Skip to main content
. 2021 Jun 11;16(6):e0249338. doi: 10.1371/journal.pone.0249338

Table 7. Performance measures for machine learning models on NSTEMI dataset (%).

Classifier Class Labels Precision Recall F-score AUC
RF No 88.608 97.222 92.715 97.550
CD 91.892 100.00 95.775 99.857
NCD 100.00 95.833 97.872 100.00
MI 85.714 40.000 54.546 99.004
rePCI 80.000 90.323 84.849 98.022
CABG 94.444 73.913 82.927 98.530
ET No 93.243 92.000 92.617 97.505
CD 100.00 100.00 100.00 100.00
NCD 100.00 96.429 98.182 100.00
MI 63.636 77.778 70.000 95.117
rePCI 93.103 87.097 90.000 98.906
CABG 75.000 81.818 78.261 98.575
GBM No 96.000 97.297 96.644 99.892
CD 100.00 100.00 100.00 100.00
NCD 100.00 100.00 100.00 100.00
MI 33.333 28.571 30.769 91.043
rePCI 72.222 74.286 73.239 95.767
CABG 100.00 100.00 100.00 100.00
SVE No 93.976 98.734 96.296 99.357
CD 94.286 100.00 97.059 100.00
NCD 100.00 100.00 100.00 100.00
MI 90.909 71.429 80.000 98.070
rePCI 90.909 85.714 88.235 98.589
CABG 94.444 89.474 91.892 99.883

*Note: RF denotes Random Forest; ET Extra Tree; GBM Gradient Boosting Machine; SVE Soft Voting Ensemble; MACE Major Adverse Cardiovascular Events; CD Cadiac Death; NCD Non Cardiac Death; MI Myocardial Infarction, rePCI re-Percutaneous Coronary Intervention; CABG Coronary Artery Bypass Grafting.