Skip to main content
. 2021 Jun 11;16(6):e0249338. doi: 10.1371/journal.pone.0249338

Table 1. Hyperparameter tuning for machine learning algorithms.

Classifier Hyperparameters and Values
Random Forest Hyperparameters set by default using the gini criterion.
Extra Tree Hyperparameters set by default using the gini criterion.
Gradient Boosting Machine Criterion = ’friedman_mse’
max_depth = 1
min_samples_leaf = 2
min_weight_fraction_leaf = 0.1
presort = ’deprecated’
Soft Voting Ensemble Classifier estimators = [RandomForestClassifier(),ExtraTreesClassifier(),GradientBoostingClassifier(criterion = ’friedman_mse’, max_depth = 1, min_samples_leaf = 2, min_weight_fraction_leaf = 0.1, presort = ’deprecated’)]
voting = ’soft’
weights = [9, 6, 2]