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C H E M I S T R Y

Combining generative artificial intelligence and on-chip 
synthesis for de novo drug design
Francesca Grisoni1,2*†, Berend J. H. Huisman1†, Alexander L. Button1,3, Michael Moret1, 
Kenneth Atz1, Daniel Merk1,4*, Gisbert Schneider1,5*

Automating the molecular design-make-test-analyze cycle accelerates hit and lead finding for drug discovery. 
Using deep learning for molecular design and a microfluidics platform for on-chip chemical synthesis, liver X 
receptor (LXR) agonists were generated from scratch. The computational pipeline was tuned to explore the chemical 
space of known LXR agonists and generate novel molecular candidates. To ensure compatibility with automated 
on-chip synthesis, the chemical space was confined to the virtual products obtainable from 17 one-step reactions. 
Twenty-five de novo designs were successfully synthesized in flow. In vitro screening of the crude reaction products 
revealed 17 (68%) hits, with up to 60-fold LXR activation. The batch resynthesis, purification, and retesting of 14 of 
these compounds confirmed that 12 of them were potent LXR agonists. These results support the suitability of the 
proposed design-make-test-analyze framework as a blueprint for automated drug design with artificial intelligence 
and miniaturized bench-top synthesis.

INTRODUCTION
Rapid iteration of the molecular design-make-test-analyze (DMTA) 
cycle has the potential for making “better decisions faster” (1, 2), 
with numerous applications in drug discovery and related fields 
(3, 4). Recent advances in chemical reaction monitoring and opti-
mization, computing hardware, and algorithms have boosted the 
automation of several parts of the drug discovery process, such as 
robotic synthesis (5–8), computational molecular design (9–11), and 
synthesis planning (12–15). Standardized experimental procedures 
with robotic assistance increase the reproducibility of results, re-
duce errors, and decrease the consumption of materials, thereby 
contributing to “green chemistry” (16). Furthermore, reasoning with 
machine intelligence supports the discovery of novel drug-like 
molecules by freeing the molecular design and optimization process 
from personal biases (1). Pioneering studies combined microfluidics 
platforms with machine intelligence for synthesis planning (7, 17) 
as well as automated hit finding and hit-to-lead optimization in com-
binatorial libraries (8, 18). Computer-assisted molecular design is a 
critical element of this automation process. Molecular structure gen-
eration is often performed in a “rule-based” manner, i.e., by using 
algorithms for molecule assembly from predefined virtual reactions 
and reactants (19). Generative deep learning models extend the 
capabilities of rule-based de novo molecule generators by sampling 
new molecules from a latent chemical space representation (20–23), 
without the need for human-crafted molecule construction rules. 
Recently, the prospective applicability of “rule-free” generative deep 
learning for de novo molecular design has been demonstrated in 
combination with batch synthesis (9, 10, 24–26).

This study aims to pioneer the integration of generative molec-
ular design with automated synthesis. Here, a recently published 

generative deep learning model (27) was adapted to generate com-
pounds that are at the same time (i) bioactive on a selected macro-
molecular target and (ii) synthesizable on a bench-top microfluidic 
synthesis platform (16, 28). We challenged this automated DMTA 
pipeline to design liver X receptor (LXR) agonists from scratch, with 
minimal human interference. LXRs have emerged as promising drug 
targets because of their regulatory role in lipid metabolism and 
inflammation, thereby causing increased reverse cholesterol transport 
and reduction of atherosclerosis (29–32). With 28 molecules success-
fully synthesized and 12 fully validated for LXR activation in vitro, this 
present study pioneers the integration of generative artificial intelli-
gence and automated synthesis by designing and experimentally 
testing the highest number of molecules reported thus far. The pro-
posed modular framework has the potential to accelerate the DMTA 
cycle, thereby addressing one of the main bottlenecks of the preclinical 
drug discovery process (33).

RESULTS AND DISCUSSION
Modular DMTA platform
The automated molecular design pipeline was composed of three 
modules (Fig. 1):

1) Module 1: A generative deep learning model (27) based on a 
recurrent neural network with long-short term memory (LSTM) cells 
(34). LSTM models were used for the design of new molecules rep-
resented as simplified molecular input line entry systems (SMILES) 
(35) strings (20, 21, 36). This LSTM-based “chemical language model” 
served as the de novo structure generator (Fig. 1A).

2) Module 2: A virtual reaction filter that captured 17 one-step 
reactions that were compatible with the microfluidics system 
(module 3). These reactions were encoded as SMILES arbitrary target 
specification (SMARTS) strings (37) (table S1). This filtering module 
selected those generated molecules that were synthetically compatible 
within the microfluidics platform (Fig. 1B).

3) Module 3: A microfluidics platform designed to minimize the 
amount of manual labor needed to optimize reaction conditions and 
synthesize focused compound libraries via one-step reactions. This 
compact bench-top system combined the automated retrieval of 
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required reagents with the optimization of reaction conditions, 
online reaction product monitoring by high-performance liquid 
chromatography–mass spectrometry (HPLC-MS), and the collection 
of the reaction mixtures (Fig. 1C).

De novo molecular design with artificial intelligence
The deep learning model (Fig. 1A) was pretrained on the SMILES 
strings of 656,070 commercially available molecules from four com-
pound vendors (for details, see Materials and Methods), which were 
predicted by the virtual reaction system to be suitable for the on-chip 
synthesis within our microfluidics platform. This pretraining step 
enabled the model to capture the syntax of the SMILES strings. After 
pretraining, 83 ± 2% of the generated SMILES strings were unique 
and chemically valid (average of three repetitions, 3000 SMILES 
strings sampled at each repetition) and corresponded to novel mole-
cules that were not included in the pretraining set. Compared to 
model pretraining performed in previous studies using bioactive 
molecules from the ChEMBL database (9, 27, 38), the approach 
used here resulted in a significantly higher proportion of de novo 
molecules that were considered synthesizable in flow (P < 0.001, 
Kruskal-Wallis test; Fig. 2A). This result highlights the capability of the 
deep learning model to implicitly learn the desired molecular features 
(here, compound synthesizability as defined by the virtual reaction 
filter), without the need for explicit, rule-based design constraints.

After pretraining, the model was fine-tuned with the SMILES strings 
of 40 LXR agonists [median effective concentration (EC50) < 0.5 M; 
tables S2 and S3] that were not included in the pretraining set. This 
fine-tuning step allowed us to focus the model on features that are 
shared by a chosen set of compounds (20, 39); therefore, it was used 
to bias the generation of new SMILES strings toward the chemical 
space of known LXR agonists. Both the number of fine-tuning epochs 
for molecule design and the sampling temperature for SMILES string 
generation were automatically determined to optimize three pa-
rameters simultaneously (fig. S1), namely, the (i) predicted LXR 
activity (40), (ii) scaffold diversity (41), and (iii) pharmacophore 
similarity to the fine-tuning compounds (42). From the fine-tuned 
model (epochs 15 to 20), 3000 SMILES strings were sampled per 
epoch. Only those generated molecules that were not included in 

the pretraining and fine-tuning sets were retained, resulting in a 
total of 3626 de novo designs.

The retrosynthetic route of each generated molecule was pre-
dicted using the chosen set of 17 virtual reaction schemes (Fig. 1B). 
The compounds that could be decomposed into suitable reactants 
were kept (1911 designs). Notably, with a relative scaffold diversity 
equal to 23% both before and after reaction filtering, this filtering 
step did not markedly alter the scaffold diversity (41) of the designs. 
In general, no statistically significant decrease in the relative scaffold 
diversity due to the application of the virtual reaction filter was 
observed ( = 0.05, Wilcoxon test; Fig. 2B), rendering this method 
suitable for the design of reaction-focused compound libraries. 
Whenever the predicted reaction product was compatible with the 
microfluidics system (i.e., potentially synthesizable following 1 of 
the 17 selected reaction schemes), the predicted reactants were 
automatically retrieved from the Sigma-Aldrich catalog extracted 
from PubChem (43) (27 February 2019). For 67 designs, all of the 
required reactants were available.

A novelty check of the remaining 67 molecules was performed in 
PubChem (43), ChEMBL27 (44), SciFinder (45), SureChEMBL (46), 
and Reaxys compound databases (47). Of the 67 designs, 17 molec-
ular structures corresponded to patented or otherwise known LXR 
agonists, with EC50 values ranging from 0.2 to 2 M (Fig. 2C). This 
result indicated that the deep learning model correctly captured the 
relevant molecular features for LXR binding and activation. For the 
remaining 51 de novo designs (table S4), no information on bioactivity 
for LXR was available. Of this compound set, 37 molecules were 
novel, 10 compounds were commercially available, and 4 were de-
scribed in the PubChem database but were unavailable for purchase 
(Fig. 2C). Overall, 41 compounds were selected for synthesis and 3 were 
purchased, while the remaining compounds were discarded because 
of unavailability or the high price of the respective building blocks.

Microfluidics-assisted synthesis “on-chip” and  
first-pass screening
The 41 selected de novo molecules were synthesized in flow using the 
computationally suggested reactions. Of these compounds, 21 were 
predicted to be synthesizable by sulfonamide formation, 19 by amide 
bond formation, and compound 21 by ester bond formation (table 
S5). These predictions were in agreement with the distribution of 
the pretraining set, in which these three reactions were the most 
frequently predicted ones (98% of the molecules; table S6). On the 
basis of the respective HPLC-MS mass peaks, a total of 25 compounds 
were successfully synthesized on the microfluidics platform (1 to 25; 
Fig. 3A and fig. S2 to S26), corresponding to a 61% success rate. 
Compounds 26 to 28 were purchased.

Compounds 1 to 28 were subjected to preliminary testing for 
LXR and LXR activation in hybrid Gal4 reporter gene assays with 
human embryonic kidney (HEK) 293T cells (48). This assay relies 
on chimeric transcription factors composed of the respective 
human nuclear receptor ligand-binding domain and the DNA-
binding domain of the yeast protein Gal4. Gal4-responsive firefly 
luciferase served as the reporter gene, and a constitutively expressed 
Renilla luciferase was used for normalization and to monitor the 
toxicity of the test compounds. As a cellular test system, this assay also 
captured the cell penetration and cytotoxicity of the test compounds. 
Crude reaction mixtures (49, 50) of all 28 test compounds were 
analyzed at a single concentration for LXR and LXR activation, with 
two independent biological duplicates (Fig. 2B). The test compound 
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Fig. 1. Schematic of the modular molecular design pipeline. (A) A generative 
deep learning model (27) based on a long-short term memory network (34) was used 
to generate putative liver X receptor  agonists. The two-step network training 
procedure first trained the model on 656,070 compounds predicted as compatible 
with the microfluidics system and then fine-tuned this pretrained model with 40 
known LXR agonists. (B) The de novo generated molecules were filtered on the 
basis of their predicted synthesis route, using a set of 17 reactions specified in the 
SMARTS notation (“virtual reaction filter”). Molecular building blocks for synthesis 
were automatically retrieved from a commercial supplier catalog. (C) A total of 
41 de novo designs were retained for synthesis on a microfluidics platform, which 
contained two syringes for the handling of reagents R1 and R2, a Cetoni Qmix 
element equipped with a Dean Flow microfluidic reactor chip, and a Rheodyne MRA 
splitter for automated sample transfer to an HPLC-MS system.
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concentration was roughly adjusted to 10 M based on the HPLC 
traces of the samples.

Reaction mixtures of compounds 1 to 17 displayed ≥3-fold LXR 
activation in this preliminary screening, potentially corresponding 
to up to 68% actives among the 25 synthesized molecules. “Fold 
activation” refers to the fold LXR-induced reporter activity compared 
to untreated [dimethyl sulfoxide (DMSO)] cells. The reference LXR 
agonist T0901317 (51) achieved 81 ± 3–fold activation of LXR and 
129 ± 7–fold activation of LXR in this assay (at 1 M). Compounds 6 
(52-fold LXR activation) and 15 (60-fold LXR activation) exhib-
ited the strongest response in the primary screening. All compounds 
showing more than twofold LXR activation had a hexafluoro-2-
phenyl-isopropanoyl moiety, suggesting particular relevance of this 
molecular feature for the observed bioactivity. This feature was also 
present in 12 of the fine-tuning compounds (29%), with an addi-
tional 4 (10%) and 8 (20%) fine-tuning compounds having a 
hexafluoro-2-aryl-isopropanoyl moiety and an aryl-trifluoromethyl 
motif, respectively. All compounds showing more than 10-fold 
LXR activation in the preliminary screening were selected for full 
characterization of the dose-response curve. Compound 7 was 
excluded because of its cytotoxicity. Compound 1 (twofold LXR 

activation) was included in the follow-up study because of its novel 
atomic scaffold (41), which is not present in any molecule annotated 
for LXRs in ChEMBL27 or in a repository for nuclear receptor 
bioactivity (52).

Bioactivity determination
The selected 14 compounds were prepared in-batch (scheme S1), 
purified, and fully characterized on LXR and LXR (Table 1). Of 
these compounds, only compounds 2 and 3 were not confirmed to 
be active in the follow-up screening, suggesting that some other 
components in the crude reaction product mixture had activated 
LXRs in the primary screening. This finding indicates that the 
hexafluoro-2-phenyl-isopropanoyl moiety is not sufficient for LXR 
activation, despite its ubiquity among the de novo designs. The potencies 
of the remaining 12 LXR modulators were in the range of EC50 = 0.18 
to 4.5 M for LXR and EC50 = 0.34 to 4.0 M for LXR. In agree-
ment with the primary screening data, compound 6 displayed the 
highest potency on LXR, with an EC50 of 0.183 ± 0.006 M and a 
32-fold maximum activation. Compound 15 was confirmed as the 
most potent LXR agonist, with an EC50 of 0.34 ± 0.02 M and 
38-fold maximum receptor activation.
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Fig. 2. Automating de novo design with deep learning. (A) Number of de novo designs retained by the virtual reaction filter depending on the pretraining (mean 
and SD over three replicates and 3000 sampled SMILES strings each). Compared to previous studies using bioactive molecules from ChEMBL (dashed lines) (9, 27, 38), this 
pretraining strategy (solid line) led to a larger number of compounds retained by the virtual reaction tool (P < 0.001, Kruskal-Wallis test), with up to 255 ± 97 more designs 
retained in each fine-tuning epoch. The epochs chosen for sampling are highlighted (epochs 15 to 20, gray rectangle). (B) Relative scaffold diversity (i.e., unique scaffolds/
total number of scaffolds) of the de novo designs before and after applying the virtual reaction filter. No statistically significant difference in scaffold diversity was 
observed (Wilcoxon test,  = 0.05). (C) Analysis of 67 de novo designs retained for potential synthesis: 14 compounds were patented LXR modulators annotated in 
SureChEMBL or Reaxys (22%); 15 compounds existed in PubChem, of which 10 compounds are annotated as commercially available (15% of the total); 4 (6%) compounds 
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The bioactive hits had varying levels of fragment similarity to the 
fine-tuning compounds (25 ± 13% on average), in terms of their 
Tanimoto similarity on Morgan molecular fingerprints (53). Seven 
designs showed a fragment similarity <65% to all fine-tuning com-
pounds (table S6). Compound 29 (Fig. 4A) was the nearest fine-tuning 
neighbor to several bioactive designs, with fragment similarity values 
ranging from 55 to 75%. Among those designs, bioactive compounds 1, 
13, and 15 had novel atomic scaffolds (“Murcko scaffolds”) (41) 
compared to the LXR and LXR agonists, with EC50 ≤ 50 M anno-
tated in the ChEMBL27 database (Fig. 4A). Furthermore, the scaffolds 

of compounds 1 and 13 were not present in any of the 15,247 mol-
ecules annotated in the Nuclear Receptor Activity (NURA) dataset 
(52). Compound 15, the most potent LXR agonist, had the lowest 
fragment similarity to the two closest fine-tuning molecules (table 
S6). These results corroborate the capacity of the computational 
pipeline to explore narrow regions of the chemical space defined by 
the known LXR agonists while, at the same time, providing hitherto 
unexplored molecular cores for further compound optimization.

All the confirmed active compounds had a preference for LXR 
over the LXR subtype (Table 1). This observation reflects the 
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Fig. 3. Compound structures and first-pass in vitro screening results. (A) Compounds 1 to 25 were synthesized in flow, and compounds 26 to 28 were purchased. 
(B) LXR and LXR activation by compounds 1 to 28, as determined by the hybrid Gal4 reporter gene assays on the crude reaction products (test concentration ~10 M, 
n = 2 with two technical replicates each). The numbers and color intensity indicate the fold activation of LXR and LXR by each compound.
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desired effect of fine-tuning the artificial intelligence model with 
LXR modulators. Compounds 17 and 5 showed the highest LXR 
selectivity, with five to six times greater activity than on LXR 
(Table 1). Compound 17 activated LXR less potently than its closest 
structural relative among the fine-tuning compounds (EC50 < 0.1 M; 
table S6). Compound 5 (LXR, EC50 = 0.26 ± 0.01 M; LXR, EC50 = 
1.30 ± 0.03 M) constituted only a minor structural modification of 
fine-tuning compound 29, which had an EC50 of 0.4 M on LXR 
(54, 55) and an EC50 of 0.18 M on LXR (54). While compounds 5 
and 29 were comparable in their agonistic effects on LXR, com-
pound 5 was more than seven times less potent than 29 on the  
subtype. As suggested by automated ligand-receptor docking, the 
preference for LXR could be ascribed to the different positioning 
of compounds 5 and 29 in the LXR binding pocket (Fig. 4B). While 
compounds 5 and 29 are predicted to adopt similar binding poses 
within the LXR pocket [root mean square deviation (RMSD), <1.8 Å], 
compound 29 was predicted to engage in an additional CH3- inter-
action in the binding pocket of LXR. This hypothesis potentially 
explains the greater affinity of compound 29 for LXR as compared 
to that of compound 5.

Study significance and outlook
With 61% of the computational designs successfully synthesized and 
12 novel LXR agonists with low-micromolar to sub-micromolar activity 
identified, the integrated de novo design platform shows promise 
for automating the DMTA cycle in drug discovery. By tailoring the 
model optimization to the available experimental pipeline, the 
benefits of rule-free de novo design, virtual reaction specification, and 
automated synthesis were combined. The results further validate 
the ability of generative molecular design approaches to capture 
desired molecular properties such as chemical synthesizability and 
on-target bioactivity, as well as their potential to support automation. 
The proposed DMTA framework offers the promise of fast iterations 
through the molecular design cycle and data-driven compound 

optimization. By relying on generative deep learning, the pipeline 
could be operated with minimal human interference, only requiring 
human input for the curation of the pretraining and fine-tuning 
compounds, and not using any human-crafted rules for molecule 
construction. Owing to its modular character, the approach can be 
tailored to other de novo design applications by replacing the com-
putational molecule generator, reactions used for filtering, or syn-
thesis technology. For the purpose of this proof-of-concept study, 
we successfully obtained molecules that were synthesizable within 
the microfluidics platform and had desired activity on LXR. These 
results indicate the usefulness of the pipeline for compound optimi-
zation and structure-activity relationship studies. Within the 
constraints of the two optimization goals (i.e., synthesizability and 
bioactivity on LXR), limited exploration of the chemical space was 
achieved. While conserving the overall structural similarity of the 
compounds in the fine-tuning set, novel structural features were 
introduced and new molecular scaffolds were identified. The three 
novel bioactive scaffolds (EC50 values ranging from 0.24 to 4.5 M) 
highlight the capability of the computational pipeline to explore 
narrow regions of the relevant chemical space while, at the same time, 
providing access to unexplored molecular scaffolds.

The integrated de novo design platform can be further expanded 
by explicitly including the structural diversity of the molecular designs 
in the multiparameter optimization process. To achieve a broader 
exploration of the chemical space, several strategies can be adopted, 
for example, choosing different optimization criteria for the generative 
deep learning model or including other artificial intelligence models 
(15, 56) in the definition of compatible organic reactions. The pro-
posed approach demonstrates the possibility to achieve closed-loop 
benchtop platforms for compound design and iterative optimization 
driven by artificial intelligence. Future work will be concerned with 
extending the microfluidic system to enable multistep synthesis, ex-
ploring automated batch synthesis as an alternative, as well as estab-
lishing active learning (57, 58) for improved process efficiency.

Table 1. LXR and LXR modulatory potency of compounds selected for phase 2. Potency was determined in cellular Gal4-based hybrid reporter gene 
assays. EC50 values and fold activation are reported as mean ± SE (n = 3). n.d., not determined. 

ID
LXR LXR Selectivity for LXR

EC50 (M) Fold activation EC50 (M) Fold activation (LXR/LXR)

1 4.5 ± 0.1 20.5 ± 0.2 >10 n.d. >2.2

2 >10 n.d. >10 n.d. n.d.

3 >10 n.d. >10 n.d. n.d.

5 0.26 ± 0.01 18.1 ± 0.1 1.30 ± 0.03 25.3 ± 0.3 5.0 ± 0.2

6 0.183 ± 0.006 32.4 ± 0.2 0.40 ± 0.01 23.3 ± 0.1 2.19 ± 0.09

8 1.05 ± 0.01 15.2 ± 0.1 1.72 ± 0.04 24.7 ± 0.3 1.64 ± 0.04

9 1.68 ± 0.03 20.3 ± 0.1 4.0 ± 0.1 22.2 ± 0.1 2.38 ± 0.07

10 1.19 ± 0.01 11.2 ± 0.1 3.1 ± 0.1 20.0 ± 0.4 2.61 ± 0.09

11 1.31 ± 0.03 23.0 ± 0.2 2.37 ± 0.02 19.2 ± 0.1 1.81 ± 0.04

12 0.8 ± 0.3 24.7 ± 0.7 1.08 ± 0.02 27.9 ± 0.3 1.4 ± 0.5

13 1.1 ± 0.1 13.5 ± 0.2 2.23 ± 0.02 19.0 ± 0.1 2.0 ± 0.2

14 0.30 ± 0.01 26.6 ± 0.1 1.41 ± 0.02 30.1 ± 0.2 4.7 ± 0.2

15 0.24 ± 0.04 22 ± 2 0.34 ± 0.02 38.3 ± 0.3 1.4 ± 0.3

17 0.21 ± 0.02 18.5 ± 0.1 1.25 ± 0.01 22.9 ± 0.1 6.0 ± 0.6
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MATERIALS AND METHODS
Computational
Virtual reaction filter
A total of 17 decomposition reactions written in the SMARTS 
language (in the form “product >> reactant”) were adapted from 
a recent study (59) to capture feasible synthetic routes for the 
microfluidics-assisted platform (see table S1). The program code of 
the virtual reaction filter can be accessed at the following URL: 
https://github.com/ETHmodlab/ai-on-a-chip.
Training data
The pretraining library was obtained from a dataset of 3,383,942 
commercially available synthetic compounds, assembled from four 
providers: Asinex (http://asinex.com/libraries-html/—Elite, Fragments, 
Gold, and Platinum collections), ChemBridge screening compound 
collection (http://chembridge.com), Enamine advanced and HTS 
collections (http://enamine.net), and Specs screening compounds 
(https://specs.net). The library was filtered using the respective 
reaction SMARTS. Only compounds that could be successfully 
decomposed into their corresponding reactants (656,689 molecules) 
were retained for model pretraining. Fine-tuning was performed on a 

set of 40 LXR agonists (table S2), manually curated from ChEMBL26 
(44) (target ID = CHEMBL2808), with cell-based activity data 
demonstrating LXR agonism with EC50 < 500 nM.
Molecule preprocessing
The molecular structures were standardized with the Molecular 
Operating Environment (MOE) “wash” procedure (MOE v.2018.01, 
default settings) before computing molecular descriptors and per-
forming target prediction. As in our previous study (27), before LSTM 
training, molecular structures were encoded as canonical SMILES 
(60) strings using the RDKit package (v.2018.03, www.rdkit.org); 
stereochemical information was removed and only SMILES strings 
with a length of up to 80 SMILES characters were retained (656,070 
and 40 molecules for pretraining and fine-tuning, respectively). The 
preprocessed training set data can be accessed at the following URL: 
https://github.com/ETHmodlab/ai-on-a-chip.
Target prediction and molecular descriptors
Target prediction was performed with the in-house software SPiDER 
(40), using MOE2D and Chemically Advanced Template Search 2 
(CATS2) descriptors (42) as input. Only predictions with P < 0.05 
were considered. CATS2 descriptors were calculated using in-house 
software (settings: CorrelationDistance = 10, Scaling = Types, 
Distance = Euclidean). MOE2D descriptors were calculated with the 
“QSAR descriptors” node of MOE 2018.01 in a KNIME 3.7.0 envi-
ronment (61) (charge calculation = MMFF94*).
Model architecture and settings
The chemical language model was implemented in Python (v. 3.6.5) 
using Keras (https://keras.io/, v2.2.0) with the TensorFlow GPU 
backend (www.tensorflow.org, v1.9.0) as a recurrent neural network 
with LSTM cells (34), as previously published (27). The neural net-
work used consisted of four layers, for a total of 5,820,515 parameters: 
(i) BatchNormalization layer, (ii) LSTM layer with 1024 units, (iii) 
LSTM layer with 256 units, and (iv) BatchNormalization layer. The 
model was trained with SMILES strings encoded as one-hot vectors. 
SMILES randomization and 10-fold augmentation, as recently pub-
lished (27), were used. We used the categorical cross-entropy loss 
and the Adam optimizer (62). The model was pretrained for 10 epochs 
with a learning rate equal to 0.001. We selected the pretraining epoch 
(epoch 2) as the one maximizing the number of designs that could 
be decomposed into compatible reactants (building blocks) available 
from the Sigma-Aldrich catalog. The selected model was fine-tuned for 
40 epochs (learning rate = 0.002). The model code can be accessed at 
the following URL: https://github.com/ETHmodlab/virtual_libraries.
Temperature and sampling epoch choice
Sampling temperature and fine-tuning epochs were automatically 
determined to optimize three parameters simultaneously: (i) pre-
dicted LXR activity by SPiDER (40), (ii) scaffold diversity (41), and 
(iii) distance to the fine-tuning compounds [as encoded by CATS2 
(42) descriptors with Euclidean distance]. We tested three sampling 
temperatures (T = 0.2, T = 0.7, and T = 1.2; fig. S1) and fine-tuning 
epochs 1 to 40 (fig. S3). Sampling temperature T = 0.70 and fine-tuning 
epochs in the range of 15 to 20 were chosen to generate the final 
designs, as they resulted in the best compromise between scaffold 
diversity, number of compounds predicted as LXR modulators 
(P < 0.05), and CATS2 similarity between the fine-tuning set and de 
novo design.
Novelty and scaffold analysis
The 67 de novo designs retained after reaction-based filtering were 
checked for their structural novelty on PubChem (43), ChEMBL27 
(44), SciFinder (version 2019; Chemical Abstracts Service) (45), 
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LXR: EC50 = 0.4 M, LXR: EC50 = 0.18 M). The corresponding fragment similarity 
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similar agonistic effect on LXR to compound 29, and it is five times more selective 
for the  subtype. (B) Automated ligand docking of compounds 5 (de novo design, 
blue) and 29 (fine-tuning compound, light gray) to the binding pockets of LXR 
[PDB ID: 3IPS (63), left] and LXR [PDB ID: 1PQC (64), right]. GOLD (65) docking 
software was used. The solvent-accessible surface of the binding pockets is colored 
according to the computed electrostatic potential; red: negatively charged and 
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SureChEMBL (46), and Reaxys (47) (accessed 4 April 2019). Atomic 
scaffolds (41) were computed using RDKit in KNIME (v. 3.6.2).
Similarity analysis
ChEMBL27 compounds that were structurally similar to the bioactive 
hits [as determined by the Tanimoto similarity on RDKit Morgan 
(53) fingerprints with radius equal to 2 and 1024 bits; table S7] were 
retrieved using the ChEMBL web resource client “similarity filter” 
function (https://github.com/chembl/chembl_webresource_client, 
beta version, 6 November 2020, Python 3.7.7). The same strategy was 
used to report the two most similar fine-tuning compounds for 
each bioactive hit (table S6).
Automated ligand docking
The crystal structures of LXR [Protein Data Bank (PDB) ID: 3IPS 
(63)] and LXR [PDB ID: 1PQC (64)] were retrieved from the 
PDB (https://www.rcsb.org/) and prepared with MOE v.2019.0102 
(QuickPrep module: “Preserve Sequence and Neutralize”; “Use 
Protonate 3D for Protonation” = True; “Allow ASN/GLN/HIS ‘Flips’ 
in Protonate 3D” = True; “Delete Water Molecules Farther than 4.5 Å 
from Ligand or Receptor” = True; Tether Receptor: Strength = 10, 
Buffer = 0.25; Fix: “Atoms Farther than 8 Å from Ligands”, hydrogens 
close to ligands not fixed; Refine: “to RMS Gradient of 0.1 kcal/mol/Å”; 
“Retain QuickPrep Minimization Restraints” = True). Compounds 5 
and 29 were docked with GOLD (65) within MOE v.2019.0102 
(Efficiency = default, Score Efficiency = 100; Early Termination = 
[number:3, RMS = 1.5], PLP scoring, Rigid Receptor, 30 poses per 
compound), and poses were refined with MOE GBVI/WSA dG 
(10 refinement poses). Redocking of the crystalized ligand led to 
RMSD values of 0.8037 and 0.3775 Å for 3IPS and 1PQC, respectively.

Synthesis
Chemicals
All chemicals and solvents were reagent grade and used without 
further purification unless specified otherwise. The building block 
chemicals were purchased from Sigma-Aldrich (St. Louis, USA; 
www.sigmaaldrich.com), Apollo Scientific (Cheshire, UK; www.
apolloscientific.co.uk), Alfa Aesar (Kandel, Germany; www.alfa.com), 
Fluorochem (Derbyshire, United Kingdom; www.fluorochem.co.uk), 
Acros Organics (Geel, Belgium; www.acros.com), Enamine 
(Riga, Latvia; www.enamine.net), Maybridge (Waltham, MA, USA; 
www.fishersci.com), ABCR (Karlsruhe, Germany; www.abcr.de), 
and ChemDiv (San Diego, CA, USA; www.chemdiv.com). Com-
pounds 26 and 27 were purchased from Enamine (www.enamine.
net; compounds Z45510435 and Z45410017, respectively; purity = 
90%); 28 was purchased from ChemDiv (www.chemdiv.com; com-
pound 8012-4386, purity = 90%).

Microfluidics platform
Instruments
Automated synthesis was performed on a Cetoni flow chemistry sys-
tem (Cetoni GmbH, Korbussen, DE) using two gas-tight borosilicate 
glass syringes (SGE gas tight 2.5 ml, luer lock, Trajan Scientific), a 
reaction chip (Chip Type Dean Flow A, 16 × 12.5 mm, DFM-A1, 5 l), 
and an 800-l reaction coil of polytetrafluoroethylene tubing. The 
flow through the system was directed by three-way solenoid valves 
(100T3/S116, Bio-Chem Valve Inc., Chrom Tech, Apple Valley, MN, 
USA). The analysis block consisted of a Rheodyne MRA splitter 
(MRA100-000, Kinesis, Vernon Hills, IL, USA) coupled with an 
Advion Expression CMS (Advion, Ithaca, NY, USA) for in-line 
mass analysis. This equipment used L-216OU pumps from a VWR 

LaChrom ULTRA HPLC system (Radnor, PA, USA). An analytical 
HPLC system (Shimadzu, Kyoto, Japan) equipped with an analytical 
C18 reverse phase column (Macherey-Nagel, Nucleodur C18 HTec; 
5 m, 150 × 3 mm) was used for follow-up sample analysis. Mass 
signals were recorded using a Shimadzu LCMS-2020 system (Kyoto, 
Japan). The automated synthesis system was controlled using the 
QmixElements software supplied by Cetoni on an Aspire X3990 PC 
(i3 Intel Core 2120 CPU, 8GB, 1066 MHz DDR3 RAM, Windows 7 OS).
Protocol
The building blocks were loaded into two 96-well plates and sealed 
using adhesive slit seal sheets. User input was requested for the type 
of reaction, the number of reactions to be performed, the desired 
on-chip residence time, choice of reaction chip, and desired tem-
peratures. Upon reaching the desired reaction conditions, aspiration 
of the reagent solutions was initiated. Using the Move-To-Container 
functions, the 360° rotAXYS arm moved to the location of the first 
building block and the dose-volume function was used to aspirate 
the dead volume between the syringe and the well plate. This volume 
was discarded, and the syringe was aspirated with a plug of dissolved 
building block consisting of 0.75 ml diluted with 0.25 ml of clean 
solvent. Before moving to the second building block container, the 
360° rotAXYS arm moved to a clean solvent container using the 
“Move-To-Container” function to clean the needle. The same aspi-
ration procedure was used for the second syringe. The volume con-
tained in the syringes was then injected into the reaction chip using 
the dose-volume function at a flow rate calculated from the desired 
residence time. Once the syringes were empty, they were refilled 
with 2.5 ml of clean solvent using the dose-volume function and 
solvent was injected until the remaining part of the reaction plug 
had passed the reaction coil with the correct residence time. Once 
the reaction plug had passed the analysis unit and reached the end of 
the tubing, the Move-To-Container function was used to move the 
second rotAXYS arm to an empty container, where it was allowed 
to remain until the reaction plug was collected. The arm then moved 
back to the waste container position using the Move-XY function. 
HPLC-MS was used as an online monitoring tool. A stream splitting 
device coupled the ambient-pressure reactor system in an isolated 
fashion to the high-pressure side required by HPLC-MS.

Automated synthesis
General amide bond synthesis procedure (compounds 1 
to 15 and 22)
Solutions (0.2 M) of the respective acid chloride building block in 
tetrahydrofuran (THF) and the amine building block in acetonitrile/ 
N,N′-dimethylformamide (MeCN/DMF) (9:1 v/v) were prepared, 
and 1 ml of each solution was loaded into individual wells of a 
96-well plate. For automated synthesis, 0.75 ml of each building 
block solution was used per reaction and diluted with the running 
solvent (MeCN/THF; 50:50, v/v) to a total volume of 1.0 ml. The 
residence time was set to 15 min, and the temperature was set to 
55°C. After mixing both solutions in the reaction chip, the reaction 
mixture was pumped through the coil and 2 ml per sample was 
collected in another 96-well plate.
General ester bond synthesis procedure (compound 21)
Solutions (0.2 M) of the respective acid chloride building block in 
THF and the alcohol building block in MeCN/DMF (9:1, v/v) were 
prepared, and 1 ml of each solution was transferred into individual 
wells in a 96-well plate. The residence time was set to 5 min, and the 
temperature was set to 55°C. A 0.75-ml portion of each solution was 
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aspirated into the syringe pumps and diluted to 1-ml total volume 
with the running solvent (MeCN/THF, 50:50, v/v). After mixing both 
solutions in the reaction chip, the reaction mixture was pumped 
through the coil and 2 ml was collected in a 96-well plate.
General sulfonamide synthesis procedure (compounds 16 to 
20 and 23 to 25)
Solutions (0.2 M) of the sulfonyl chloride building block in THF 
and the amine building block with one equivalent of triethylamine 
in MeCN/THF (50:50 v/v) were prepared, and 1 ml of each solution 
was loaded into individual wells of a 96-well plate. For automated 
synthesis, 0.75 ml of each building block solution was used per reaction 
and diluted with the running solvent (MeCN/THF, 50:50, v/v) to a 
total volume of 1.0 ml. The residence time was set to 10 min, and the 
temperature was set to 55°C. After mixing both solutions in the re-
action chip, the reaction mixture was pumped through the coil and 
2 ml per sample was collected in another 96-well plate.

Batch synthesis
Fourteen compounds were synthesized in-batch for dose-response 
characterization (compounds 1 to 3, 5 to 6, 8 to 15, and 17). All 
compounds had a purity greater than 97% according to the HPLC-
UV (ultraviolet) analysis ( = 254 nm,  = 290 nm). For details of 
the batch synthesis and analytical characterization, see the Supple-
mentary Materials (figs. 29 and 30).

Biological characterization
The Gal4-fusion receptor plasmid [pFA-CMV-hLXR-LBD (48) 
and pFA-CMV-hLXR-LBD (48)] coding for the hinge region and 
ligand-binding domain of the canonical isoform of the respective 
nuclear receptor have been reported previously. pFR-Luc (Stratagene) 
was used as the reporter plasmid along with pRL-SV40 (Promega) 
for normalization of the transfection efficiency and cell growth. 
HEK293T cells were grown in high-glucose Dulbecco’s modified 
Eagle’s medium, supplemented with 10% fetal calf serum, sodium 
pyruvate (1 mM), penicillin (100 U ml−1), and streptomycin (100 g ml−1) 
at 37°C and 5% CO2. HEK293T cells were seeded 1 day before trans-
fection in 96-well plates (3.0 × 104 cells per well). Before transfec-
tion, the medium was changed to Opti-MEM without supplements. 
Transient transfection was carried out using Lipofectamine LTX 
reagent (Invitrogen) according to the manufacturer’s protocol, with 
pFR-Luc (Stratagene), pRL-SV40 (Promega), and the respective 
pFA-CMV-hLXR-LBD plasmid. Five hours after transfection, the 
medium was changed to Opti-MEM supplemented with penicillin 
(100 U ml−1), streptomycin (100 g ml−1), 0.1% DMSO, and the 
respective test compounds or 0.1% DMSO alone as an untreated 
control. During primary screening, the concentration of each sample 
was roughly adjusted to 10 M. Each sample was duplicated and 
tested in two biological repeats. For dose-response characterization 
of the purified compounds, each concentration was duplicated, and 
each experiment was repeated independently at least three times. 
Following overnight (12 to 14 hours) incubation with the test com-
pounds, the cells were assayed for luciferase activity using the 
Dual-Glo luciferase assay system (Promega) according to the man-
ufacturer’s protocol. Luminescence was measured using a Tecan 
Spark luminometer (Tecan Deutschland GmbH, Germany). Nor-
malization of the transfection efficiency and cell growth was per-
formed by dividing the firefly luciferase data by Renilla luciferase 
data and multiplying the value by 1000, resulting in relative light 
units (RLUs). Fold activation was obtained by dividing the mean 

RLU of the test compounds at a respective concentration by the mean 
RLU of the untreated control. T0901317 served as a reference agonist 
for assay validation and monitoring assay performance.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/24/eabg3338/DC1
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