains more than 5 normal samples. We found 7889 pan-cancer significant differen-

tially expressed genes in more than 15 cancers with Benjamini-Hochberg (BH) adjusted

P< 0.05 and the detailed results are shown in S1 Table. Finally, we obtained the matched

mRNA and miRNA expression data of 33 cancer types including 9645 cancer samples, 7889

genes and 523 miRNAs (Fig 2A and S2 Table). To further analyze the biological functions of

the cancer-miRNA-gene module, we also downloaded the following data sets:

miRNA family database. We downloaded a miRNA family data set from miRbase database

[9]. A miRNA family contains a set of miRNAs.

miRNA-gene interaction network data. We collected an experimentally validated miRNA-

gene interaction network data set from miRTarBase database [27].

Gene interaction network data. We downloaded a protein-protein interaction (PPI) network

data set from the Pathway-Commons database [28]. A gene interaction network was con-

structed by the PPI network.

Cancer gene and miRNA sets. We collected a cancer gene set data from the allOnco database

(http://www.bushmanlab.org/links/genelists) and a cancer miRNA set data from http://

mircancer.ecu.edu/ [29].

Gene functional annotations. We also downloaded multiple gene functional annotations

including GO biological processes (GOBP), KEGG and reactome pathways from Molecular

Signatures Database (MSigDB) [30].

Sparse CCA

Canonical Correlation Analysis (CCA) is a common statistical learning method for analyzing

pairwise data. It learns a projection for both representations such that they are maximally cor-

related in the dimensionality-reduced space. Suppose X 2 Rn�p with n samples and p features

and Y 2 Rn�q
with n samples and q features represent two omics data from a single cancer and

their columns of X and Y are centered and scaled with zero mean and unit variance. Then, the

CCA model can be written as follows:

maximize
u;v

uTXTYv

subject to uTXTXu ¼ 1; vTYTYv ¼ 1:

ð1Þ

Suppose XT X = I and YT Y = I, where I is the identity matrix. Then the above model reduces

to:

maximize
u;v

uTXTYv

subject to uTu ¼ 1; vTv ¼ 1:
ð2Þ

which was called as the diagonal CCA whose performance is usually better than the traditional

CCA in high-dimensional data [31, 32]. However, the classical CCA leads to non-sparse

canonical vectors. It is difficult to select features and interpret in biology. To this end, a large
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Fig 2. Application to the TCGA data from multiple cancers. (A) Number of cancer patients or samples on 33 cancer types from TCGA in this study.

(B) Correlation between the modularity scores of identified modules (y-axis) and the corresponding singular values (objective function values) (x-axis)

with PCC r = 0.98. (C) Distribution of modularity scores. The modularity scores of identified modules are significantly greater than those of random

ones (Permutation test P< 0.05/50 for each identified module). (D) Among the 1793 genes from all the identified modules, 328 are reported to be

related with cancer (Hypergeometric test P = 1.47e-06). (E) Among the 122 miRNAs from all the identified modules, 73 are reported to be related with

cancer (Hypergeometric test P = 3.38e-03).

https://doi.org/10.1371/journal.pcbi.1009044.g002
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number of sparse CCA models have been proposed to obtain sparse canonical vectors by using

different penalty functions [16, 33–37]. Specifically, a sparse CCA (SCCA) with ℓ0-norm con-

straint [35] can be formulated into the following optimization problem:

maximize
u;v

uTXTYv

subject to kuk0 � ku; kvk0 � kv;

uTu ¼ 1; vTv ¼ 1;

ð3Þ

where ku and kv are two parameters to control the sparsity of canonical vectors (u and v), and

kuk0 is the number of non-zero elements in the u.

Proposed tensor sparse CCA (TSCCA)

Let Xi 2 Rni�p with ni samples and p genes and Y i 2 Rni�q with ni samples and q miRNAs be

the matched gene and miRNA expression matrices of cancer i (i = 1, � � �, M). Each column of

them is normalized with zero-mean and unit-variance (Fig 1A). To capture invariant miRNA-

gene co-expressed pattern for different cancers, we propose a tensor-based method to integrate

miRNA and gene expression data from multiple cancers by weighting each cancer as follows:

maximize
u;v;w

XM

i¼1

wiðuTXiTY ivÞ

subject to kuk
0
� ku; kvk0

� kv; kwk0
� kw;

uTu ¼ 1; vTv ¼ 1;wTw ¼ 1;

ð4Þ

where w = (w1, w2, � � �, wM)T. After simplification, we get the following TSCCA model:

maximize
u;v;w

� A ��1u ��2v ��3w

subject to kuk
0
� ku; kvk0

� kv; kwk0
� kw;

uTu ¼ 1; vTv ¼ 1;wTw ¼ 1;

with A::i ¼ XiTY ii ¼ 1; � � � ;M;

ð5Þ

where A �� iz (i = 1, 2, 3) denotes the i-mode (vector) product of a tensor A 2 RI1�I2�I3 with a

column z 2 RIi , and A::i is frontal slice and also written as Ai. More detailed definitions about

tensor operations can be found in [38].

Proposed optimization algorithm

Recently, a global block-coordinate update algorithm has been proposed to solve a class of

nonconvex optimization problems [39]. The block-coordinate descent algorithm is also called

as alternating iteration algorithm which updates one factor at a time with the others fixed.

Inspired by the algorithm, we develop a block-coordinate descent algorithm to solve the above

problem (5):

ukþ1  argmin
uTu¼1;kuk0�ku

f ðu; vk;wkÞ;

vkþ1  argmin
vTv¼1;kvk0�kv

f ðukþ1; v;wkÞ;

wkþ1  argmin
wTw¼1;kwk0�kw

f ðukþ1; vkþ1;wÞ;

ð6Þ
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where f ðu; v;wÞ ¼ � A ��1u ��2v ��3w. To implement it, we need to solve three sub-problems in

Eq (6). Taking the first as an example, with v and w fixed, it is equivalent to solve

minimize
u

� uTz

subject to uTu ¼ 1; kuk0 � k;
ð7Þ

where z ¼ A ��2v ��3w. For convenience, we define a k-sparse projection operator P(�, k) for a

given z 2 Rp with k� p:

½Pðz; kÞ�i ¼
zi; if i 2 supportðz; kÞ

0; otherwise

(

ð8Þ

where support(z, k) is a set of indices of z with the largest k absolute values. For example, if

z = (−6, 4, 5, 2, −1, 3)T, then P(z, 3) = (−6, 4, 5, 0, 0, 0)T. We have Proposition 1 to solve Eq (7)

and its proof is detailed in S1 Text.

Proposition 1. Suppose z is a non-zero vector, then the solution of problem (7) is

u� ¼ Pðz;kÞ
kPðz;kÞk2

.

Based on Proposition 1, we develop a block-coordinate descent algorithm to solve (5). The

details of this algorithm is shown in Algorithm 1 and its stopping condition, convergence anal-

ysis and computational complexity are given in S1 Text.

Algorithm 1 TSCCA algorithm solves Eq (5)

Require: Xi 2 Rni�p (gene expression data) and Y i 2 Rni�q (miRNA expression
data) for i = 1, � � �, M (cancer types); Parameters: ku, kv, and kw.
Ensure: u, v, w and singular value d.
1: Compute Ai ¼ ðX

iÞ
TY i; i ¼ 1; . . . ;M

2: Initialize w ¼ 1ffiffiffi
M
p ; . . . ; 1ffiffiffi

M
p

� �T
with kwk = 1

3: Initialize u, v using the principal left and right singular vectors
of

PM
i¼1

wiAi

4: repeat
5: Compute a matrix C ¼

PM
i¼1

wiAi

6: Let zu = C v
7: u Pðzu ;kuÞ

kPðzu ;kuÞk2

8: Let zv = CT u
9: v Pðzv ;kvÞ

kPðzv ;kvÞk2

10: Let zw ¼ ½uTA1v; . . . ; uTAMv�
T

11: w Pðzw ;kwÞ
kPðzw ;kwÞk2

12: until convergence of u, v and w
13: d ¼ A ��1u ��2v ��3w
14: return u, v, w and singular value d

Determination of cancer-miRNA-gene modules

Based on the output of Algorithm 1, the non-zero genes in u, the non-zero miRNAs in v and

the non-zero cancer types in w together are considered as a cancer-miRNA-gene functional

module (Fig 1C). Furthermore, we also extend Algorithm 1 to identify the next module by

updating the input A ≔ A � d � u � v � w, where d ¼ A ��1u ��2v ��3w and it is also called sin-

gular value, reflecting the relative importance of a corresponding module (See Algorithm 2 in

S1 Text). We carefully discuss the parameter selection issue of Algorithm 1 (See S1 Text for

more detail).
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Modularity

For a given module with a gene set I, a miRNA set J and a cancer type set K, we define a modu-

larity score:

Modularity ¼
1

jIjjJjjKj

X

i2I;j2J;k2K

jCijkj; ð9Þ

where Cijk is a Pearson correlation coefficient (PCC) between gene i and miRNA j in the cancer

k. A high modularity score indicates that these genes and miRNAs within the module are

strongly co-expressed across these selected cancers within the module.

Results

Application to the TCGA data

We applied TSCCA to matched miRNA and gene expression data from TCGA consisting of

9645 cancer patients across 33 cancer types (Fig 2A and S2 Table). All output of TSCCA is

detailed in S3–S6 Tables. We discovered 50 cancer-gene-miRNA modules (S7 Table). Each

identified module contains about 100 genes, 10 miRNAs and 20 cancer types. Regarding the

characteristics of TSCCA when it was applied to the TCGA data, we observed that (1) TSCCA

converged in about 20 steps (S1 Fig) and it took a total of about 1 hour on a personal laptop.

(2) The modularity scores of these modules have a strong correlation with their corresponding

singular values of TSCCA model (PCC r = 0.98 with P< 0.001, Fig 2B). In addition, we also

used permutation test to assess the number of overlapping elements between any two modules

(S8 Table, see section 7 in S1 Text for more detail). Only 51 out of 1225 pairs of module from

these identified modules are significantly overlapping with permutation test P< 0.05, indicat-

ing that these identified modules are statistically independent patterns.

Statistical analysis of correlation of modules

To evaluate the correlations between genes and miRNAs within each module, we randomly

generated 1,000 modules with the same size as these identified modules. The identified mod-

ules with P-values smaller than 0.05/50 were considered as significant ones. We found that the

modularity scores of all modules are significantly larger than those of the random ones (Fig 2C

and S1 Text). For each cancer type on the TCGA data, we also computed a basic modularity

score based on all considered miRNAs (n = 523) and genes (n = 7889). We observed that 33

basic modularity scores of TCGA 33 cancer types are distributed between about 0.1� 0.2 (S9

Table). For example, the basic modularity score of TGCT is the largest with Modularity = 0.21

and CGA is the smallest with Modularity = 0.086. Full details on these 33 cancer types are

given in S9 Table. We observed that the modularity scores of these identified modules are far

greater than the corresponding basic modularity score in these selected cancers.

Module miRNAs and genes are strongly implicated in cancer

To assess whether these identified modules are related to cancer, we first collected a total of

1793 genes and 122 miRNAs via combining all the modules. In addition, we also collected a

cancer gene set from the allOnco database and a cancer miRNA set from [29]. As we expected,

we found that 328 out of 1793 genes are cancer genes (Hypergeometric test P = 1.47e-06) (Fig

2D), and 73 out of 122 miRNAs are cancer miRNAs (Hypergeometric test P = 3.38e-03) (Fig

2E). In addition, we also used hypergeometric test to evaluate whether the number of cancer

genes or cancer miRNAs within each identified module is significantly larger than expected by
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chance (S10 Table and S1 Text). We found that each module contains an average of 6 cancer

miRNAs and 20 cancer genes. There are 8 out of 50 modules including significantly more can-

cer miRNAs and 15 out of 50 modules including significantly more cancer genes. For example,

module 1 contains 31 cancer genes (fold enrichment = 2.1, hypergeometric test P< 0.05) and

module 4 contains 20 cancer genes (fold enrichment = 1.7, hypergeometric test P< 0.05).

Characteristics of modules in different cancers

To visualize the co-expressed pattern of each identified cancer-miRNA-gene module, we first

calculated a Pearson correlation matrix between the genes and the miRNAs within the module

based on the corresponding miRNA and mRNA expression data for each cancer within the

module. We then drew a heatmap to show the co-expressed pattern using these correlation

matrices. The heatmaps of these identified modules are given in S2 Fig. We found that some

identified modules show different co-expressed patterns in different cancer types. For exam-

ple, the genes and the miRNAs within module 1 show strong positive correlation on all

selected cancers (Fig 3A), those within module 2 are both positively and negatively correlated

on all selected cancers (Fig 3B), whereas those within module 5 show strong negative correla-

tion on all selected cancers (Fig 3C). These results suggest that miRNA-gene regulation in can-

cer are very complex.

We further investigated whether these modules are specifically related with some cancer

types by visualizing the matrix W (Fig 4). W is the output matrix of Algorithm 2 (See section

Fig 3. Heatmap of cancer-miRNA-gene modules identified by TSCCA in the TCGA dataset. The top half of (A)

corresponds to the module 1 (row corresponds to gene, column corresponds to miRNA) and the lower part of (A) is a

random module for comparison. Similar setting is used for module 2 and module 5 in (B) and (C) respectively. (A), (B)

and (C) show three different co-expression patterns.

https://doi.org/10.1371/journal.pcbi.1009044.g003
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6 in S1 Text), whose each column corresponds to a module, and each row corresponds to a

cancer type. The absolute value of Wij reflects the co-expressed intensity of between the

genes and the miRNAs within the module j on the cancer i. We first observed that there are

only three negative elements in W (S3(A) and S3(B) Fig), i.e., (Module 31, TGCT) is −0.145,

(Module 49, TGCT) is −0.23, and (Module 49, UCS) is −0.138. Interestingly, we also

observed that the miRNAs and genes within module 31 are positively correlated in TGCT

cancer type, but are negatively correlated in other cancer types, and module 49 are positively

correlated in TGCT and UCS cancer types, but are negatively correlated in other cancer

types (S3(C) Fig). In addition, a hierarchical clustering method was used to cluster the rows

(cancer types) of W and the 33 cancer types were divided into 4 clusters. The first cluster

(including STAD, STES, COAD, COADREAD, READ, BLCA and ESCA) has the strongest

weighted values of W. The second cluster contains TGCT, BRCA, LUSC, LUAD, HNSC,

CHOL, UCEC, PAAD, PRAD and CESC, where the LUSC and LUAD show very similar pat-

terns in different modules. The third cluster (including KIPAN, DLBC, UCS, KIRC, KIRP,

THCA, OV, PCPG, MESO, LGG and UVM) has the weakest weighted values. Several cancer

types in the third cluster show module-specific characteristics. For example, UVM is specifi-

cally related with module 45, and LGG is specifically related with module 11. Importantly,

Fig 4. Heatmap showing W, which is the output matrix of Algorithm 2 (See S1 Text), when it was applied to the TCGA data. Each column

corresponds to a module and each row corresponds to a cancer type and |Wij| reflects the co-expressed intensity of between the genes and the

miRNAs within the module j on the cancer i. A hierarchical clustering method was used to cluster the rows (cancer types) into four clusters.

https://doi.org/10.1371/journal.pcbi.1009044.g004
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the results of the following survival analysis also show that module 11 is the most important

and clinically relevant module with LGG in all the modules. The fourth cluster contains

SARC, LIHC, SKCM, KICH and ACC. We note that TSCCA is an explorative tool, which

identifies the “strongest” modular patterns in the current multiple cancer data. This means

that in a subset of cancer data, it could identify other significant modules. For example, most

of the 50 modules identified by TSCCA on the TCGA dataset are enriched in 60% of cancers,

while other cancers are rare. To this end, we may extract a subset of cancers from the cluster

3 in Fig 4 and then re-use TSCCA to extract some modules on a subset of the previous data

(across 18 cancers). We found some new modules with significant modularity scores, and

more details are given in S4 Fig. This procedure will overcome the limit that a small number

of cancers may dominate the results for TSCCA.

We also calculated a modularity score for each cancer type of an identified module. Two

examples are shown in Fig 5A and 5E. These modularity scores of different cancers for the two

examples are larger than those of the random ones. All the results suggest that the miRNAs

and the genes are strongly co-expressed on these selected cancers for each module.

Cooperativity of genes and miRNAs within modules

To evaluate the biological relevance of the modules, we performed GOBP, KEGG and Reac-

tome pathway enrichment analysis for the genes within each module (See section 13 in S1

Text). We downloaded the gene functional annotations including GOBP, KEGG and reactome

Fig 5. Illustration of two cancer-miRNA-gene modules identified by TSCCA in the TCGA dataset. The results on module 1 are shown in (A), (B), (C)

and (D), while the results on module 4 are shown in (E), (F), (G) and (H). (A) Bar plot showing modularity scores of module 1 and a random one for

different cancer types. (B) Top enriched GO BP terms on the genes within module 1. (C) Cancer gene enrichment, gene-gene interaction enrichment and

miRNA-gene interaction enrichment of module 1 and the corresponding P-values were computed using the right-tailed hypergeometric test. (D) Largest

connected miRNA-gene subnetwork of module 1 (including 7 miRNAs and 84 genes and 538 edges), where the miRNAs directly regulate 21 genes and the

21 genes regulate 63 other genes. Similar setting was used for module 4 in (E), (F), (G) and (H). (H) Largest connected miRNA-gene subnetwork of module

4 (including 7 miRNAs and 75 genes and 309 edges), where the miRNAs directly regulate 24 genes and the 24 genes regulate 51 other genes.

https://doi.org/10.1371/journal.pcbi.1009044.g005
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pathways from MSigDB [30]. We found that 84% (42 out of 50) modules identified by TSCCA

are significantly related with at least a functional term with a benjamini-hochberg (BH)

adjusted P< 0.05 (S11 Table) and different modules tend to be enriched in different terms.

On average, each module is significantly enriched in 40 GOBP terms (S12 Table), 2 KEGG

terms (S13 Table) and 8 Reactome terms (S14 Table). For example, the top enriched GOBP

terms of module 1 includes cell cycle process, mitotic cell cycle, cell cycle, etc (Fig 5B), and the

top enriched GOBP terms of module 4 includes cell cycle, cell cycle process and chromosome

organization (Fig 5F). Importantly, cell cycle process has been reported to be one of 10 onco-

genic signaling pathway [40].

To assess whether the genes within module tend to be densely connected on the gene inter-

action network, we computed the numbers of gene interactions from this network for each

module (S10 Table). We found that 64% (32 out of 50) modules contain significantly more

gene interactions than expected by chance (Hypergeometric test P< 0.001). For example,

module 1 contains 505 gene interactions with 15-fold enrichment of the interaction density of

the gene interaction network (Hypergeometric test P< 1.0e-16, Fig 5C middle), and module 4

contains 253 gene-gene interactions with 7-fold enrichment (Hypergeometric test P< 1.0e-16,

Fig 5G middle). In addition, to avoid the influence of degree in the gene interaction network,

we developed a statistical permutation test method to perform the gene-gene interaction set

enrichment, and found that 88% (44 out of 50) modules contain significantly more gene inter-

actions than expected by chance (Permutation test P< 0.05, see section 23 in S1 text). All the

above results suggest that the genes within each identified module tend to cooperate with each

other.

Previous studies have shown that miRNAs co-regulate gene expression in a cooperative

form and participate in cellular activities [5]. So, we expect the miRNAs within module to be

cooperative. To this end, we collected a miRNA family data set from miRbase database [9]. We

found that 92% (46 out of 50) modules have at least two miRNAs in the same family (Permuta-

tion test P< 0.01, see section 17 in S1 Text and S15 Table). For example, the members of mod-

ule 1 including hsa-miR-17–5p, hsa-miR-18a-5p, hsa-miR-93–5p, hsa-miR-106b-5p, and hsa-

miR-106b-3p belong to miR-17 family, which has been reported to be associated with cancer

[41]. Module 8 includes seven miRNAs, which are hsa-miR-200b-5p, hsa-miR-200b-3p, hsa-

miR-200c-5p, hsa-miR-200c-3p, hsa-miR-200a-5p, hsa-miR-200a-3p, and hsa-miR-429 and

they belong to miR-8 family, which has been reported to be associated with cancer [42].

We also evaluated the cooperation of the genes and the miRNAs within module from statis-

tical significance using a permutation test method. To this end, we computed the average of

gene-gene/miRNA-miRNA absolute PCCs of any two genes/miRNAs within a given module

(denoted as gene/miRNA modularity). We found that the gene/miRNA modularity scores of

all the identified modules are significantly larger than those of 1000 modules randomly gener-

ated (Permutation test P< 0.01) (Fig 6A and 6B). On average, the miRNA modularity score is

about 0.5, and gene modularity is about 0.45 for these identified modules. These results dem-

onstrate that the genes/miRNAs within a module tend to cooperate from the perspective of co-

expression.

miRNA-gene regulatory network analysis of modules

To evaluate whether the regulatory relationship between miRNAs and genes within a given

module tends to be verified experimentally, we computed the number of experimentally vali-

dated miRNA-gene interactions between these miRNAs and genes within the module. These

experimentally validated interactions are from a miRNA-gene interaction network, which is

collected from the miRTarBase database [27]. We found that 38% (19 out of 50) modules
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contain the number of validated miRNA-gene interactions are significantly more than

expected by chance (Hypergeometric test P< 0.05) (S10 Table). For example, module 1 con-

tains 33 validated miRNA-gene interactions with 2.5-fold enrichment of the whole experimen-

tally validated miRNA-gene network (Fig 5C right), and module 4 contains 57 validated

miRNA-gene interactions (Fig 5G right). In addition, to avoid the influence of degree for miR-

NAs in the miRNA-gene network, we developed a statistical permutation test method to per-

form the miRNA-gene interaction set enrichment (See section 23 in S1 Text). There are 28%

(14 out of 50) modules which contain significantly more miRNA-gene interactions than

expected by chance (Permutation test P< 0.05).

For each identified miRNA-gene module, we have confirmed that some miRNA-gene inter-

actions are verified by the miRTarBase database, while there are also many miRNA-gene pairs

are not verified by the database. Furthermore, based on the experimentally validated miRNA-

gene and gene-gene interactions, we built a three-layer miRNA-gene regulatory network for

each module: miRNAs regulate genes and these genes regulate the other genes within the

three-layer network (S5(A) Fig). We found that 70% modules have at least three miRNAs par-

ticipating in a three-layer network (Permutation test P< 0.01, see section 17 in S1 Text). The

detailed results are shown in S16 Table. For example, we extracted a largest connected

miRNA-gene subnetwork of module 1 (including 7 miRNAs, 84 genes and 538 edges), where

the miRNAs directly regulate 21 genes and the 21 genes regulate 63 other genes (Fig 5D), and

a largest connected miRNA-gene subnetwork of module 4 (including 7 miRNAs, 75 genes and

309 edges), where the miRNAs directly regulate 24 genes and the 24 genes regulate 51 other

genes (Fig 5H). Interestingly, we also collected a total of 1793 genes and 122 miRNAs via com-

bining all identified modules and found 3619 experimentally validated miRNA-gene interac-

tions with hypergeometric test P = 3.5e-43 (S5(B) Fig).

Survival analysis of modules

To evaluate whether the identified modules can be seen as prognostic biomarkers, we further

investigated the association between the expression of both miRNAs and genes within the

module and survival time. For each module and for each cancer within the module, we first

extracted the first principal component (PC1) based on the expression data of these genes

and miRNAs within the module. We then divided the cancer samples into two groups based

the median value of the PC1 and log-rank test was used to assess the difference between the

two groups of samples and a P-value was computed. All computed P-values were corrected

Fig 6. Statistical analysis of PCCs of module miRNAs/genes using permutation test. (A) The average of absolute

gene-gene PCCs of the genes within each module (Permutation test P< 0.01). (B) The same results about miRNAs.

https://doi.org/10.1371/journal.pcbi.1009044.g006
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using the BH adjusted method. Based on these -log10(BH adjusted P-value) scores, we built a

bipartite graph between the modules and the cancer types (Fig 7A and S17 Table). In the

bipartite graph, we only kept these edges between the modules and the cancer types with BH

adjusted P< 0.05. In total, there are 45 modules, 17 cancer types and 116 significant mod-

ule-cancer edges in the bipartite graph. We found that 80% modules are significantly related

to the survival time on at least one cancer. For example, we found that M11-LGG and

M36-KIPAN edges have the largest weight value (i.e., smallest P-value) in the bipartite

graph. Module 11 is the most important and clinically relevant module to LGG (Log-rank

test P = 3.18e-06) and module 36 is a clinically relevant module to KIPAN (Log-rank test

P = 1.53e-05) (Fig 7B).

We also considered the expression of each miRNA within a module as the prognostic scores

(S18 Table). On average, we found that two clinically relevant miRNAs with BH adjusted

P< 0.05 for each cancer. Some important and clinically relevant miRNAs were found. For

example, the two most significant miRNAs are hsa-miR-15b-3p of module 11 for LGG with

log-rank test P = 3.33e-06, and hsa-miR-130b-3p of module 43 for KIPAN with log-rank test

P = 1.13e-05. In addition, three miRNAs (hsa-miR-93–3p, hsa-miR-130b-5p and hsa-miR-

130b-3p) of module 19 correlate with survival in ACC and four miRNAs (hsa-let-7c-5p, hsa-

miR-99a-5p, hsa-miR-125b-5p and hsa-miR-125b-2–3p) of module 3 correlate with survival

Fig 7. Survival analysis of modules. (A) showing a bipartite graph between the identified modules and the different

cancer types based on these -log10(BH adjusted P-value). For each identified module and each cancer within the

module, we first extracted the first principal component (PC1) based on the expressed matrix of both miRNAs and

genes within the module from the cancer type. We then divided the samples from the cancer type into two groups

based on the median value of PC1 and a P-value was compute using log-rank test. In the graph, we only kept these

edges/relationships between the modules and cancer types with adjusted P< 0.05. (B) Some cancer-miRNA-gene

modules relate to survival time. For a given cancer type and a given module, the Kaplan-Meier survival curves were

drawn for each group, and “+” denotes the censoring patient. Each sub-figure corresponds to a module and a cancer

type. For example, Module 11 has a significant P = 3.2e-09 for LGG (cancer type), written as “M11-LGG, P = 3.2e-09”.

https://doi.org/10.1371/journal.pcbi.1009044.g007
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in BLCA. These results reveal that some modules can be used as prognostic biomarkers in mul-

tiple cancer types.

Case studies

Based on the above functional analysis, we found that some identified modules show diverse

biological functions and relevance from different views (S19 Table). We took modules 1, 4,

and 11 as examples. The module 1 consists of 100 genes, 10 miRNAs and 20 cancers, of which

5 cancer miRNAs and 31 cancer genes (Hypergeometric test P = 2.59e-05). The correlations

between miRNAs and genes across the selected cancer types are statistically significant com-

pared to random ones (Permutation test P< 0.001). For five cancer types (including STAD,

BRCA, STES, KICH and SARC), the expression pattern of miRNAs and genes within the mod-

ule is significantly related with their patient survival respectively (Log-rank test BH adjusted

P< 0.05, see section 18 in S1 Text). Therefore, we may consider module 1 as a potential prog-

nostic biomarker for these five cancer types. Moreover, the module genes are enriched with a

large number of cancer-related functional terms including GOBP terms (cell cycle process,

mitotic cell cycle, cell cycle, chromosome segregation and cell division) and KEGG pathways

(cell cycle, oocyte meiosis, progesterone mediated oocyte maturation, homologous recombina-

tion and p53 signaling pathway), suggesting its strong cancer relevance. Recent studies have

shown that these cell cycle-related functions are related to multiple cancer processes [40, 43].

On the other hand, five module miRNAs (hsa-miR-17–5p, hsa-miR-18a-5p, hsa-miR-93–5p,

hsa-miR-106b-5p and hsa-miR-106b-3p) belong to miR-17 family, which has been reported to

be related to cancer [41, 44]. Finally, we also found that 6 of 10 miRNAs is related with patient

survival in at least one cancer type (Log-rank test BH adjusted P< 0.05) (S18 Table). For

example, the expression of hsa-miR-130b-5p and hsa-miR-130b-3p are significantly related

with ACC patient survival.

The module 4 contains 5 cancer miRNAs and 25 cancer genes (Hypergeometric test

P = 4.66e-03). The correlations between miRNAs and genes across the selected cancer types

within this module are statistically significant compared to random ones (Permutation test

P< 0.001). This module is significantly related to the survival time in five cancer types (ACC,

LIHC, LUAD, PAAD, KICH). The genes within the module are enriched with some cancer-

related functional terms including GOBP terms (cell cycle, cell cycle process, chromosome

organization, mitotic cell cycle and DNA metabolic process) and KEGG pathways (DNA repli-

cation, base excision repair, nucleotide excision repair, cell cycle, pyrimidine metabolism).

Boyer et al. have reported that DNA replication pathway plays an important role in cancer

[45]. More importantly, we found that 57 miRNA-gene interactions between the miRNAs and

genes within this module were verified before. Collecting the gene-gene network from PPI net-

work, we construct a miRNA-gene-gene regulatory sub-network where there are 7 miRNAs,

75 genes and 309 edges (Fig 5H and S16 Table).

The last example, module 11 exhibits distinct biological relevance with LGG (Brain Lower

Grade Glioma) in terms of miRNAs and genes. Firstly, the miRNAs and genes across the

selected cancer types within the module show strong correlations (Permutation test

P< 0.001). Secondly, the genes within this module are enriched with several cancer-related

KEGG pathways including cell cycle, small cell lung cancer, DNA replication, mismatch repair.

As mentioned earlier, cell cycle and DNA replication pathways have been reported to play an

important role in cancer. Thirdly, 36 miRNA-gene interactions between the miRNAs and

genes within this module were verified by miRTarBase database. We also construct a miRNA-

gene-gene regulatory sub-network, which contains 7 miRNAs, 68 genes and 208 miRNA-gene

edges (S16 Table). Importantly, two miRNAs (hsa-miR-130b-5p and hsa-miR-130b-3p) within
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the module belong to mir-130 family, which have been reported as potential biomarkers for

brain cancer [46–48]. Especially, the expression pattern of miRNAs and genes within the mod-

ule is significantly related with LGG patient survival (Log-rank test BH adjusted P = 3.18e-06).

Comparison on the simulated data

In this section, we compared TSCCA with SCCA [35] and Modularity_SA on a set of simu-

lated data. Modularity_SA is a modularity-based simulated annealing (Modularity_SA)

method (See section 19 in S1 Text), which uses a simulated annealing algorithm to maximize

the modularity index (Eq 9) for extracting a cancer-miRNA-gene module.

We generated a synthetic miRNA-gene correlation tensor A 2 R300�30�4 with 300 genes

and 30 miRNAs and 4 cancers, where (1) A1½i; j� � Nð0:5; 0:22Þ when 1� i� 100 and 1�

j� 10, and A1½i; j� � Nð� 0:5; 0:22Þ when 101� i� 200 and 11� j� 20, and the other ele-

ments are from N(0, 0.22); (2) A2½i; j� � Nð� 0:5; 0:22Þ when 1� i� 100 and 1� j� 10, and

A2½i; j� � Nð0:5; 0:22Þ when 201 � i� 300 and 21� j� 30, and the other elements are from

N(0, 0.22); (3) A3½i; j� � Nð0:5; 0:22Þ when 101� i� 200 and 11� j� 20, and A3½i; j� �
Nð� 0:5; 0:22Þ when 201� i� 300 and 21� j� 30, and the other elements are from N(0,

0.22); (4) A4½i; j� � Nð0; 0:22Þ for any i and j. We repeatedly generated 50 tensors (As) and

Fig 8A shows an A. For each A, we applied SCCA to each single miRNA-gene correlation

Fig 8. Comparison of results from different algorithms on the simulated data and TCGA data. (A) A synthetic miRNA-gene correlation tensor A,

which contains four matrices with the same number of genes (rows) and miRNAs (columns), and includes three true modules framed by rectangular

boxes of different colors. The shuffled A is as the input of tested methods by shuffling the genes (rows) and miRNAs (columns) of A. (B) Comparison of

different methods in terms of CE ± std and Recovery ± std on the simulated data. The Recovery and CE scores are computed based on As generated

repeatedly.

https://doi.org/10.1371/journal.pcbi.1009044.g008
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matrix Ai and the joint data defined as
P4

i Ai. To ensure fairness of comparison between

TSCCA, SCCA and Modularity_SA, their parameters are consistent with the size of true

modules. We assessed the similarity between the true modules and the prediction modules

through the use of two metrics: Clustering error (CE) score and Recovery score (S20 and S21

Tables, see section 20 in S1 Text for more detail). The results show that TSCCA is superior to

other methods in terms of Recovery and CE scores (Fig 8B). More results and description on

the simulated data with different variances are given in S22 and S23 Tables (See section 21 in

S1 Text for more detail). We found that SCCA has two disadvantages on the single cancer

simulated data: (1) SCCA always loses a real module on the simulated data. For example,

SCCA misses the module 3 when it was applied to A1, and misses the module 2 when it was

applied to A2, and SCCA misses all modules when was applied to the noise matrix A4. (2)

SCCA cannot make feature selection about the cancer types, i.e., SCCA cannot assess the

importance of the module for different cancers. Additionally, Modularity_SA has two short-

comings: (1) it misses some real members of the true modules; and (2) it is more time-con-

suming compared to TSCCA.

Comparison on the TCGA data

In this section, we compared TSCCA with SCCA and multiple tri-clustering methods on the

TCGA data. Firstly, we used SCCA to identify 50 modules on each cancer data set and com-

pared TSCCA with SCCA in terms of modularity scores and multiple biological indicators

(S24 Table). The parameters of SCCA is consistent with the parameters of TSCCA with ku =

200, kv = 10 and kw = 20 when applying to the TCGA data. For a single cancer data, SCCA also

ensures that the expression of miRNAs and genes within the identified modules are correlated

in the specific cancer data (See the eighth column in S24 Table), but it failed to ensure that the

miRNAs and genes with the identified modules are correlated in most cancer types (See the

seventh column in S24 Table). Thus, TSCCA is more suitable to multi-cancer data compared

to SCCA.

Secondly, we also compared TSCCA with multiple tri-clustering methods including Modu-

larity_SA and Sparse Canonical Polyadic decomposition (SCP) which uses ℓ1-regularization to

force sparse [49], and two merit-function based methods including “Variance” (See Eq 1 in

[50]) and “Mean squared residue (MSR)” (See Eq 3 in [50]). The two merit-functions are

optimized by using annealing algorithm. Var_SA is a variance-based simulated annealing

(Var_SA) method, which uses a simulated annealing algorithm to minimize the variance

merit-function for extracting a cancer-miRNA-gene module. Similarly, MSR_SA is an MSR-

based simulated annealing (MSR_SA) method, which uses a simulated annealing algorithm to

minimize the MSR merit-function for extracting a cancer-miRNA-gene module. The compari-

son results are given in S25 Table and show that TSCCA is superior to the other tri-clustering

methods in terms of multiple biological indicators and modularity score. Due to the definition

of MSR, the MSR_SA method is very consuming time. We found that MSR_SA took an hour

to identify a module, while Var_SA only takes 5 seconds on a personal computer. Compared

with the TSCCA and Modularity_SA, the sub-tensors/modules identified by Var_SA or

MSR_SA tend to be zero patterns (S6 Fig). We found that Modularity_SA has good perfor-

mance results in terms of the number of cancer genes and miRNAs, while TSCCA is better in

terms of the modularity score and the number of gene-gene and miRNA-gene edges (S25

Table). In addition, we also compared the performance of TSCCA and Modularity_SA under

the same input data. Compared with Modularity_SA, TSCCA obtained higher modularity

scores and consumed less time (S7(A) and S7(B) Fig). Therefore, from the perspective of maxi-

mizing the modularity score, TSCCA is still better than the Modularity_SA.
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Finally, we also compared TSCCA with principal component analysis which is applied to a

joint miRNA and gene expression data from 33 TCGA cancer types (S8 Fig and S26 Table).

More details and results about the comparison of TSCCA with other methods are given in

S1 Text.

Discussion

Many large projects (e.g., TCGA) have complied large multi-omics data and provided an

unprecedented opportunity for deep understanding of the fundamental mechanism of cancer

[51–53]. To build the connections between miRNA-gene regulatory modules across different

cancer types, we developed TSCCA to identify cancer-specific and shared miRNA-gene mod-

ules using the matched miRNA and gene expression data from multiple cancers.

We applied TSCCA to the matched miRNA and mRNA expression profiles across 33

cancer types with 9,645 cancer samples for detecting cancer-related miRNA-gene modules.

We found that the correlations of miRNA-miRNA, gene-gene and miRNA-gene within

each module are significantly higher than those of random ones. Furthermore, we also

investigated the cooperation mechanisms of miRNAs and genes within each module from

multiple views: 1) whether miRNAs within the module tend to be in the miRNA family; 2)

whether genes within the module tend to be enriched in some known functional classes,

and whether they tend to have significantly enriched interactions in the gene interaction

network; 3) whether miRNAs and genes within the module tend to have significantly

enriched miRNA-gene interactions in the miRNA-gene network; 4) whether genes and

miRNAs within the module tend to be cancer-related makers. We eventually found that

most of the modules identified by TSCCA have cooperative characteristics or cancer-related

biological functions.

We also revealed that the miRNA-gene co-expressed patterns of these identified modules

show some different patterns (S2 Fig). Interestingly, a large number of miRNA-gene co-

expressed patterns with positive correlation coefficients were identified, which were also

observed before [54]. These results show that 1) miRNA-gene correlation patterns are hetero-

geneous for different cancers; 2) There may be a large number of indirect miRNA-gene regula-

tory relationships within each module. Furthermore, our analysis implies that these miRNA-

gene patterns take different forms in different cancers. They are strongly co-expressed in some

cancers while being weak in others. We also found that the miRNA-gene co-expressed patterns

of some modules are reversed in different cancers. For example, the miRNA-gene correlation

coefficients within module 49 are almost negative in most cancer types, while they are mostly

positive in TGCT and UCS (S2(J) Fig). This observation implies the complexity of miRNA-

gene regulation in cancer. Interestingly, we also found that some miRNA-gene modules can be

used as diagnostic makers in different cancers. Some cancers share common survival-related

modules while the others are specific to certain modules. Additionally, some cancer-specific or

shared survival-related miRNAs were also found (S18 Table). This finding suggests that it is

possible to develop miRNA-targeted drugs to treat multiple cancers.

In this study, we have addressed a number of important challenges in the integrative analy-

sis of multi-omics data across multiple cancers. Some further studies are deserved to investi-

gate in the future. First, how to extend our linear model to identify non-linear relationships

between miRNAs and genes across cancer types. Second, how to integrate prior information

on the relationships between genes or miRNAs (e.g., the PPI network and gene pathway) to

identify more biologically meaningful patterns. Third, how to make use of other omics data,

such as copy number variation and DNA methylation data. The last but not the least, how to

apply our approach to other biological problems. For example, GDSC and CCLE have released
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a wealth of drug and gene expression data across different cell lines [55–57]. This provides

new opportunities to discover cell-specific and shared gene-drug co-modules using TSCCA.
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