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Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms
where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected
functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paral-
ogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making
them central players in plant–pathogen interaction. For instance, several species from the Xanthomonas genus are able to
upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like
effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression.
However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during
Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-
cut role for SWEET transporters during plant–pathogen interactions has so far been difficult to define, as the metabolic sig-
natures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This
fuels the still ongoing scientific question: what roles can SWEETs play during plant–pathogen interaction? Likewise, the
roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in bi-
otic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their im-
portance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.
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Introduction
During most plant–pathogen interactions nutrients move
from the plant to the microbe while the host cells try to re-
strict this transfer by reprogramming its carbon metabolism
and transport (Chen et al., 2010; Kretschmer et al., 2017;
Kanwar and Jha, 2019). During this clash, the photosynthetic
activity is negatively affected and the related genes repressed
(Chou et al., 2000; Lopes and Berger, 2001; Meyer et al.,
2001; Berger et al., 2004, 2006; Zimmerli et al., 2004; Scholes
and Rolfe, 2009; Chandran et al., 2010; Rolfe and Scholes,
2010; Windram et al., 2012; De Cremer et al., 2013; Smith
et al., 2014), while genes of the respiratory process, e.g. gly-
colysis, tricarboxylic acid cycle, and mitochondrial electron
transport chain are upregulated (Doehlemann et al., 2008;
Parker et al., 2009; Chandran et al., 2010; Voll et al., 2011;
Teixeira et al., 2014; Xu et al., 2015). The role of modulating
sugar metabolism/transport in infection is exemplified in
that soluble sugar content of maize (Zea mays) leaves is
greatly altered during infection by the biotrophic pathogen
Ustilago maydis (Doehlemann et al., 2008; Horst et al., 2008)
and maize mutants with defects in sugar accumulation (id1:
indeterminate1; increased accumulation of sucrose) or starch
metabolism (su1: sugary1; altered starch metabolism) display
reduced susceptibility to U. maydis infection (Kretschmer
et al., 2017).

Modifications of the sugar metabolism during infection,
including the activity of enzymes related with sugar hydroly-
sis and sugar transporters, favor the establishment of a sink-

type environment in the infected tissue (Chou et al., 2000;
Fotopoulos et al., 2003; Voegele et al., 2006; Hren et al.,
2009; Hayes et al., 2010; Brzin et al., 2011; Cabello et al.,
2014; Teixeira et al., 2014; Fatima and Senthil-Kumar, 2015;
Dhandapani et al., 2016; Chang et al., 2017; Oliva and
Quibod, 2017). In wheat (Triticum aestivum), the hexose
transporter Leaf Rust 67 (Lr67), also named Sugar
Transporter 13 (STP13), plays a key role in the susceptibility
to all wheat rust and powdery mildew pathogen species.
The dominant resistant variant Lr67res encodes a protein
unable to transport sugars while the susceptible variant
Lr67sus encodes a fully functional hexose transporter and
both variants are upregulated when plants are challenged by
pathogens. Thus, alterations in the hexose transport capac-
ity, depending on the existing allele, may explain the ability
of Lr67res to resist multiple pathogenic species (Moore
et al., 2015). In Arabidopsis (Arabidopsis thaliana) leaves
challenged with Botrytis cinerea, the expression of STP13 is
greatly increased. stp13 mutant plants exhibit enhanced sus-
ceptibility and reduced rates of glucose uptake, while STP13
overexpressing plants show a resistant phenotype and higher
glucose transport capacity involved in the active resorption
of hexoses from the apoplast, depriving the pathogen from
its sugar source (Lemonnier et al., 2014). Moreover, during
bacterial attack, when the plant bacterial-flagellin receptor,
Flagellin-sensitive 2 (FLS2) recognizes the bacterial flagellin
peptide Flg22, the BRASSINOSTEROID INSENSITIVE 1-associ-
ated receptor kinase 1 (BAK1) phosphorylate STP13 increas-
ing its sugar uptake capacity from the apoplast region,
reducing the available sugar to the pathogen and increasing
plant resistance (Yamada et al., 2016). In grapevine, Hexose
Transporter 5 (VvHT5) is strongly upregulated in coordina-
tion with Cell Wall Invertase (VvcwINV) during powdery
(Erysiphe necator) and downy mildew (Plasmopara viticola)
infection, which likely enhances sink strength during infec-
tion (Hayes et al., 2010). In a recent finding, grapevine’s su-
crose transporter Early-Response to Dehydration six-like 13
(VvERD6l13) was also demonstrated to be upregulated in re-
sponse to E. necator and B. cinerea infection (Breia et al.,
2020a). In maize, expression of Sucrose Transporter 1
(ZmSUT1) is enhanced when challenged with the pathogen
Colletotrichum graminicola (Vargas et al., 2012).

More recently a new type of sugar transporters, coined as
SWEET (from Sugars Will Eventually be Exported
Transporters), were identified in Arabidopsis by Chen et al.
(2010) who tried to find the molecular basis that could ex-
plain sugar efflux mechanisms, which remained puzzling un-
til then (Thorens et al., 2000; Stümpel et al., 2001; Hosokawa
and Thorens, 2002; Lalonde et al., 2004). They screened
genes encoding uncharacterized polytopic membrane pro-
teins from the Arabidopsis membrane protein database
Aramemnon (Schwacke et al., 2003) using a new mamma-
lian expression system (Takanaga and Frommer, 2010).
Candidate genes were co-expressed with the high-sensitivity
förster resonance energy transfer (FRET) glucose sensor
FLIPglu600mD13V in human HEK293T cells, with low

ADVANCES

• Besides key roles in phloem-loading, SWEETs
also participate in unloading of sugars in sinks,
as observed in tomato young leaves.

• During tuber formation the interaction of a FT-
like protein with StSWEET11 blocks StSWEET11
transport activity, promote symplastic sucrose
transport.

• SWEETs also transport GAs. In Arabidopsis, GA-
transporting SWEETs also transport sucrose,
whereas in rice and sorghum they transport
glucose.

• SWEET transporters are exploited by pathogens,
such as X. oryzae pv. oryzae by increasing
OsSWEET expression, however, upregulation of
AtSWEET2 in Arabidopsis roots infected with P.
irregulare leads to an increased resistance to
the pathogen, suggesting a defense-related role.

• MtSWEETb1 is induced in AM fungicontaining
cells and its overexpression promoted the
growth of intraradical mycelium, suggesting a
key role in glucose exchange in the peri-
arbuscular membrane.
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endogenous glucose uptake activity (Takanaga et al., 2008;
Takanaga and Frommer, 2010). AtSWEET1 (AT1G21460) was
the first characterized SWEET transporter as a glucose bidi-
rectional uniporter/facilitator (Chen et al., 2010). Also, to de-
termine the bidirectional capacity of the transporter the
FRET glucose sensor FLIPglu600mD13VER was expressed in
the lumen of the endoplasmic reticulum. SWEET transport-
ers have been classically characterized as uniporters that me-
diate both uptake and efflux of sugars in a low affinity and
high capacity manner and relative pH independence, impor-
tant in intracellular and intercellular sugar translocation.
Also, they are strongly induced upon pathogen invasion
(both bacteria and fungi), as nicely reviewed by Eom et al.
(2015). However, since then, as discussed further ahead in
this review, various new functional and physiological roles
have been attributed to plant SWEET transporters, some
more expected than others.

SWEET transporters belong to a transporter family (PFAM
PF03083) whose members are highly conserved from the su-
per kingdoms Archea and Bacteria (SemiSWEET family) to
Fungi, Protista, and Metazoa. They are also present in
Streptophyta (green plants), Chlorophyta (green algae), and
other algae and even in the Oomycota class (Jia et al., 2017).

This family is ubiquitously present in plants. As examples, in
Arabidopsis it is constituted by 17 members (Chen et al.,
2010), 21 in rice (Yuan and Wang, 2013), 23 in sorghum
(Sorghum bicolor; Mizuno et al., 2016), 52 in soybean
(Glycine max; Patil et al., 2015), 35 in potato (Solanum tuber-
osum; Manck-Götzenberger and Requena, 2016), 29 in to-
mato (Solanum lycopersicum; Feng et al., 2015), and 33 in
apple (Malus domestica; Wei et al., 2014; Table 1).

These transporters are structurally different from the clas-
sic 12 transmembrane-domains sugar transporters previously
characterized of the major facilitator superfamily. They are
composed by two internal triple-helix bundles linked by a
linker-inversion transmembrane domain (TMD), comprising
seven TMDs in total (Chen et al., 2010). Bacterial
SemiSWEET are formed by only three TMDs and structural
resolution studies showed that two individual SemiSWEET
transporters form oligomers in parallel orientation to create
a functional pore for translocation. Therefore, SWEETs possi-
bly arose by gene duplication of SemiSWEET units in con-
cert with the insertion of an inversion linker-helix (Xuan
et al., 2013; Xu et al., 2014; Wang et al., 2014). More recently,
following an extensive phylogenetic analysis, Hu et al. (2016)
proposed that a fusion of archeal and bacterial SemiSWEETs

Table 1 SWEET families of several plant species

Species Number of SWEET members Reference

Arabidopsis thaliana 17 Chen et al. (2010)
Oryza sativa 21 Yuan and Wang (2013)
Vitis vinifera 17 Chong et al. (2014)
Manihot esculenta 23 Cohn et al. (2014)
Malus domestica 33 Wei et al. (2014)
Citrus sinensis 16 Zheng et al. (2014)
Amborella trichopoda 8 Eom et al. (2015)
Eucalyptus grandis 47 Eom et al. (2015)
Physcomitrella patens 6 Eom et al. (2015)
Solanum lycopersicum 29 Feng et al. (2015)
Glycine max 52 Patil et al. (2015)
Zea mays 24 Sosso et al. (2015)
Medicago truncatula 26 Kryvoruchko et al. (2016)
Solanum tuberosum 35 Manck-Götzenberger and Requena (2016)
Sorghum bicolor 23 Mizuno et al. (2016)
Gossypium hirsutum 55 Cox et al. (2017)
Cucumis sativus 17 Hu et al. (2017)
Pyrus bretschneideri 18 Li et al. (2017a)
Musa acuminata 25 Miao et al. (2017)
Lotus japonicus 13 SugiyaMa et al. (2017)
Hevea brasiliensis 36 Sui et al. (2017)
Triticum aestivum 59/108 Gao et al. (2018), Gautam et al. (2019)
Ananas comosus 39 Guo et al. (2018)
Saccharum spontaneum 22 Hu et al. (2018)
Brassica rapa 32 Li et al. (2018a)
Camellia sinensis 13 Wang et al. (2018a)
Pisum sativum 26 Doidy et al. (2019)
Fragaria vesca 20 Liu et al. (2019)
Litchi chinensis 16 Xie et al. (2019)
Brassica oleracea 30 Zhang et al. (2019a)
Ziziphus jujuba 19 Geng et al. (2020)
Juglans regia 25 Jiang et al. (2020)
Populus trichocarpa 27 Zhang et al. (2020a)
Poa pratensis 13 Zhang et al. (2020b)
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formed eukaryotic SWEETs, which potentially explains the
asymmetry of eukaryotic SWEETs. Still, how the least con-
served TMD4 was inserted in the structure remains unclear.

Although crystal structures and molecular dynamic simu-
lations were published, the detailed mechanism of this fam-
ily of sugar transporters is being unveiled. The structure and
regulation of SWEET transporters in plants has recently
been reviewed (Anjali et al., 2020) so this topic is out of the
scope of the present paper. In Arabidopsis SWEET proteins,
four conserved prolines have a significant role in the trans-
port mechanism. In AtSWEET1, replacing any of the four
prolines caused loss of AtSWEET1 activity (Tao et al., 2015).
SWEET transporters can also form oligomers, as structural
and biochemical analyses showed that OsSWEET2b forms
homomeric trimers (Tao et al., 2015). The crystal structure
of AtSWEET13, a multisubstrate transporter, was also
reported as in an inward facing conformation with a sucrose
analog bound in the central cavity (Han et al., 2017). It was
shown that in response to substrate binding, different parts
of the cytosolic side of AtSWEET13 move independently, in-
stead of forming rigid bodies. A revolving-door like mecha-
nism for transport by an AtSWEET13 dimer was postulated,
in which a substrate-carrying conformational transition in
one protomer is coupled to the substrate-free opposite tran-
sition in the other protomer. Additionally, SWEETs contain
multiple phosphorylation sites at the cytosolic C-terminal
end with an average of approximately 45 amino acids. The
cytosolic C-terminus may act as a hub for binding of other
proteins (e.g. regulatory components), or it could function
in transmission of signals to the cell if SWEETs also function
as sugar receptors (or transceptors; Chen et al., 2015b).

SWEET roles in plant growth and
development: more than just sugar loading
and unloading
Plant SWEET sugar transporters play different physiological
roles during plant growth and development. In angiosperms,
this family is constituted on average by 20 paralogs
(Table 1), differentially expressed in several tissues. SWEET
members are phylogenetically divided in four clades; how-
ever, membership in a clade does not predict the physiologi-
cal role of the protein, but slightly defines its substrate
specificity. In Arabidopsis, clade I (SWEET1-2), II (SWEET3-8),
and IV (SWEET16-17) predominantly transport monosac-
charides while clade III (SWEET9-15) mediates mainly su-
crose uptake (Chen et al., 2015b). Likewise, SWEET
transporters can localize in different cellular compartments,
mainly in the plasma membrane (SWEET1, 8, 9, 11, 12, and
15; Seo et al., 2011; Kryvoruchko et al., 2016), but also in the
tonoplast (SWEET2, 16, and 17; Chardon et al., 2013;
Klemens et al., 2013; Guo et al., 2014; Chen et al., 2015a)
and in the Golgi membrane (SWEET9; Lin et al., 2014; Chen
et al., 2015b).

Sucrose synthesized in the leaf mesophyll is transported to
the apoplast by facilitated diffusion and then actively

incorporated by plasma membrane sucrose/proton symport-
ers (SUT/SUC) in the companion cells or sieve element cells
(Figure 1; Lalonde et al., 2004; Sauer, 2007; Kühn and Grof,
2010; Slewinski et al. 2010; Ainsworth and Bush, 2011; Ayre,
2011). The molecular mechanisms involved in the export of
sucrose to the apoplast remained unsolved until the discov-
ery that SWEET transporters are key elements during
phloem loading by Chen et al. (2012). Sucrose transporters
AtSWEET11 and 12 were found highly expressed in a subset
of leaf phloem parenchyma cells, proximal to the compan-
ion cells and sieve elements. Double mutant atSWEET11;12
lines showed moderate defects in sucrose phloem transport
and an excessive accumulation of sugars in the leaves and
delayed root development. Remarkably, AtSWEET11 and 12
are also present in Arabidopsis xylem vessels and as the
double mutant atSWEET11;12 showed severe modifications
in the chemical composition of the xylem cell walls it was
suggested that these transporters export carbon skeletons to
developing xylem cells in order to support secondary cell
wall formation (Le Hir et al., 2015). The rice homolog
OsSWEET11 is expressed in the phloem of rice leaves (Chu
et al., 2006), indicating that it may play a similar role in
phloem loading as AtSWEET11 and 12, and in Ziziphus
jujuba, overexpression of ZjSWEET2.2 increased carbon fixa-
tion to some extent in photosynthetic organs, suggesting
that it stimulates SWEET-mediated phloem loading of pho-
toassimilates (Geng et al., 2020). In sorghum, SbSWEET13a,
13b, and 13c are mostly expressed in leaves and stems and
their expression pattern corresponds with sucrose accumula-
tion in the stem (Makita et al., 2015; Bihmidine et al., 2016).
In maize, similarly to ZmSUT1, ZmSWEET13a, 13b, and 13c
are preferentially expressed in the bundle sheath/vein of
leaves. Triple knockout mutants of ZmSWEET13a, b, c
showed a severely stunted phenotype, with impaired
phloem loading, reduced photosynthetic activity, and accu-
mulation of high levels of soluble sugars and starch in leaves.
Furthermore, RNA-seq analysis revealed a deep transcrip-
tional deregulation of genes associated with photosynthesis
and carbohydrate metabolism (Bezrutczyk et al., 2018a). In
potato, StSWEET11 is a plasma membrane sucrose trans-
porter pivotal for phloem loading. StSWEET11 RNAi lines
showed a reduction in yield and accumulate starch and su-
crose in leaves (Abelenda et al., 2019).

SWEET transporters also play crucial roles in sugar unload-
ing from phloem complexes to sink tissues through the apo-
plastic pathway (Figure 1). In young tomato leaves (sinks),
SlSWEET1a, a glucose transporter, is strongly expressed in
the unloading veins tissues, as observed by GUS staining.
Moreover, in mutant tomato plants with suppressed expres-
sion of SlSWEET1a by virus-induced gene silencing, the con-
centration of glucose and fructose is significantly reduced in
young leaves but increases in mature leaves. Altogether,
these results support a crucial role of SlSWEET1a in the up-
take of glucose from the apoplast to the parenchyma cells
in sink tissues, maintaining a lower turgor pressure toward
phloem cells for continuous sugar import to these tissues
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(Ho et al., 2019). In sink tissues of potato like the stolon and
tubers, StSWEET11 is expressed in the phloem companion
cells and participates in the leakage of sucrose in the apo-
plast. Thus, apoplastic sugar content in stems was higher in
35S:StSWEET11 plants and lower in StSWEET11 RNAi ones.
During tuber formation, the FLOWERING LOCUS T-like pro-
tein of potato, StSP6A, which is essential for tuberization
(Navarro et al., 2011), is expressed in the phloem of apical
and subapical meristem of the stolon and interacts with
StSWEET11, blocking sucrose leakage to the apoplast. This
blockage switches the sucrose unloading in the tuber from
apoplastic to symplastic, indicative of tuber formation (Viola
et al., 2001). These evidences show that the cross-talk

between SWEET transporters and other proteins is finely
tuned to regulate sink–source relationships (Abelenda et al.,
2019).

In Arabidopsis, AtSWEET4 is expressed in the stele of
roots and veins of leaves and flowers. Overexpression mu-
tant lines showed increase plant size and more glucose and
fructose, while knockdown mutant lines were smaller, con-
tained lower amounts of glucose and fructose, and less chlo-
rophyll in leaves, suggesting that AtSWEET4 mediates sugar
transport in axial tissues (Liu et al., 2016). During senescence
of Arabidopsis leaves, the sucrose transporter AtSWEET15 is
strongly upregulated (Quirino et al., 1999) and AtSWEET15-
overexpressing lines exhibited enhanced leaf senescence,

Figure 1 Diverse physiological roles of SWEET transporters in different organs across different plant species. Plant SWEET transporters are pivotal
during phloem loading, transporting sucrose from the parenchyma cells to the apoplast by a facilitated diffusion (AtSWEET11 and 12). Sucrose is
then loaded to the phloem by symporters (Chen et al., 2012). In flower nectaries, sucrose efflux is mediated by SWEET transporters (AtSWEET9—
Lin et al., 2014). SWEET transporters (SlSWEET1a) also participate in the uptake of glucose from the apoplast to the parenchyma cells of young to-
mato leaves (Ho et al., 2019) and during seed filling (AtSWEET11, 12, and 15) in a sequential manner (Chen et al., 2015c). SW, SWEET; INV,
Invertase; AtSUT1, Arabidopsis thaliana Sucrose Transporter 1; AtSUT2, Arabidopsis thaliana Sucrose Transporter 2.
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suggesting a function of AtSWEET15 in sugar remobilization
(Seo et al., 2011). AtSWEET15 homolog in pear (Pyrus
bretschneideri), PbSWEET4 is also implicated in leave senes-
cence. Heterologous overexpression of PbSWEET4 in straw-
berry plants caused reduced leaf sugar and chlorophyll
content and accelerated leaf senescence (Ni et al., 2020).

SWEET transporters are also key players in plant reproduc-
tive organs, such as flowers, fruits, and seeds, where the ef-
flux of sugar from the autotrophic tissues is of utmost
importance. Concordantly, most of the reported SWEET
transporters from different species have been associated
with these plant tissues. Transcriptomic experiments in rice
showed that 17 SWEET genes are highly expressed in flowers
and seeds (Yuan et al., 2014). In cucumber (Cucumis sativus),
most SWEET genes are confined to reproductive tissue de-
velopment (Hu et al., 2017) and similar results were ob-
served in the Chinese white pear (Li et al., 2017a). In
pineapple (Ananas comosus), different SWEET genes are
strongly expressed during fruit development, of which
AnmSWEET5 and AnmSWEET11 display the highest tran-
script abundance (Guo et al., 2018). Likewise, from a total of
25 MdSWEET genes identified in apple genome, 9 are highly
expressed during fruit development. Among them,
MdSWEET2e, MdSWEET9b, and MdSWEET15a were linked
with fruit sugar accumulation, with MdSWEET9b and
MdSWEET15a as the main contributors for the major pro-
portion of phenotypic variation in sugar concentration
among different cultivars (Zhen et al., 2018). In loquat
(Eriobotrya japonica), higher expression of EjSWEET15 is
linked with higher sugar concentration cultivars (Li et al.,
2020) and in cotton (Gossypium hirsutum), transcriptional
data and promoter analyses in SWEET genes point to the in-
volvement of these transporters in cotton fruit development
processes (Li et al., 2018b), with the same approach indicat-
ing a similar role in litchi (Litchi chinensis; Xie et al., 2019).

In Arabidopsis, AtSWEET8 is involved in the transport of
glucose for pollen nutrition. This transporter is highly
expressed in the tapetum and atSWEET8 mutant lines shows
male sterility, which results in nonviable pollen grains (Guan
et al., 2008). Likewise, AtSWEET15 (also known as Vegetative
Cell Expressed 1, VEX1) is highly expressed in pollen grains
and involved in the transport of sugars, especially in the veg-
etative cells. This transporter is also continuously expressed
during pollen maturation and even in germinating pollen
grains (Engel et al., 2005), indicating an important physiolog-
ical role of this transporter during pollen development. In
rice, the sucrose transporter OsSWEET11, which is highly
expressed in pollen grains, has a prominent role in pollen vi-
ability as pollen grains of OsSWEET11 knockout mutants
showed reduced starch contents, which may lead to male
sterility (Yang et al., 2006). Reinforcing the importance of
some SWEETs in plant reproduction, in Jasminum sambac,
seven SWEET transporters are sequentially expressed during
flower development (Wang et al., 2019a) and in Arabidopsis,
eight SWEET genes are highly expressed (AtSWEET15, 14, 13,
8, 7, 5, 4, and 1). AtSWEET14 and 13 predominate in the

stamen; AtSWEET8 is abundant in the microspores; and
AtSWEET15 and 1 are abundant in the petals and AtSWEET4
in the sepals (Moriyama et al., 2006). AtSWEET10 is tran-
scriptionally activated by FLOWERING LOCUS T-signaling
pathway during floral transition under a photoperiod-depen-
dent manner. Overexpression of AtSWEET10 causes early
flowering, which suggest the importance of sugar transport
during floral transition (Andrés et al., 2020).

SWEET transporters play also pivotal roles in nectar secre-
tion (Figure 1). AtSWEET9 in Arabidopsis, Brassica rapa, and
Nicotiana attenuata (all eudicots) mediates sugar efflux in
the nectary parenchyma. Loss-of-function mutants lead to
loss of nectar secretion in all the studied plants. The secre-
tion of sucrose into the extracellular space is then hydro-
lyzed into glucose and fructose which maintains the
concentration gradient (Lin et al., 2014). AtSWEET9 homo-
log in Petunia hybrida, NEC1, is also nectary-specific and its
expression pattern corresponds inversely with nectarial
starch content. Likewise, silencing this gene triggered male
sterility (Ge et al., 2000, 2001).

Arabidopsis SWEET15, 11, and 12 are highly expressed in
the seed coat suggesting a key role in seed development
(Figure 1). Triple-knockout mutants showed a severe delay
in embryo development and a wrinkled seed phenotype at
maturity due to lower starch and lipid content and a
smaller embryo. Thus, these proteins are involved in the
transport of sucrose from the seed coat to the embryo in a
coordinated manner (Chen et al., 2015c). In soybean, the su-
crose transporters GmSWEET15a and 15b are highly
expressed in the endosperm during the first phases of seed
development. GmSWEET15a;b knockout mutants showed re-
duced embryo sugar content, retarded embryo develop-
ment, and endosperm persistence, resulting in severe seed
abortion. GmSWEET15a and 15b are then crucial for feeding
sugars from the endosperm to the developing embryo
(Wang et al., 2019b). Also, in soybean, the mono- and disac-
charides transporters GmSWEET10a and 10b are specifically
expressed in the seed coat and contribute to sugar transport
from seed coat to embryo. Resequencing data from over
800 genotypes revealed that selection of optimal
GmSWEET10a and 10b alleles are directly related with the
increased soybean seed size, oil, and protein content of
modern soybean varieties (Wang et al., 2020). Similarly,
maize SWEET4c shows indicative signatures of selection dur-
ing domestication. This hexose transporter is expressed in
the basal endosperm transfer layer region and is responsible
for transferring hexoses to sustain development of endo-
sperm. Notably, zmSWEET4c insertion mutants showed grain
defects, including a dramatic loss of endosperm. The rice ho-
molog OsSWEET4 appears to have similar functions (Sosso
et al., 2015). Two others SWEET transporters are essential
for rice grain filling. During the early stages of caryopsis de-
velopment, OsSWEET11 is particularly abundant in the nu-
cellar epidermis, ovular vascular trace, and cross cells,
playing an important role in sucrose release from maternal
tissue to the maternal–filial interface. Knockout mutants of
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OsSWEET11 showed significant reduction in sucrose concen-
tration in the embryo sac, leading to defective grain filling,
reduced grain weight, and seed setting percentage (Ma
et al., 2017). OsSWEET15 is also crucial for seed filling. In
fact, at latter seed developmental stages, OsSWEET11 and
15 are necessary for sugar efflux from the maternal nuclear
epidermis as well as efflux from the ovular vascular trace to
the apoplast, and also may contribute to sucrose influx into
the aleurone. Double mutant plants exhibited accumulated
starch in the seed pericarp, whereas caryopses did not con-
tain a functional endosperm (Yang et al., 2018).

Vacuolar sugar transport and storage are tightly related
with resistance to different environmental constraints
(Martinoia et al., 2007). Likewise, AtSWEET16 expression, a
multisubstrate vacuolar transporter, is repressed under low
nitrogen. Overexpressing lines (35SPro:SWEET16) showed a
number of peculiarities related to differences in sugar accu-
mulation. During nitrogen starvation mutant lines accumu-
lated glucose and fructose, but no sucrose. Remarkably,
35SPro:SWEET16 lines showed improved germination and im-
proved nitrogen use efficiency (Klemens et al., 2013). The
Arabidopsis AtSWEET2 is highly expressed in the tonoplast
of the root caps and tips and likely limits the carbon efflux
from roots into the rhizosphere by accumulating sugars in
the vacuole. Concordantly, atSWEET2 mutants showed in-
creased loss of glucose from the roots into the rhizosphere
(Chen et al., 2015a).

Surprisingly, SWEET proteins can also be involved in hor-
mone regulation. In Arabidopsis, AtSWEET13 and 14 can
transport different gibberellins (GAs) and atSWEET13;14
double-mutant lines were incapable of transporting exoge-
nous GA and showed altered responses during seed germi-
nation (Kanno et al., 2016). In rice, OsSWEET3a is expressed
in the vascular tissue of basal parts of seedlings and, besides
glucose, it transports GAs. Knockout and overexpression
mutant lines showed defects in germination and early shoot
development, suggesting an involvement of OsSWEET3a in
the transport of GA and glucose to young leaves during
early plant development. Interestingly, it is suggested that
GA transport activity of SWEETs evolved independently dur-
ing plant evolution as in Arabidopsis it evolved from su-
crose-specific SWEETs while in rice from glucose-specific
ones (Morii et al., 2020). OsSWEET5 is a galactose trans-
porter mainly expressed in the floral organs at the heading
stage but also in stem, root, and senescing leaves.
OsSWEET5-overexpressing plants showed growth retardation,
precocious senescing leaves, and changed sugar contents in
leaves. Remarkably, auxin concentration, signaling, and trans-
location were inhibited. OsSWEET5 is possibly an important
player in the sugar and auxin crosstalk (Zhou et al., 2014).

SWEET roles in plant–pathogen and
symbiotic interactions
Different SWEET transporters are upregulated in plants
upon infection by different species of the genus

Xanthomonas that cause bacterial blight disease (Yang et al.,
2006; Antony et al., 2010; Chen et al., 2010; Liu et al., 2011;
Yu et al., 2011). These bacteria secrete several transcription-
activator like (TAL) effectors (Bogdanove, 2014) to directly
enhance the expression of specific SWEET genes (Figure 2).
Thus, Xanthomonas oryzae pv. oryzae secretes the TAL effec-
tor PthXO1 that targets rice OsSWEET11 (Yang et al., 2006;
Chen et al., 2010), and an African Xanthomonas strain
secretes the effector TALC that increases the transcript
abundance of OsSWEET14 (Yu et al., 2011). OsSWEET13 is
also upregulated during X. oryzae pv. oryzae infection; how-
ever, no effector was identified (Liu et al., 2011). SWEET
transporter activity hijacked by Xanthomonas species
appears to be crucial for the growth and proliferation of the
pathogens because the lack of induction results in disease
resistance. Bacterial mutant strains carrying truncated ver-
sions of TAL effectors or even plant mutations in the pro-
moter region where TAL effectors bind result in reduced
bacterial titer (Chen et al., 2010; Liu et al., 2011; Yu et al.,
2011). For instance, the strain PXO99A mutated in its
pthxo1 gene cannot induce OsSWEET11 and fails to infect
rice plants (Chen et al., 2010). Interestingly, the same SWEET
member can be targeted by different pathogen strains spe-
cific effectors, as these effectors can bind to different regions
of the same SWEET gene promoter. Thus, recessive muta-
tions in the promoter region of SWEET genes can increase
pathogen resistance without losing the sugar transport func-
tion (Antony et al., 2010; Yu et al., 2011). It seems that so
far these pathogens target clade III SWEET transporters, with
a physiological function normally related with sucrose efflux
to the apoplastic space surrounding the phloem, including
AtSWEET11 and AtSWEET12 (Chen et al., 2012). These bac-
terial pathogens also target SWEET transporters in other
plant species. In Cassava (Manihot esculenta), MeSWEET10a
is induced by Xanthomonas axonopodis, promoting its viru-
lence (Cohn et al., 2014), and in citrus, the pathogen
Xanthomonas citri ssp. citri, which causes bacterial canker
disease, induces CsSWEET1 by a TAL effector-dependent
manner (Hu et al., 2014). Also, in cotton, the bacterial blight
disease casual-agent, X. citri subsp. malvacearum, specifically
activates GhSWEET10d, a sucrose transporter, by its effector
Avrb6 (Cox et al., 2017).

It has been widely shown that SWEET gene expression can
be altered not only by Xanthomonas species but also by
other bacterial and fungal pathogens. Pseudomonas syringae
may induce different SWEET genes (AtSWEET4, 5, 7, 8, 10,
12, and 15) in infected Arabidopsis leaves, especially
AtSWEET15 during the early stages of infection (Chen et al.,
2010). Also, in Arabidopsis, infection by the obligate biotro-
phic pathogen Golovinomyces cichoracearum induced the
expression of AtSWEET12 in infected leaves during the for-
mation of the primary haustorium and during hyphal
growth and development of the reproductive structures
(Chen et al., 2010). Infection by Rhizoctonia solani, the caus-
ative agent of sheath blight disease, which is a major patho-
gen of rice, significantly induced OsSWEET11 expression in
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leaves. The analyses of transgenic plants revealed that
OsSWEET11 mutants were less susceptible, whereas plants
overexpressing OsSWEET11 were more susceptible to sheath
blight compared with wild-type controls (Gao et al., 2018).
Botrytis cinerea infection also enhanced the expression of
different AtSWEETs, principally AtSWEET15 (Chen et al.,
2010). Botrytis cinerea also induces SlSWEET15 in tomato
(Asai et al., 2016).

Overall, it seems that most of the pathogens induce host
SWEET transporters to gain access to the plant sugar resour-
ces for nourishment (Chen et al., 2010; Cohn et al., 2014) as
host-derived sugars are unequivocally absorbed by the path-
ogen (Aked and Hall, 1993; Sutton et al., 1999). However, in
certain interactions, it is not clear if the increased expression
of SWEET transporters is mediated by the pathogen or is

itself a host response to prevent pathogen infection. In fact,
in some cases, upregulation of these transporters does not
result in higher plant susceptibility to infection (Figure 2). In
roots of Arabidopsis, despite infection by the soil-borne
oomycete P. irregulare caused an increase of more than 10-
fold in AtSWEET2 gene expression, the loss-of-function
SWEET2 mutants were more susceptible to the infection,
showing impaired growth when challenged with the oomy-
cete and suggesting that AtSWEET2 transporters retrieve
sugars from the cytosol to the vacuole to limit their leakage
to the extracellular space where they may feed the pathogen
(Chen et al., 2015a). In sweet potato (Ipomoea batatas), in-
fection with Fusarium oxysporum Schlecht. f. sp. batatas sig-
nificantly upregulated the gene expression of the sucrose
transporter IbSWEET10. Unexpectedly, IbSWEET10-

Figure 2 Involvement of SWEET transporters during plant–pathogen and symbiotic interactions. Xanthomonas spp. secretes TAL effectors that in-
duce the expression of SWEET (e.g. OsSWEET11, 13, and 14) to increase sugar leakage (Chen et al., 2010). SWEETs can be also involved in defense
mechanisms like in infected Arabidopsis roots in which AtSWEET2 increases the accumulation of cytosolic sugars in the vacuole, impeding its
transport to the extracellular space (Chen et al., 2015a). During interactions with beneficial microorganisms, such as in M. truncatula with the sym-
biotic AM (R. irregularis), MtSWEET1b transports glucose across the peri-arbuscular membrane (An et al., 2019). SW, SWEET; MST2, AM fungus
Monosaccharide Transporter 2.
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overexpressing sweet potato lines were more resistant
against this fungal pathogen than control ones and also
RNAi lines showed higher susceptibility (Li et al., 2017b).
The mechanisms by which higher levels of SWEET activity
increase plant resistance to pathogenic attack are still poorly
understood. One hypothesis is that SWEET transport activity
lowers the available sugar in the apoplast thus affecting fun-
gal growth. Also, as sugars can act as signaling molecules,
SWEET upregulation may alter sugar levels at the infection
site and trigger signaling cascades that result in the salicylic
acid or jasmonic acid pathways activation, and consequently
the upregulation of defense genes (Herbers et al., 1996;
Herbers and Sonnewald, 1998; Morkunas and Ratajczak,
2014; Gebauer et al., 2017; Bezrutczyk et al., 2018b; Kanwar
and Jha, 2019). Still, SWEETs can possibly function as sugar
sensors much like other sugar transporters, including SUC2
and SUT1 in Arabidopsis (Lalonde et al., 1999; Barker et al.,
2000; Thevelein and Voordeckers, 2009), or Sucrose
Nonfermenting 3 (SNF3) and Restores Glucose Transport 2
(RGT2) in Saccharomyces cerevisiae (Özcan et al., 1998);
however, this hypothesis is still highly speculative
(Bezrutczyk et al., 2018b).

Contrarily to the above reported data, downregulation of
several SWEET genes in tomato cotyledons was observed

when challenged with B. cinerea (Asai et al., 2016). Over 21
of the 30 SlSWEET genes were significantly downregulated
16 h after inoculation. The physiological importance of
downregulation of SWEET genes during infection is still puz-
zling. It was reported that upon pathogen attack various
sugar signaling cascades are disrupted (Berger et al., 2006;
Sade et al., 2013; Morkunas and Ratajczak, 2014) eventually
due to the downregulation of SWEET genes. Therefore,
pathogens could repress these transporters to decrease plant
defense responses resulting in a more beneficial environ-
ment for pathogen growth.

SWEET family members are also induced upon plant inter-
action with mycorrhizal fungi and rhizobia bacteria (Perotto
et al., 2014; Kryvoruchko et al., 2016). During the symbiotic
nitrogen fixation process that occurs in Medicago truncatula
root nodules, the sucrose transporter MtSWEET11 is highly
expressed. This transporter is present in the root hair cells,
in the meristem, invasion zone, and vasculature of nodules.
However, MtSWEET11 is not crucial for symbiotic nitrogen
fixation as in mutant MtSWEET11 lines this symbiosis was
uncompromised (Kryvoruchko et al., 2016). In Lotus japoni-
cus, 13 members of the SWEET family were expressed in
nodules. During nodule development, LjSWEET3 was highly
expressed, reaching the highest level in mature nodules,

Figure 3 VvSWEET7 during Botrytis cinerea grape berry infection. The mono- and disaccharide transporter VvSWEET7 is strongly upregulated dur-
ing B. cinerea infection of grape berries (Breia et al., 2020b). This induction may be caused by the pathogen itself to promote leakage of sugars into
the apoplastic space for nutrition, or, as a defense-related process to improve sugar remobilization which can trigger signaling cascades that acti-
vate plant-defense mechanisms. SW, SWEET.
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suggesting a sugar translocation function toward nodules
(SugiyaMa et al., 2017). In potato, the arbuscular mycorrhizal
(AM) fungus Rhizophagus irregularis greatly modified the ex-
pression profile of 22 SWEET genes, upregulating 12 mem-
bers and repressing 10 (Manck-Götzenberger and Requena,
2016). In M. truncatula, SWEET1b transporter is strongly
upregulated in arbuscule containing cells compared with
roots and localizes to the peri-arbuscular membrane in the
cortical cells, across which nutrient exchange takes place
(Figure 2). Overexpression of MtSWEET1b in M. truncatula
roots promoted the growth of intraradical mycelium during
AM symbiosis, increasing the fungal mass and the overex-
pression of MtSWEET1bY57A/G58D, which are considered to
act in a dominant-negative manner, resulted in enhanced
collapse of arbuscules. Therefore, these results suggested
that MtSWEET1b is strictly related with sugar transport to
AM fungi, however, in a redundant manner (An et al.,
2019).

The particular case of grapevine SWEET
transporters during pathogen attack
Grapevine is a plant species highly susceptible to different
diseases, including gray mold (B. cinerea), powdery mildew
(E. necator), and downy mildew (P. viticola), that seriously
threaten grape growers. In grapevine, B. cinerea can infect
several tissues at different developmental stages and nega-
tively affects grape berry production and quality (Gomès
and Coutos-Thévenot, 2009; Walker and Leroux, 2015).
Nevertheless, it can also cause noble rot, a disease that only
develops under very specific edaphoclimatic conditions,
leading to the production of exceptionally SWEET and high-
quality wines (Magyar, 2011; Vannini and Chilosi, 2013;
Jackson, 2020). Obtaining and taking advantage of the per-
fect conditions for noble rot development is currently a sig-
nificant challenge, but one that may provide large rewards
in the future. In this regard, full knowledge on SWEETs func-
tional and physiological roles in grapevine, particularly in
grape berries, is of utmost importance, as it would greatly
contribute to understand and find the right “balance” be-
tween infection and plant health and thus the development
of optimal B. cinerea-infected berry characteristics, providing
in a near future the much needed standardization and in-
crease in the production of these added-value SWEET/forti-
fied wines. Moreover, the consumer demand for these
exceptional and unique wines is increasing (Jackson, 2020),
so, to understand SWEET involvement in this context, and
even to tame and exploit their role and potential is cur-
rently a market-driven priority.

The role of sugar transporters in grapevine/environment
interaction has been widely reported (Hayes et al., 2010;
Santi et al., 2013; Conde et al., 2015; Cai et al., 2019; Breia
et al., 2020b); however, Chong et al. (2014) showed for the
first time that a grapevine SWEET transporter (VvSWEET) is
involved in a pathogen attack microenvironment, right after
the in silico identification of the VvSWEET family by

Lecourieux et al. (2014). This family is composed by 17
members named based on their sequence identity percent-
age with Arabidopsis SWEET proteins which comprise a
family with the same number of members. A previous study
proposed VvSWEET17b and VvSWEET17c as a single gene
with a 14-TMD extraSWEET (Patil et al., 2015), but this as-
sumption resulted from an error in the 12� Genoscope an-
notation, which is not present in the new grapevine
genome annotation (VCost.v3; Canaguier et al., 2017).
VvSWEETs clearly separate in the classic four clades; how-
ever, clade III appears to be underrepresented. VvSWEET
genes are differentially expressed in each grapevine organ
and only VvSWEET9 and 17b expression was not detected
so far. Numerous members are highly expressed in reproduc-
tive organs and fewer in vegetative ones. Both VvSWEET4
(Chong et al., 2014) and VvSWEET10 (Zhang et al., 2019b)
were functionally characterized as plasma membrane glucose
transporters. The overexpression VvSWEET10 in grapevine
calli and tomato increased the glucose, fructose, and total
sugar levels, suggesting that this transporter is an important
player during sugar accumulation in grape berry (Zhang
et al., 2019b).

Recently, two grapevine SWEET members (VvSWEET7 and
15) were studied in our group, and both proteins were
found highly expressed during grape berry development, at
the green and mature stages (Figure 3; Breia et al., 2020b).
Concordantly, the expression levels of VvSWEET15 is posi-
tively associated with hexose contents in different varieties
of grape berries (Ren et al., 2020). Both VvSWEET7 and 15
are localized in the plasma membrane, and the heterologous
expression in yeast of VvSWEET7showed that it mediates a
high-capacity, low-affinity transport of mono and disacchar-
ides, but interestingly it also permeates substrates like poly-
ols (Breia et al., 2020b). In field-trials, B. cinerea infection of
Trincadeira cv grape berries caused a strong reprogramming
of the expression of several VvSWEET genes. VvSWEET7 and
15 were clearly upregulated in response to infection, as well
as VvSWEET2a. But B. cinerea infection also downregulated
VvSWEET10, 11, 17a, and 17d expression at different devel-
opmental stages (Breia et al., 2020b). The observation that
VvSWEET7 also transport polyols is particularly relevant be-
cause many pathogens synthetize the sugar-alcohol manni-
tol as a mechanism for neutralizing the oxidative burst of
plants in response to the infection (Patel and Williamson,
2016). Thus, VvSWEET7 may be involved in plant defense by
readily removing from the apoplast the pathogen-synthe-
tized mannitol.

Much like in other plant species, grapevine VvSWEETs are
transcriptionally reprogrammed during infection. The grape-
vine biotrophic pathogens E. necator and P. viticola did not
significantly induce VvSWEET expression, while the infection
with the necrotroph B. cinerea triggered a strong upregula-
tion of VvSWEET4 expression (Chong et al., 2014). This sugar
transporter is also induced by ROS production, cell death
and virulence factors from necrotizing pathogens, all hall-
marks of necrotrophic interactions. The overexpression of
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VvSWEET4 in grapevine hairy roots improved the resistance
to P. irregulare infection. In parallel, glucose concentration
increased and the upregulation of different genes of the fla-
vonoid biosynthesis accounted for the observed higher flava-
nol contents. Altogether, these results suggest an
involvement of VvSWEET4 in biotic defense mechanisms in
grapevine (Meteier et al., 2019).

In sum, VvSWEET transporters are likely important players
in sugar mobilization during grape berry development and
their expression is transcriptionally reprogrammed in re-
sponse to B. cinerea infection. However, the role of SWEETs
in plants as components of susceptibility or resistance dur-
ing pathogenic attack is still a matter of debate and may
only be resolved by a case by case basis. Besides its scientific
relevance, the knowledge on grapevine SWEET transporters
in plant–pathogen interaction may provide cues for the op-
timization of agricultural practices toward increased vine
health, grape berry, and wine productivity. Also, it may open
or widen new avenues for the optimization of new and
more unique wines as the case of the recently trendy and
expensive “Botrytized wines” (Magyar and Soós, 2016;
Jackson, 2020).

SWEETs transporters during abiotic stress—a
small glimpse on a broader function of
SWEETs in plant–environment interactions?
Evidence of the role of SWEET transporters during abiotic
stresses is still scarce and fragmented but different reports
suggest their involvement in plant response to cold, high
temperature, drought, and salinity. As shown below, these
conditions may require the intracellular accumulation of
compatible solutes/osmolytes, putatively mediated by
SWEETs, to protect cell proteins against dehydration/dena-
turation (Ruan et al., 2010; Wang et al., 2018b). Yet, because
limited water availability drastically reduces photosynthesis
and plant carbon assimilation (Moutinho-Pereira et al., 2004;
Chaves et al., 2009), it is somewhat expected that drought
stress may indirectly modify the expression of different sugar
transporters to maintain cellular homeostasis (Yamada et al.,
2010, 2011; Schulz et al., 2011; Frost et al., 2012; Osakabe
et al., 2014; Gong et al., 2015).

In Arabidopsis, banana (Musa acuminata), rice, tea plant
(Camellia sinensis), M. truncatula, and Poa pratensis, several
SWEET transporters are induced under drought stress (Miao
et al., 2017; Wang et al., 2018a; Hu et al., 2019; Mathan
et al., 2020; Zhang et al., 2020b). In grape berries subjected
to a dehydration process aimed to produce raisins,
VvSWEET11 suffered a strong, somewhat unexpected, upre-
gulation (up to 200-fold) 5 d after incubating the bunches
at 50�C, while the expression of VvSWEET15 increased
three-fold. Strikingly, after 11 d, when the berries are almost
completely dehydrated the expression of VvSWEET11
remains very high (Conde et al., 2018b). These results sug-
gest that VvSWEET may play a role in the redistribution of
sugars inside the dehydrated grape tissues (that may behave
as osmolytes), but one cannot rule out that the observed

overexpression is regulated by temperature, much like it was
observed in SWEETs from Phalaenopsis equestris (Wang
et al., 2018b). In field trials aimed at studying the effect of
the application of a protective chemical inert mineral kaolin
in grapevines subjected to drought, high irradiance, and high
temperatures, VvSWEET1, 4, and 11 were upregulated in
treated plants with the “sunscreen”, along with other sugar
transporters, as VvSUC27. Most likely, kaolin application
stimulates sugar transport capacity within the leaves im-
proving source-to-sink transport of sucrose mediated by
SWEET (Conde et al., 2018a).

Also, in Arabidopsis, AtSWEET15 is highly expressed under
cold and high salinity (Quirino et al., 1999) and AtSWEET11
and ATSWEET12 are also involved in freezing tolerance.
After a cold treatment and under short-day conditions, the
double mutant AtSWEET11/12 accumulates more glucose
and fructose and shows higher freezing tolerance than the
wild-type (Le Hir et al., 2015). AtSWEET4 also seems to play
an important role for plant freezing tolerance. The RNAi4-8
line, with reduced AtSWEET4 expression accumulated less
sugars and showed greater freezing susceptibility, in contrast
with AtSWEET4 overexpression lines, that accumulated more
sugars and demonstrated higher freezing tolerance (Liu
et al., 2016). In banana, MaSWEET genes may play an impor-
tant role in response to cold, salt, and osmotic stress (Miao
et al., 2017) and in Brassica oleracea var. capitata L. and P.
pratensis some SWEET genes are likely involved in chilling
tolerance (Zhang et al., 2019a, 2020b). In tea plant,
CsSWEET1a and CsSWEET17 are induced by cold acclimation
and cold stress. Accordingly, Arabidopsis plants heterolo-
gously expressing these transporters showed higher cold tol-
erance, further supporting a protective role to CsSWEET1a
and 17 during freezing stress (Yao et al., 2020).

The regulation of sugar transport across the vacuolar
membrane plays important role in plant response to differ-
ent environmental stresses. In tea plant, the tonoplast sugar
transporter CsSWEET16 is repressed during cold-acclimation,
and in Arabidopsis plants overexpressing CsSWEET16 an in-
creased tolerance to cold was observed, which coincided
with the accumulation in the vacuole of glucose and a re-
duction of fructose (Wang et al., 2018a). Likewise,
AtSWEET16 is repressed in Arabidopsis during cold and os-
motic stresses and under cold stress, mutant lines of
Arabidopsis overexpressing AtSWEET16 were unable to ac-
cumulate fructose, and remarkably, they showed improved
germination and increased freezing tolerance (Klemens et al.,
2013).

Conclusion, future perspectives, and
intriguing new questions
Plant SWEET transporters and respective physiological roles
is currently a hot topic in the plant biology scientific com-
munity as demonstrated by the amount of new reports
published over the past two years (Abelenda et al., 2019; An
et al., 2019; Cai et al., 2019; Doidy et al., 2019; Gautam et al.,
2019; Ho et al., 2019; Hu et al., 2019; Liu et al., 2019; Meteier
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et al., 2019; Wang et al., 2019a, 2019b, 2020; Xie et al., 2019;
Zhang et al., 2019b, 2020a, 2020b; Andrés et al., 2020; Breia
et al., 2020b; Geng et al., 2020; Li et al., 2020; Mathan et al.,
2020; Morii et al., 2020; Ni et al., 2020; Ren et al., 2020; Yao
et al., 2020), highlighting both the relevance and rapidly
changing knowledge on the topic (see Outstanding
Questions).

During the infection process, pathogens are capable of in-
ducing profound metabolic and transcriptomic modifica-
tions on their host. Sugar metabolism and mobilization are
greatly affected during the infection process and SWEET
transporters are important players during this clash. The in-
duction of plant SWEET transporters by pathogens has been
linked with an increased capacity of pathogens to obtain
host-derived sugars for nutrition. However, plant response
to infection may involve SWEET repression to promote
sugar starvation of the invading pathogens. SWEET repres-
sion may be also induced by pathogens to suppress sugar
translocation, which can disrupt various signaling defense
pathways. While it is widely accepted that sugar metabolism
and mobilization are important players that decide the fate
of the ongoing battle between plant and pathogen during
the infection process, the metabolic signatures defining the
susceptibility or resistance responses of a plant and their
regulatory modes, remain poorly understood. There is there-
fore a need to continuously pay attention to this topic in
future research. The challenge to further understand struc-
ture/function relationships is also enormous but will bring
new insights on the molecular basis of the substrate plastic-
ity and kinetics and energetics properties of SWEETS.
Advances driven by physiology, genetics, and biophysics over

the past 20 years have dramatically improved our under-
standing of the molecular basis of plant nutrition and how
plants respond to stress. In this context, as nicely reviewed
by Schroeder et al. (2013) and Jeena et al. (2019), specialized
plant membrane transporters, like SWEETs, can also be mo-
lecular targets to enhance yields of staple crops, increase nu-
trient content, and increase resistance to key stresses,
including salinity and pathogens.
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OUTSTANDING QUESTIONS

• As SWEET transporters are bi-directional and
have outstanding substrate plasticity (sugar,
polyols, gibberellins), what are the mechanisms
that regulate their activity?

• In which additional biological processes related
with plant health, development, stress response
and reproduction are SWEETs involved?

• Are SWEET transporters “friends or foes” during
plant-pathogen interaction? Does it depend on
the plant?

• Is the ability of some SWEET transporters (e.g.
VvSWEET7) to transport more atypical
substrates, like polyols, linked to their
increasingly evident relevance also in abiotic
stress response?

• Is deciphering SWEET behavior in B. cinerea
infection of grape berries key for the
improvement of productivity and for
standardizing production of high-quality and
unique “Botrytized” wines?
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