Table 1. Hyperparameter tuning for machine learning algorithms.
Classifier | Hyperparameters and Values |
---|---|
Random Forest | Hyperparameters set by default using the gini criterion. |
Extra Tree | Hyperparameters set by default using the gini criterion. |
Gradient Boosting Machine | Criterion = ’friedman_mse’ max_depth = 1 min_samples_leaf = 2 min_weight_fraction_leaf = 0.1 presort = ’deprecated’ |
Soft Voting Ensemble Classifier | estimators = [RandomForestClassifier(),ExtraTreesClassifier(),GradientBoostingClassifier(criterion = ’friedman_mse’, max_depth = 1, min_samples_leaf = 2, min_weight_fraction_leaf = 0.1, presort = ’deprecated’)] voting = ’soft’ weights = [9, 6, 2] |