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Abstract

Automatic image segmentation is an essential step for many medical image analysis applications, 

include computer-aided radiation therapy, disease diagnosis, and treatment effect evaluation. One 

of the major challenges for this task is the blurry nature of medical images (e.g., CT, MR, and 

microscopic images), which can often result in low-contrast and vanishing boundaries. With the 

recent advances in convolutional neural networks, vast improvements have been made for image 

segmentation, mainly based on the skip-connection-linked encoder–decoder deep architectures. 
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However, in many applications (with adjacent targets in blurry images), these models often fail to 

accurately locate complex boundaries and properly segment tiny isolated parts. In this paper, we 

aim to provide a method for blurry medical image segmentation and argue that skip connections 

are not enough to help accurately locate indistinct boundaries. Accordingly, we propose a novel 

high-resolution multi-scale encoder–decoder network (HMEDN), in which multi-scale dense 

connections are introduced for the encoder–decoder structure to finely exploit comprehensive 

semantic information. Besides skip connections, extra deeply supervised high-resolution pathways 

(comprised of densely connected dilated convolutions) are integrated to collect high-resolution 

semantic information for accurate boundary localization. These pathways are paired with a 

difficulty-guided cross-entropy loss function and a contour regression task to enhance the quality 

of boundary detection. The extensive experiments on a pelvic CT image dataset, a multi-modal 

brain tumor dataset, and a cell segmentation dataset show the effectiveness of our method for 

2D/3D semantic segmentation and 2D instance segmentation, respectively. Our experimental 

results also show that besides increasing the network complexity, raising the resolution of 

semantic feature maps can largely affect the overall model performance. For different tasks, 

finding a balance between these two factors can further improve the performance of the 

corresponding network.

Index Terms—

Image segmentation; low-contrast image; high-resolution pathway

I. Introduction

MEDICAL image analysis develops methods for solving problems pertaining to medical 

images and their use for clinical care. Among these methods and applications, automatic 

image segmentation plays an important role in therapy planning [1], disease diagnose [2]–

[4], and pathology learning [5] strategies. For example, in image-guided disease diagnose for 

brain cancer, accurately segmented masks of sub-components of a brain tumor enables the 

physicians to estimate the volume of gliomas (of different grade), and then conduct 

progression monitoring, radiotherapy planning, outcome assessment, and follow-up studies 

[5].

The primary challenges for medical image segmentation mainly lie in three aspects. For the 

ease of understanding, pelvic CT images are selected as an example for illustration, similar 

conditions also exist in many other segmentation tasks, including brain tumor and cell 

segmentation. (1) Complex boundary interactions: The main target organs of pelvic CT 

image segmentation are the three adjacent soft tissues, i.e., prostate, bladder, and rectum. 

Since these organs are adjacent to each other and their shapes and scales can be changed 

easily and significantly by different amounts of urine or bowel gas inside the organs, the 

boundary interaction of these organs can be complicated. (2) Large appearance variation: 

The appearance of main pelvic organs may change dramatically for the cases with or without 

bowel gas, contrast agents, fiducial markers, and metal implants. (3) Low tissue contrast: 
CT images, especially those from the pelvic area, have blurry and vanishing boundaries (see 

Fig. 1). This last challenge poses the most severe problem for image segmentation 
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algorithms, as compared with the natural or MR images, CT images visibly lack rich and 

stable texture information (especially on soft tissues). The weak or even vanishing edges 

caused by low- and noisy-contrast acquisition of the image makes the actual boundaries of 

organs easily contaminated or even partially concealed by a large number of artifacts. As a 

consequence, a holistic organ can be accidentally split into isolated parts with various sizes 

and shapes (i.e., shown by the first sample in Fig. 1), while the independent organs can be 

visually merged as a whole (i.e., shown by the second sample in Fig.1). The remaining clues 

for the correct location of boundaries can be trivial and vulnerable (see Fig. 1).

In recent years, considerable improvement has been made to boost the performance of low-

contrast medical image segmentation [2], [3], [6] using deep learning-based algorithms. This 

overwhelming performance gain owes to end-to-end learning mechanisms compared to the 

traditional shallow learning-based algorithms in many medical image analysis applications 

[3], [7]–[9]. A common feature in almost all state-of-the-art methods is the encoder-decoder 

architecture with skip connections. In this structure, downsampling operations together with 

convolution are utilized to extract robust high-level semantic information, while skip 

connections are utilized to pass the low-level texture and location information. Although the 

effectiveness of this structure has been illustrated in many applications, in this paper, we 

argue that, in the images with blurry or vanishing boundaries, standard encoder-decoder 

models fail due to two main reasons: (1) Skip connections may fail in preserving the correct 

location information of blurry boundaries. Different from the high-contrast images, the 

blurry or missing boundaries resulted by various types of artifacts in medical images make it 

hard or even impossible for the shallow layers with little context information to delineate the 

organ boundaries, leaving many nearby fake boundaries (see Sample1 in Fig. 1). (2) In the 

encoder-decoder pathway, because of the included downsampling operations, important 

location information is gradually lost to exchange for the invariance property. As a result, the 

space discriminant capacity of the pathway, which is vital in finding the right boundary 

among the fake ones, becomes unreliable. To solve this problem, [8], [10], [11] proposed to 

extract high-resolution semantic information that is accurate in location and rich in 

contextual information. Although preferable improvement has been achieved, comparing to 

the encoder-decoder networks, the high memory cost of these models still limits the 

performance of these algorithms.

In this paper, we propose a novel high-resolution dense encoder-decoder network for low-

contrast medical image segmentation. The design of our network is mainly based on the idea 

of utilizing deeply-supervised high-resolution semantic information to compensate for the 

deficiency on inaccurate boundary detection of the existing encoder-decoder networks. To 

this end, we construct our network with three kinds of pathways: 1) skip pathways; 2) high-

resolution pathways; and 3) distilling pathways. In these pathways, skip pathway is 

composed with a simple skip connection, and high-resolution pathway is composed of a 

series of densely connected dilated convolutional layers, while distilling pathway is 

composed in an encoder-decoder fashion with dense blocks (see Fig. 2 for more detailed 

information). In the network, two kinds of semantic information extracted by the high-

resolution pathway and the distilling pathway are finely merged to ensure a balance between 

the location and semantics. By carefully placing the high-resolution pathway in the network, 

we can achieve better performance with affordable memory consumption. Moreover, to 
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better capture multi-scale structural information and segment possible isolated organ 

portions with various shapes and sizes, we propose an integrated multi-scale information 

preservation mechanism. This is done along with a task of contour regression for focusing 

on accurate localization of the boundaries. Finally, since not all voxels are of equivalent 

difficulty in segmentation [12], we introduce a difficulty-guided cross-entropy loss to assist 

the network to pay more attention to the areas with blurry boundaries.

Contributions.

The main contributions of the paper are three-fold:

1. Through careful analysis and experimental verification, we find an intrinsic 

problem of the popular encoder-decoder neural networks on low-contrast image 

segmentation that they lack a mechanism to locate the touching blurry or 

vanishing boundaries accurately.

2. To solve the problem, a novel high-resolution multi-scale encoder-decoder 

network (HMEDN) with three different kinds of pathways and a difficulty-aware 

loss function is introduced. Specifically, in the designed network, the proposed 

high-resolution pathway is a general plug-in module for encoder-decoder 

networks to improve performance on low-contrast image segmentation tasks.

3. Extensive experiments on CT, MR and, microscopic image datasets, on both 

semantic and instance segmentation tasks with 2D and 3D models verify the 

effectiveness of our proposed network and the high-resolution pathway. Through 

experiments, we find that the resolution of semantic information is an essential 

factor to the performance of a segmentation network which has usually been 

neglected.

II. Related Work

In the literature of deep learning methods for medical image segmentation, two strategies are 

often incorporated to tackle the problem of low tissue contrast [13]: (1) Introducing shape 

prior to the segmentation framework as an overall regularization to eliminate unreasonable 

predictions; (2) Improving the discriminative and reasoning capacity of learned features to 

allow the network to infer the content at blurry region(s) by checking the surrounding 

intensity distribution and contour variation tendency.

To implement the first strategy, contour-based methods are combined with deep learning 

techniques. Specifically, [14] utilized the segmentation results generated by convolutional 

neural networks (CNN) as initialization, and then fine-tuned the corresponding contours 

with the level-set and multi-atlas algorithms, respectively. In [15], CNN was used to estimate 

a reliable vector field that points from a voxel to its closest voxel on the boundary to evolve 

the Sobolev active contour. In [16], Mo et al. proposed a novel active contour method by 

modeling the contour delineation problem as finding the limit cycle. In their method, deep 

learning was utilized to estimate the vector field for a dynamic system. To make full use of 

the shape information for network training, Tang et al. [17] integrated CNN with a level-set 

algorithm and trained the whole pipeline iteratively. This setting allowed the output refined 
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by the level-set algorithm to guide the training of CNN, thus allowing the robust shape prior 

to regularize the training of CNN. To ensure the prediction results to be anatomically 

meaningful, Oktay et al. [18] modified the convolutional neural network by adding an 

autoencoder to enforce the prediction of the network to be close to the ground-truth label 

map in both the original image space and the low dimensional manifold. Recent progress in 

shape integration using deep learning methods has shown promising results in making the 

segmentation more robust and reasonable. However, improving these methods also requires 

enhancing the discriminative capacity of the learned features. This calls for more medical 

image specific deep learning segmentation methods, which is exactly our goal in this paper.

To improve the representative capacity of the segmentation algorithms, pioneer explorers 

took advantage of discriminative features learned in an end-to-end manner using patch-based 

CNNs, outperforming shallower machine learning algorithms with engineered features. For 

instance, Roth et al. [4] combined and cascaded multiple deep networks to encourage 

diversity in the extracted semantic information for better segmentation results. Fakhry et al. 
[19] tailored a deep convolutional network specially for electron microscopy (EM) images 

by studying the effect of kernel size and also the depth of networks on the segmentation 

performance. However, segmentation is a dense prediction task, which means each voxel in 

the image will be given an estimated label. Therefore, the onevoxel-at-a-time predicting 

manner of patch-based CNN is not only time-consuming but also isolates the highly 

correlated adjacent voxels, so that the performance of the network is adversely influenced. 

To overcome the mentioned problems, Long et al. [20] proposed a groundbreaking work, 

denoted by fully convolutional neural networks (FCN), in which fully connected layers were 

replaced by multiple upsampling layers to make the size of the network output to be the 

same as the input. By doing this, both the efficiency and the performance of the networks 

were largely improved. After FCN, many derivatives have been proposed for medical image 

analysis. Among these works, Ronneberger et al. [21] designed a skip connection linked 

symmetric encoder-decoder FCN named U-Net. To further improve the information passing 

smoothness in U-Net, Drozdzal et al. [22] introduced residual connection [23] into the 

network. In [24], Chen et al. combined side outputs from multiple levels of FCN to integrate 

semantic information from different granularity for finer segmentation. Nie et al. [2] 

integrated three sub-FCNs trained on T1, T2, and fractional anisotropy (FA), respectively, to 

acquire and fuse complementary information from different modalities for accurate 

segmentation of infant brain images.

Besides using multiple modalities and adding connections to the network, some researchers 

also improved segmentation performance by integrating multiple correlated tasks. For 

example, to improve the segmentation accuracy of the pancreatic cyst, Zhou et al. [25] 

introduced the segmentation of pancreas, which is simpler but highly correlated with cyst 

segmentation, as an auxiliary task in a deep supervision fashion to improve the performance 

on cyst segmentation. In [26], Nogues et al. designed two networks for interior segmentation 

and contour delineation separately. Then, the results of the two networks are finely 

combined through structured optimization by boundary neural fields. To further tighten the 

connection between the two tasks for better results, Chen et al. [3] proposed a network to 

fuse contour delineation with foreground segmentation in a multi-task learning fashion. To 

make full use of the learned contour and segmentation results in an end-to-end trained 
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framework for finer fusion of the complementary information, Xu et al. [27] further merged 

the learned contour and segmentation feature maps with convolution operations. Besides, the 

combination of convolutional networks with graph models, i.e., conditional random fields 

(CRF) [28], and Markov random fields (MRF) is also a good way to model the context 

information [29].

As medical images are often in 3D, many researchers borrowed complementary information 

from nearby highly correlated slices to estimate the content of the blurry area. However, a 

better idea is to extend the existing networks into 3D version and enable them to see and 

learn automatically in the 3D space. Along this direction, 3D U-Net [30] and V-Net [31] are 

two of the pioneers. After that, many researchers further introduced finer connections, such 

as residual connections [23], [32], dense connections [33], [34], and deep supervision [35], 

into the 3D networks to further improve the performance of the networks. On the other hand, 

some found that 3D CNNs could be too memory costing and computationally intensive, and 

thus Zhou et al. [25] combined the results of three 2D convolutional networks along three 

orthogonal directions (axial, sagittal, and coronal directions) as an efficient replacement. In 

[36], to exploit the intra-slice and inter-slice context, authors introduced the convolutional 

long short-term memory (CLSTM) [37] into the segmentation pipeline in an end-to-end 

training manner.

Although the mentioned literature has largely improved the segmentation performance of 

deep learning algorithms on blurry medical images, the encoder-decoder plus skip 

connection structure (shared by most of the existing works) limits these networks from 

accurately locating the boundaries of the target organs. In the following section, we will 

introduce our solution to this problem in detail, by proposing a novel deep learning 

framework, denoted as high-resolution multi-scale encoder-decoder network (HMEDN).

III. Method

In this section, we introduce our High-Resolution Multi-Scale Encoder-Decoder Network 

(HMEDN) for segmentation of low-contrast medical images. Specifically, four strategies are 

adopted, each discussed in a separate subsection. First, we introduce the distilling network, 

in which semantic information is carefully distilled and preserved. Then, we elaborate on the 

high-resolution pathway, which is constructed by densely connected dilated convolution 

operations for high-resolution semantic information exploitation. Next, we integrate the task 

of contour regression with the task of organ segmentation for accurate boundary localization. 

Finally, we force the network to concentrate more on the ambiguous boundary area by 

designing a difficulty-guided cross-entropy loss function. Fig. 2 illustrates our proposed 

network.

A. Distilling Network

Our first strategy to segment low-contrast medical image is to provide a more 

comprehensive multi-scale information collection and fusion mechanism. In general, two 

structures are usually adopted for multi-scale information preservation in the literature, i.e., 

U-Net [21] and Holistically-nested Edge Detection (HED) [38]. In the U-Net, multi-scale 

information is gradually merged by concatenating the upsampled large receptive-field layers 

Zhou et al. Page 6

IEEE Trans Image Process. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with those passed through skip connections with smaller receptive fields (i.e., merging no 

more than two scales at a time). Comparatively, through fusing the feature maps from 

multiple scales into the final output at the same time, the HED methods acquire multi-scale 

information more directly. By doing so, these networks omit the complicated convolution 

operations in the decoding procedure and bring the multi-scale information together in its 

original form. To preserve multi-scale information, U-Net gradually integrates and processes 

the information more delicately, thus making the fusion of the information sufficient, and 

allows the intermediate results to guide the subsequent fusion. Whereas in the case of HED 

methods, since all information is processed at the same time, the fusion of multi-scale 

information can be done more comprehensively.

To take advantage of both types of networks, we inherit the U-Net structure as well as the 

side outputs of HED networks to construct our network. Moreover, to further encourage 

smooth information flow between different layers and make the training of the network more 

manageable, we replace the original plain connections with dense connections initially 

introduced in [33].

Based on the above intuitions, we propose a densely connected multi-scale encoder-decoder 

network, to reveal the multi-level structural information comprehensively. This network is 

denoted by distilling network, due to the use of downsampling layer, which can efficiently 

enlarge the receptive field and effectively filter the redundant insignificant components. As 

shown in Fig. 2, the outline of the distilling network (the black pathway, together with the 

orange skip connections) is a U-Net with four downsampling and four upsampling layers. 

However, besides the regular skip connections, three extra side channels from intermediate 

layers with different sizes of receptive fields are also upsampled and merged with the main 

channel of the network to encourage more comprehensive multi-scale information fusion. 

Moreover, by linking all the preceding layers to the final layer, we construct dense blocks 
(i.e., those solid green rectangles in Fig. 2) and use them as the building block to encourage 

smooth information flow within the network.

B. High-Resolution Pathway

Our second (and main) strategy is to endow the network with a better capacity to extract 

discriminative high-resolution semantic information. In the task of segmentation, the 

intuitive tension between what and where has long been realized in [20]. The solution to the 

problem in the current literature is to combine the coarse layers with fine layers in the 

encoder-decoder networks by skip connections and allow the networks to make local 

decisions concerning the global structures. This strategy works well in the high-contrast 

images with clear and consistent boundaries. However, when it is applied to the images with 

low contrast, local appearance features extracted by lower layers may fail to refrain from the 

surrounding hypothetical boundaries and recognize the vanishing boundaries, causing 

negative effects on the accuracy of these algorithms. Consequently, to achieve accurate 

boundary localization in blurry images, a mechanism which can provide discriminative high-

resolution contextual information is needed. To meet this special demand, the dilated 

convolution-based pathways are introduced. Given a 2D image X with L channels, the 

definition of a dilated convolution with kernel w of size 3 is defined as:
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Oi, j: = ∑
a = 0

2
∑

b = 0

2
∑
l = 0

L − 1
wa, b, lX(i + ad), (j + bd), l, (1)

where d is the dilation factor, O is the output feature map, and (i, j) is the location index in 

image X. Since this convolution can arbitrarily enlarge the receptive field by tuning the 

dilation factor d, it can be used to replace the downsample-upsample structure to extract 

contextual information [8], [10]. This semantic information extraction procedure can deliver 

two merits to the corresponding network: (1) Because no resolution is lost in the information 

processing procedure, small and thin objects that can be important for correctly 

understanding the image are finely preserved. (2) Since no downsampling operation is 

included, the location information of the generated feature maps can be better conserved.

The building block in these pathways is a residual dilated convolutional block [8]. As 

shown in Fig. 2 (i.e., the orange squares), it is constructed by two convolution blocks and a 

shortcut connection. The benefit of this block is two-fold: (1) It improves the training speed 

and encourages smooth information flow [23]; (2) Combining with the dilated convolutions, 

skip connections implicitly exploit and fuse information from different scales. Moreover, to 

further improve the long-term information flow which is weak in the classic dilated residual 

network [39], we combine dense connection to allow the information from the early stage of 

the high-resolution pathway to be directly passed to the final layer of the module. This 

setting also leads to an even finer grain multi-scale information collection of the whole 

network. After that, to reduce the training difficulties and also to make the pathway 

discriminative to the true organ (or tissue) boundaries, a deep supervision mechanism is 

introduced. In our experiments, nine residual dilated convolutional blocks compose the 

pathway. The first three blocks are with the dilation of 1, the second three with 3, and the 

last three with 5.

C. Contour Information Integration

In recent studies, neuroscientists have investigated that, in mammal visual system, contour 

delineation correlates with object segmentation closely [40]. To incorporate these insights to 

improve the segmentation accuracy, researchers integrate the task of contour detection with 

the task of segmentation. The advantage of this design is three-fold. (1) It provides extra 

robust guidance to the task of segmentation. (2) It improves the generalization capacity of 

the corresponding network. (3) Introducing a task of contour regression can help guide the 

network to concentrate more on the boundary of organ regions, thus helping overcome the 

adverse effect of low tissue contrast. In this paper, as shown in Fig. 2, a regression task is 

added to the end of the network as auxiliary guidance. In the existing studies [3], [27], 

thanks to the high image contrast, the boundaries are usually clear and stable. As a result, 

authors in these studies [3], [27] modeled the contour detection as a binary classification 

problem. However, in our application, due to the blurry nature of images, the voxels near the 

boundaries are usually highly similar. As a result, it will be more reasonable to model the 

boundary delineation task as a regression problem, which estimates the probability of each 

voxel being on the organ boundary.
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To extract the contour for training, we first delineate the boundaries of different organs by 

performing Canny detector [41] on the segmentation ground-truth. Then, on this boundary 

map, we further exert a Gaussian filter with a bandwidth of δ. In the experiments, we 

empirically set δ = 2. For other datasets, the setting in landmark heat map generation [42], 

[43] can be followed (i.e., setting δ from 2 to 3 for good performance). For each voxel v, we 

generate yrv yrv ∈ Yrv as an approximation of the probability map, which describes the 

certainty of each voxel being on the boundary of an organ. Hence, the regression target is to 

minimize an Euclidean loss function as defined below:

ℒr Or; θ = 1
N ∑

or ∈ Or
p or − yr

or 2, (2)

where ℒr is the loss of contour regression for the regression feature maps Or, with N voxels 

and or as one of these N voxels, p(or) as the probability of or being on the boundary. θ 
represents the network parameters.

D. Difficulty-Guided Cross-Entropy Loss

To balance the frequency of the voxels from different classes, categorical cross-entropy loss 

is a common choice for multi-class segmentation [2], [3]. Different from the original cross-

entropy loss, the categorical version adds a loss weight νk for the voxels in the kth category. 

This weight is inversely related to the portion of voxels belonging to the kth category:

ℒc Os; θ = − 1
N ∑

os ∈ Os
∑

k = 1

K
vkyk

oslog p os, yk
os; θ , (3)

where ℒc denotes the categorical cross-entropy loss for the segmentation feature maps Os, 

with os as a voxel in it. K is the number of categories, yk
Os ∈ 0, 1  denotes whether voxel os 

belongs to the kth category or not, and p(os, yk
Os; θ) denotes the probability of a voxel os 

belonging to the kth category. This probability is defined by the soft-max over the feature 

maps of the final convolutional layer.

In a recent work, Li et al. [12] argued that not all voxels are equal and more attention should 

be paid to the difficult voxels. Inspired by this argument, we propose a difficulty-guided 

weight map to guide the network and focus more on the ambiguous areas. It is evident that 

the error of existing networks mainly lies around the borders of both foregrounds and 

backgrounds. It becomes even larger at the touching boundary of soft tissues. With these 

observations, we construct the weight map in three steps. (1) We use the Canny operator to 

calculate the binary boundary image ℬk of the category (i.e., organ) k, according to the 

segmentation ground-truth. (2) We use a Gaussian filter with bandwidth δ2 to scan each ℬk
and get the smoothed boundary image Sℬk. (3) Finally, all Sℬks are summed up and then 

normalized to construct the final weight map. Hence, the proposed difficulty-guided weight 

on voxel v will be defined as:
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μv = μ0 + ∑
k = 1

K
μk ⋅ Sℬk

v, (4)

where μ0 is the base weight for all the voxels and μk is the importance balancing weight of 

category k, similar to what is used in Eq. (3). In the experiments, we set μ0 = 1, and μ1 = μ2 

= μ3 = 25 as the ratio of the volume of background to the volume of foreground for prostate, 

bladder and rectum, respectively. The same strategy is effective for other datasets. For the 

bandwidth δ2 of the Gaussian filter, it is set as 8 to achieve a good coverage of the 

ambiguous boundary regions in all the experiments. In our designed map, we treat the 

regions of the foreground that are far away from the boundary equally with those from the 

background. Also, since the area emphasized by different maps could overlap around the 

touching border, these areas are automatically endowed with the most concentration. 

Replacing the categorical weight map in Eq. (3) with our proposed difficulty-guided weight 

map, we propose our loss function ℒs for segmentation, which is an improved version 

compared to ℒc, as:

ℒs Os; θ = − 1
N ∑

os ∈ Os
∑

k = 1

K
μosyk

oslog p os, yk
os; θ . (5)

Combining the loss for segmentation and contour regression, our final loss function for 

network optimization is:

ℒ Os, Or; θ = ℒs Os; θ + αℒr Or; θ + βΓ(θ), (6)

where α and β are hyper-parameters used to balance the importance between the terms, and 

Γ(θ) is the regularization term (the l2 norm of the network parameters). In our experiments, 

we obtained preferable results by setting α = 1 and regression to be in a comparable 

magnitude. For β, we followed the suggestion of [44] and set it to a small value as 1×10−7. 

Tuning the parameter β improves the performance for 0.5%.

IV. Experiments and Results

In this section, we first showcase the effectiveness of the proposed algorithm on a pelvic CT 

image dataset, then a multi-modal brain tumor dataset1 and a microscopic nuclei dataset2 are 

included to demonstrate the generality of our proposed method, especially evaluating the 

high-resolution pathway. Specially, for the pelvic CT image dataset, considering the large 

size of pelvic organs, large receptive field on the axial direction is used for accurate 

segmentation. For computational efficiency, we model the problem as a 2D semantic 

segmentation problem. For the brain tumor dataset, considering the small tissue size and the 

diverse structures of the brain tumors, we model the problem as a 3D semantic segmentation 

problem. Lastly, the nuclei segmentation problem is a typical instance segmentation 

1https://www.med.upenn.edu/sbia/brats2017/data.html
2https://github.com/samuelschen/DSB2018
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problem. In the first part of the experiment, we conduct careful ablation studies to verify the 

effectiveness of each component of the designed network. Then, more experiments are 

further conducted on the brain tumor and cell segmentation datasets to prove the 

generalization capacity of the proposed network.

A. Pelvic Organ Segmentation

The evaluation of the proposed method on pelvic CT image dataset starts by comparing the 

performance of dilated convolutional networks with their encoder-decoder counterparts. 

Then, we introduce the high-resolution pathway to the encoder-decoder network and test its 

effectiveness on detecting blurry and vanishing boundaries. Next, we test the effectiveness of 

the difficulty-guided cross-entropy loss function and the multi-task learning mechanism. 

After that, we analyze the effectiveness of the main hyper-parameter in our algorithm. 

Finally, we compare our proposed algorithm with several state-of-the-art medical image 

segmentation methods.

1) Data Description and Implementation Details: The dataset used in this 

experiment is acquired by the North Carolina Cancer Hospital, which includes 339 CT scans 

from prostate cancer patients. In this task, three important pelvic organs, i.e., prostate, 

bladder, and rectum are being segmented. For preprocessing, we normalize the images using 

the common mean and standard deviation. Before experiments, a simple U-Net [21] is first 

run to extract ROIs for all the compared algorithms, as a rough initial localization. In the 

experiment, the network patch size is set to 144 × 208 × 5. In each of the extracted patches, 

five consecutive slices across the axial plane are included as five different channels to 

introduce space information across slices and to preserve across-slice consistency in the 

axial direction. In the sampling procedure, we permute the axial slices upside-down to 

double the number of samples for data augmentation. We randomly divided the data into the 

training, validation and testing sets with 180, 59 and 100 samples, respectively.

The implementations of all the compared algorithms in this part are based on the Caffe 

platform [45]. To train the network, we use Xavier method [46] to initialize all the 

parameters of convolutional layers in the compared networks. To make a fair comparison, 

we employ the Adam optimization method [47] for all the methods with fixed hyper-

parameters. The learning rate (lr) is set to 0.001, and the step size hyper-parameter β1 is 0.9 

and β2 equal to 0.999 in all cases. The batch size of all compared methods is 10. The models 

were trained for at least 200,000 iterations until we observed a plateau or over-fitting 

tendency according to the loss on the validation set. To evaluate the effectiveness of the 

proposed method extensively, the Dice Similarity Coefficient (DSC) and Symmetric Average 

Surface Distance (ASD) are reported.

2) Evaluation of Dilated Convolutional Networks: First, we evaluate the 

performance of the high-resolution dilated convolutional networks on CT pelvic organ 

segmentation. To conduct such an evaluation, we design five baseline networks and compare 

their performances with our method. Among the compared networks, the first three are 

dilated convolutional networks (see Fig. 3 for an overview of their architecture). Their 

differences mainly lie in the number of residual dilated convolutional blocks (refer to Fig. 2 
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for the definition) and the dilation factors (d1 and d2). We name these first three networks as 

DilNet1, DilNet2, and DilNet3 for simplicity. Specifically, DilNet1 and DilNet2 both consist 

of 9 residual dilated convolutional blocks. Their dilation factors d1 and d2 are 3 and 5 for 

DilNet1, and 2, 4 for DilNet2. DilNet3 has six blocks (without three blocks within the black 

dotted rectangular in Fig. 3). Its dilation factors d1 and d2 are 3 and 5, respectively. The 

receptive fields of these three networks are 133 × 133, 97 × 97 and 85 × 85, respectively, 

which are nearly in the receptive filed range of U-Nets [21] with 3 to 4 pooling layers. The 

fourth and the fifth networks are the distilling networks with four and three pooling layers, 

respectively. They are designed as representers for encoder-decoder networks, named as Dst-

Net1 (Distilling Network 1) and Dst-Net2 (Distilling Network 2), respectively.

All the networks are trained in the same manner as mentioned in Section IV-A.1, with the 

corresponding DSC and memory consumption listed in Table I. Through experimental 

results, we can find (1) larger receptive fields and deeper network structures are essential for 

the performance of both dilated convolutional networks and encoder-decoder networks. (2) 

The encoder-decoder networks in the experiments tend to provide better performance with 

smaller memory consumption than the compared dilated networks in CT pelvic organ 

segmentation. The reasons for its better result may be two-fold. First, the relative plain 

connection and the smaller number of kernels limit the performance of the dilated 

convolutional network; Second, without the help of the downsampling operation, dilated 

convolutional networks are more likely to be adversely affected by the noise in CT images.

3) Evaluating the Effectiveness of Integrating High-Resolution 
Pathway: Although in the last experiment, dilated networks have shown relatively inferior 

performance than their encoder-decoder competitors, the capacity of providing high-

resolution semantic information makes them potentially more suitable than the coarse-

grained encoder-decoder networks on accurately localizing the blurry target boundaries, thus 

improving the segmentation performance. Here, to reveal the limitation of current encoder-

decoder networks and show the effectiveness of introducing high-resolution pathways for 

solving the corresponding problems, we construct and compare two networks. The baseline 

algorithm is the distilling network (i.e., Dst-Net1) introduced in Section IV-A.2. In the 

compared network, we add a high-resolution pathway to connect the encoder and decoder at 

the highest resolution in Dst-Net1, named as high-resolution distilling network (HRDN). 

The results are listed in Table II. From the results, we can see an approximate 1% 

improvement in terms of DSC on the two smaller and also more difficult organs with only 

0.18M parameters increase. The improvement of ASD on the high-resolution pathway 

enhanced network is also promising, with 0.143 mm on the prostate and 0.145 mm on the 

rectum, respectively. The results numerically verify the effectiveness of the high-resolution 

pathway.

To further exploit the properties of the three kinds of basis pathways, i.e., skip connection, 

distilling pathway and high-resolution pathway, and then reveal what limitations of the 

encoder-decoder network have been resolved by the high-resolution pathway intuitively, we 

visualize and compare some of the salient feature maps generated by the two networks on a 

representative sample.
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First, we illustrate the information conserved by the skip connection and the distilling 

pathway in Dst-Net1 and that by the high-resolution pathway in HRDN. The exact locations 

of where the information is collected in the corresponding networks are also marked as ①, 

②, and ③ consecutively in Fig. 2. Three representative feature maps with high activation 

values on the target organs, i.e., prostate, bladder, and rectum, are illustrated and compared 

in Fig. 4. In this selected sample, as pointed out by the white arrow in the intensity map, due 

to the effects of artifacts in the CT image, some wavy streaks appear on the three target 

organs and affect the boundary on the top of the prostate, generating a small visually isolated 

tissue. Under such circumstance, as can be seen in the activation maps passed by the skip 

connection (see the first row of Fig. 4), although the skeletons of the organs look more 

evident since the surrounding small fractions of tissues are filtered, the less obvious but 

essential texture information is either weakened (e.g., shown in the first and third sub-

figures) or strengthened (e.g., shown in the second sub-figure) indistinguishably. As a 

consequence, with the falsely included tiny texture, the isolated part looks more like a 

portion of bladder than prostate. Moreover, as little semantic information is contained in this 

pathway, no organ-specific information is incorporated, leaving the coarse-grained encoder-

decoder pathway to select the correct boundary within all these closely located boundary 

candidates. Considering the feature maps generated by the distilling pathway (the second 

row of Fig. 4), although the maps are more semantically meaningful, the boundaries of these 

maps, especially those on the border between bladder and prostate, are inaccurate, since the 

downsampling operations can undermine the accuracy of location information.

In contrast, since high-resolution semantic information is preserved, the feature maps 

generated by the high-resolution pathway is more like a combination of the above-

mentioned two kinds of feature maps. They contain detailed textural information and yet 

more semantics. Besides, thanks to the integrated deep supervision mechanism, the 

hypothetical boundaries are finely weakened or neglected (see the first and second sub-

figures of the third row in Fig. 4), making the boundaries in the ambiguous area clear and 

correct.

Similar with the intermediate activation maps, as can be seen in the final output feature maps 

and the corresponding prediction maps of the two networks (Fig. 5), due to the falsely 

located boundary, a large portion at the bottom of the bladder and the top of the prostate is 

mixed in the distilling network. Comparatively, thanks to the high-resolution pathway, the 

damaged boundaries are handled more appropriately in HRDN, resulting in a more feasible 

segmentation.

The numerical and qualitative results in this section support our arguments: (1) Simple skip 
connections can be insufficient to detect the blurry or vanishing boundaries in pelvic 
CT image segmentation; (2) The downsampling and upsampling operations of the encoder-

decoder networks pose potential risks of inaccurate boundary localization and mis-detecting 

isolated portions of the target; (3) By carefully combining the advantage of the dense 

connection, residual connection, dilated convolution and deep supervision, the high-

resolution pathway can well remedy the limitation of the encoder-decoder network.
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4) Balance Between Resolution and Network Complexity: Although we have 

shown the effectiveness of introducing high-resolution pathway, considering the large 

memory cost for convolution operations on high-resolution feature maps, adding the 

pathway in later stages of the network allows us to use more complex network structure and 

is also a possible way to improve the network performance. To explore the balance between 

the network complexity and the resolution of the semantic feature maps, four networks were 

further designed. In these four networks, the high-resolution pathway is placed on the first 

stage to the fourth stage of the network, respectively. Here, the first stage indicates the 

feature extracting stage with no downsampling, the second stage indicates the stage with one 

downsampling, and so on. The feature number L of the high-resolution pathways is 32, 40, 

56, 72, respectively.

In Table III, HRDN-L1 to HRDN-L4 denote the HRDNs with high-resolution pathway on 

the first stage to the fourth stage, respectively. One can see that tuning the location of the 

high-resolution pathway does improve the performance of the network, especially on 

improving the overall segmentation accuracy (reflected by Dice ratio). However, for the 

pelvic CT image dataset, placing the high-resolution to the third stage provides the best 

balance between feature resolution and network complexity.

5) Evaluation of Difficulty-Guided Loss Function and Multi-Task Learning 
Mechanism: To evaluate the effectiveness of the difficulty-guided loss function and the 

multi-task learning mechanism, two networks, including a baseline High-Resolution 

Distilling Network (HRDN), and a multi-task HRDN with difficulty-guided cross-entropy 

loss (HMEDN), are designed and tested. The numerical results of these two networks are 

reported in Table IV. Since the introduced mechanism is mainly proposed to improve the 

performance on boundary localization, an extra metric, i.e., the Hausdorff Distance [48], 

which measures the largest distance between two segmentation contours are introduced. As 

shown in the table, all three metrics, i.e., DSC, ASD, and Hausdorff distance witnessed a 

stable improvement on all the three organs. Especially on ASD and the Hausdorff distance, 

which can be easily influenced by the inaccurately located boundaries, the average surface 

distance of the three organs has been improved by approximately 4%, and 15% on average, 

respectively.

We also tested the effectiveness of the hyper-parameter α, δ2, and μ. In this experiment, we 

tune these parameters in a large range and train the corresponding networks in the same 

manner. The result is reported in Fig. 6. From the figure, one can see that, although the 

performance of the proposed algorithm is quite stable in a broad range of the hyper-

parameters, tuning these parameters can still boost the performance. The best result is 

achieved when α = 1, δ2 = 8, and μ = 25.

6) Comparing With the State-of-the-Art Methods: To further evaluate the proposed 

network, we compared it with several state-of-the-art methods for medical image 

segmentation. These methods include:
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1. U-Net: U-Net [21] is the pioneering work that introduces fully convolutional 

neural network [20] for medical image analysis. This network achieved the best 

performance on ISBI 2012 EM challenge dataset [49].

2. FCN: Fully convolutional neural network [20] is the first trial that allows the 

network directly output a segmentation mask having the same dimension of the 

input image. The method achieved the state-of-the-art performance on multiple 

popular benchmark datasets, like PASCAL VOC [50] in 2015.3

3. DCAN: Deep contour-aware neural network [3] has won the 1st prize in 2015 

MICCAI Grand Segmentation Challenge4 and 2015 MICCAI Nuclei 

Segmentation Challenge.5

4. 2D DenseSeg: Densely convolutional segmentation neural network [34] 

introduces dense connections into the HED network to ensure maximum 

information flow. This method has won the first prize in the 2017 MICCAI grand 

challenge on 6-month infant brain MRI segmentation.6

5. Proposed: Our proposed high-resolution multi-scale encoder-decoder network 

(HMEDN) is a novel encoder-decoder network enhanced by multi-scale dense 

connections, high-resolution pathways, difficulty-guided cross-entropy loss 

function and multi-task learning mechanism.

Table V shows the segmentation results of the compared state-of-the-art methods. To make 

the final segmentation continuous and smooth, after the segmentation procedure, we conduct 

an anatomically-constrained merging step for each compared algorithm. This is achieved by 

absorbing the isolated regions inside the large segmentation targets. In addition, we also 

discard the tiny isolated regions that reside outside the larger ones. As it is obvious in the 

results, all algorithms operate similarly well. However, our proposed algorithm still 

outperforms the second best performance of the state-of-the-art methods by about 1.5 

percent in Dice ratio and more than 10 percent in the average surface distance. From Fig. 7, 

it can be seen that our proposed algorithm tends to not only achieve more accurate 

segmentation on those easy subjects but also provide more robust results on difficult 

subjects. More specifically, through the visualization of the segmentation results on two 

representative samples in Fig. 8, it can be seen that the advantage of our proposed method 

mainly lies in two perspectives: (1) It can localize the boundary better, especially on those 

blurry areas; (2) It can better handle the CT artifacts. It is worth noting that hence no deep 

supervision was involved in DenseSeg [34] and FCN [20] (while DCAN [3] has the deep 

supervision module, as our algorithm). Therefore, the performance of these two algorithms 

can be further improved with the deep supervision mechanism.

B. Experiments on Brain Tumor Segmentation

We also extended our proposed model into a 3D version and evaluated it on a multi-modal 

brain tumor segmentation dataset [51]. In this dataset, four modalities of MRI scans, 

3https://github.com/shelhamer/fcn.berkeleyvision.org
4https://www2.warwick.ac.uk/fac/sci/dcs/research/tia/glascontest
5http://miccai.cloudapp.net:8000/competitions/37
6http://iseg2017.web.unc.edu
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including T1, T1-weighted, T2-weighted, and FLAIR volumes were acquired. Experiments 

on this dataset involve segmenting three regions of interest, i.e., the enhancing tumor (ET), 

the tumor core (TC), and the whole tumor (WT), See Fig. 9. The highly irregular structure 

and the tiny isolated tissues of tumors in the brain, together with the low tissue-contrast 

makes the segmentation task extremely hard. The dataset is comprised of 285 samples. We 

randomly select 60%, 15% and 25% from the whole dataset for training, validation and 

testing, respectively.

For this 3D version of our method, to make the memory cost affordable, we set the kernel 

number of each stage in the distilling pathway as 16, 32, 64, 128, 256, respectively. The 

high-resolution pathway was added to the second and the third stage of the network (with 

the channel number (L) of 32 and 64, respectively) to find the best balance between 

semantic resolution and network complexity. Also, to encourage the network to make full 

use of all four modalities and improve its robustness, dropout was added to the end of each 

stage of all the compared networks. Moreover, since the structure of the tumors is irregular 

and highly dispersed, the boundary regression branch was discarded in this task. Four state-

of-the-art algorithms, i.e., 3D U-Net [30], Deepmedic [7], 3D DenseSeg [34], and enhanced 

U-Net (EUNet) [52] are included for comparison. The cropped and resized images that 

contain only the foreground are utilized for our experiment. Each modality was normalized 

with z-scores (zero mean and standard deviation of one). The patch size and batch size of 

Deepmedic were 37 × 37 × 37 and 10 as in [7]. For other compared methods, we adopted the 

whole brain images with the size of 128 × 128 × 128 as input. One image was utilized for 

training each time. In this experiment, we followed the training and data augmentation 

protocol on [53].

Dice ratio and average surface distance of the segmentation are measured for comparison. A 

visualization of the segmentation is illustrated in Fig. 10. Analyzing at these results, we have 

several observations: (1) Because of the small and irregular sub-structure of tumors, a finer 

resolution of semantic information shows to be more preferable. As a consequence, the 

proposed network with the high-resolution pathway on the second stage outperforms its 

counterpart, in which the high-resolution is placed in the three stage. (2) The large 

performance improvement of the other compared algorithms over the baseline 3D U-Net 

indicates the effectiveness of finer connections, like residual connections [23] and dense 

connections [33]. (3) Comparing the performance of Deepmedic with the performance of 

others, we have the observation that algorithms with larger receptive fields tend to have good 

performance improvement over large targets, like, WT and TC, but this is not necessarily 

true on small targets, like (ET). (4) The networks with an encoder-decoder network 

structure, which can carefully integrate semantic information with location information tend 

to provide better results on smaller targets with smaller size and a complex structure (ET).

C. Experiments on Nuclei Segmentation

Finally, we further integrated the high-resolution pathway with existing popular network 

structures and tested its performance on a nuclei segmentation dataset to verify the 

effectiveness of the proposed module. For this task, we segmented different nuclei as 

independent individuals. Therefore, it is a typical instance segmentation task. However, in 
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this task, the touching nuclei and the highly similar texture of different targets makes the 

accurate segmentation extremely hard (See sub-figure (g) and (h) in Fig. 11). To solve the 

problem, we adopted a popular framework [54], which collects the foreground segmentation 

feature map, boundary feature map and nuclei interior segmentation feature map (generated 

by a multi-task deep learning network) for a watershed transform algorithm [55] to conduct 

instance segmentation.

In this experiment, we integrated our proposed high-resolution pathway with ResNet-34 as 

the backbone feature encoder. The high-resolution pathway is placed in the second, third, 

and fourth stage to find the best balance between the network complexity and the resolution 

of semantic features. The channel numbers for the high-resolution pathway of the three 

networks are 128, 256 and 512, respectively. Five state-of-the-art networks, i.e., U-Net [21], 

DCAN [3], ResNet-34 [23], DenseNet-121 [33], and ResNet-101 [23] are adopted as 

encoder for comparison. Except for U-Net, all the models are fine-tuned from ImageNet pre-

training. The nuclei dataset [54] is comprised of 3627 microscopic images. We randomly 

divided them into three parts with 2000 samples for training, 627 for validation and 1000 for 

testing. Heavy data augmentation includes random zooming, cropping, rotation, flipping, 

channel shifting, elastic transform and adding noise is employed to improve the 

generalization capacity of the models. We train all models for at least 800 epochs with Adam 

optimizer [47] until a loss plateau is observed on the validation set.

F1-score, object Dice, and Hausdorff distance of the compared algorithms are reported in 

Table VII. From the table, we can find that (1) the proposed high-resolution pathway 

improved the performance of ResNet-34 by 1.8%, 1.3% and 16.6% on F1-score, object dice, 

and H-distance, respectively in the worst case; (2) The resolution of semantic feature maps 

did influence the performance of the network. When placed on the fourth stage of the 

network, the bonus of high-resolution pathway decreased and the corresponding network 

performed similarly with the ResNet-101 and DenseNet-121; (3) Placing the high-resolution 

pathway on the third stage of the network achieved the best balance between semantic 

feature resolution and network complexity. From Fig. 11, we can see that the performance 

improvement mainly comes from the better detection of fuzzy boundaries of touching 

nuclei.

V. Conclusion and Future Work

In this paper, we proposed a high-resolution multi-scale encoder-decoder network 

(HMEDN) to segment medical images, especially for the challenging cases with blurry and 

vanishing boundaries caused by low tissue contrast. In this network, three kinds of pathways 

(i.e., skip connections, distilling pathways, and high-resolution pathways) were integrated to 

extract meaningful features that capture accurate location and semantic information. 

Specifically, in the distilling pathway, both U-Net structure and HED structure were utilized 

to capture comprehensive multi-scale information. In the high-resolution pathway, the 

densely connected residual dilated blocks were adopted to extract location accurate semantic 

information for the vague boundary localization. Moreover, to further improve the boundary 

localization accuracy and the performance of the network on the relatively “hard” regions, 

we added a contour regression task and a difficulty-guided cross entropy loss to the network. 

Zhou et al. Page 17

IEEE Trans Image Process. Author manuscript; available in PMC 2021 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extensive experiments indicated the superior performance and good generality of our 

designed network. Through the experiments, we made several observations: (1) Skip 

connections, which are usually adopted in the encoder-decoder networks, are not enough for 

detecting the blurry and vanishing boundaries in medical images. (2) Finding a good balance 

between semantic feature resolution and the network complexity is an important factor for 

the segmentation performance, especially when small and complicated structures are being 

segmented in blurry images.

Observing the failed samples of our algorithm, we found that the algorithm fails in cases 

where the boundaries are totally invisible due to significant amounts of noise incurred by 

low dose, metal, and motion artifacts, and so forth. To solve these problems, in the future we 

will combine our algorithm with shape-based segmentation methods and incorporate more 

robust shape and structural information of target organs.
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Fig. 1. 
Illustration of the blurry and vanishing boundaries within pelvic CT images. First row: 

intensity images; Second row: corresponding segmentation ground-truth.
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Fig. 2. 
Illustration of the structure of our proposed high-resolution multi-scale encoder-decoder 

network (HMEDN). The input is a set of intensity image patches and the outputs are 

segmentation and contour probability maps. Rectangles and triangles represent operations in 

the network. Three kinds of pathways, i.e., skip connection (pathway ①), distilling pathway 

(pathway ②) and high-resolution pathway (pathway ②) connect all kinds of operations and 

form the network.
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Fig. 3. 
Illustration of the dilated convolutional network.
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Fig. 4. 
Comparison of representative feature maps.
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Fig. 5. 
Comparison of the output activation maps of the distilling network and the high-resolution 

distilling network.
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Fig. 6. 
Influence of hyper-parameters. In these figures, the Dice ratio variation against different 

hyper-parameters are reported. One can see that all the hyper-parameters are effective in 

improving the performance of the algorithm. Setting α, δ2, and μ to 1, 8, and 25, 

respectively, achieves the best performance.
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Fig. 7. 
Precision and robustness comparison of the compared algorithms. The sub-figures illustrate 

the Dice ratio of the 15 best and worst segmented samples of each algorithm.
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Fig. 8. 
Representative segmentation results of the compared state-of-the-art algorithms on the 

pelvic CT image dataset. In the first and the fourth rows, the segmentation masks and 

intensity images in the axial direction are provided. In the second and the fifth rows, the 

results in the coronal direction are provided. The yellow curves in the segmentation masks 

indicate the ground-truth contours of the target organs. The third and the sixth rows are the 

difference map and the segmentation ground-truth in 3D space. The green, red, and blue 

fragments are the false predictions on prostate, bladder, and rectum, respectively.
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Fig. 9. 
Label and intensity image patches of the brain tumor dataset. The visualized image patches 

(from left to right) are: (A) the whole tumor in FLAIR, (B) the tumor core in T2, (C) the 

enhancing tumor structures in T1c, (D) the final labels of the tumor structures (the 

combination of all segmentations) in T1: edema (green), non-enhancing solid core (red), 

enhancing core (yellow).
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Fig. 10. 
Segmentation results on the brain tumor dataset. In these figures, different colors indicate 

different tumor categorizations. The T1-weighted image is selected for visualization of the 

corresponding input images.
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Fig. 11. 
Segmentation results illustration on the nuclei segmentation dataset. In these figures, masks 

of different colors are corresponding to the segmented nuclei. The red arrows in the figures 

indicate representative segmentation results and the corresponding intensity map.
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TABLE I

Dice Ratio (%) and Memory Consumption (Mb) Comparison Between Dilated Convolutional Networks and 

Encoder-Decoder Networks

Network Prostate Bladder Rectum Memory Consumption

DilNet3 82.2 88.4 81.0 7259

DilNet2 83.4 88.5 81.9 9269

DilNet1 83.5 89.6 83.7 9269

DstNet2 85.4 92.2 85.0 5443

DstNet1 86.2 93.1 84.9 5933
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TABLE II

Result Comparison Between Distilling Network (DstNet1) and High-Resolution Distilling Network (HRDN)

Networks
Prostate Bladder Rectum Param (M)

DSC(%)

DstNet1 86.2±4.0 93.1±4.5 84.9±5.2 3.2

HRDN 87.5±3.8 93.2±5.5 85.9±5.3 3.38

Networks
Prostate Bladder Rectum Param (M)

ASD(mm)

DstNet1 1.585±0.437 1.334±0.858 1.543±0.493 3.2

HRDN 1.434±0.425 1.542±2.278 1.395±0.617 3.38
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TABLE III

Testing the Balance Between the Network Complexity and the Resolution of the High-Resolution Pathway. 

The Boldface Results Indicate no Significant Difference From the Best Result (p-Value < 0.05 of Students t-

Test)

Compared Networks
Prostate Bladder Rectum

DSC(%)

HRDN-L1 0.875±0.038 0.932±0.055 0.859±0.053

HRDN-L2 0.875±0.039 0.936±0.047 0.861±0.054

HRDN-L3 0.879±0.039 0.940±0.043 0.868±0.051

HRDN-L4 0.874±0.042 0.936±0.047 0.860±0.060

Compared Networks
Prostate Bladder Rectum

ASD(mm)

HRDN-L1 1.434±0.425 1.542±2.278 1.395±0.617

HRDN-L2 1.438±0.404 1.399±1.600 1.422±0.587

HRDN-L3 1.427±0.483 1.282±1.275 1.397±0.673

HRDN-L4 1.532±0.408 1.362±1.810 1.488±0.745
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TABLE IV

Comparison Between the High-Resolution Distilling Network (HRDN) and the Multi-Task HRDN With 

Difficulty-Guided Cross Entropy Loss (HMEDN). The Boldface Results Indicate no Significant Difference 

From the Best Result (p-Value < 0.05 in Student’s t-Test)

Compared Networks
Prostate Bladder Rectum

DSC(%)

HRDN-L3 87.9±3.9 94.0±4.3 86.8±5.1

HMEDN 88.3±4.3 94.4±4.2 87.2±5.5

Compared Networks
Prostate Bladder Rectum

ASD(mm)

HRDN-L3 1.427±0.483 1.282±1.275 1.397±0.673

HMEDN 1.357±0.532 1.175±1.197 1.357±0.796

Compared Networks
Prostate Bladder Rectum

Hausdorff Distance(mm)

HRDN-L3 17.2±21.6 21.6±21.0 20.5±17.0

HMEDN 15.3±20.9 17.5±16.8 17.2±11.1
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TABLE V

DSC and ASD Comparison With the State-of-the-Art Methods on Pelvic CT Image Dataset. The Boldface 

Results Indicate no Significant Difference From the Best Result (p-Value < 0.05 in Student’s t-Test). The 

Parameter Number (Param) of Each Network Is Also Reported

Networks
Prostate Bladder Rectum Param (M)

DSC(%)

U-Net 86.4±5.1 92.4±5.5 85.8±4.9 20.54

FCN 86.5±4.5 93.1±5.3 85.7±5.3 14.72

DCAN 86.7±3.6 92.6±6.8 85.5±5.4 21.06

2D DenseSeg 87.0±4.3 93.0±7.1 85.3±5.5 1.26

Proposed 88.4±4.2 94.5±4.2 87.4±5.4 3.78

Networks
Prostate Bladder Rectum Param (M)

ASD(mm)

U-Net 1.511±0.465 1.701±1.840 1.451±0.526 20.54

FCN 1.591±0.532 1.588±2.254 1.443±0.578 14.72

DCAN 1.525±0.521 1.357±1.293 1.514±0.747 21.06

2D DenseSeg 1.521±0.536 1.652±2.578 1.721±1.075 1.26

Proposed 1.346±0.531 1.162±1.196 1.332±0.793 3.78
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TABLE VI

Comparison With the State-of-the-Art Methods on the Brain Tumor Dataset. The Dice Ratio and ASD of the 

Whole Tumor (WT), Tumor Core (TC) and Enhancing Tumor (ET) Are Reported. The High-Resolution 

Pathway Was Placed on the Second (Proposed-L2) and the Third Stage (Proposed-L3) to Find a Good Balance 

Between Semantic Resolution and Network Complexity. The Boldface Results Indicate no Significant 

Difference From the Best Result (p-Value <0.05 in Student’s t-Test). The Parameter Number (Param) of Each 

Network Is Also Reported

Networks
WT TC ET Param (M)

DSC(%)

3D U-Net 84.6±10.4 74.0±20.5 67.7±18.6 6.53

Deepmedic 87.4±6.4 78.8±l5.4 75.4±12.1 2.86

E-UNet 88.5±5.6 80.1±l8.8 77.5±11.3 8.27

3D DenseSeg 88.0±6.7 80.1±l6.6 74.7±15.1 1.26

Proposed-L2 89.7±5.2 83.9±14.4 79.8±10.7 4.39

Proposed-L3 89.0±5.5 82.2±15.0 77.7±13.8 9.64

Networks
WT TC ET Param (M)

ASD(mm)

3D U-Net 4.261±4.408 7.030±6.775 5.920±6.691 6.53

Deepmedic 1.643±0.624 1.999±l.387 1.069±0.597 2.86

E-UNet 1.467±0.604 1.737±l.621 1.004±0.712 8.27

3D DenseSeg 1.826±1.290 1.799±1.431 1.258±1.168 1.26

Proposed-L2 1.288±0.565 1.481±1.244 0.895±0.582 4.39

Proposed-L3 1.455±0.577 1.676±1.324 0.923±0.563 9.64
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TABLE VII

Result Comparison With the State-of-the-Art Network Structures on the Nuclei Segmentation Dataset. The 

Boldface Results Indicate no Significant Difference From the Best Result (p-Value < 0.05 in Student’s t-Test). 

The Parameter Number (Param) of Each Network Is Also Reported

Networks F1-Score (%) Object Dice (%) H-Distance (mm) Param (M)

U-Net 87.9±13.4 86.8±11.1 6.93±8.73 24.16

DCAN 89.0±12.3 87.3±10.2 6.49±8.83 21.06

ResNet-34 88.5±12.6 87.2±10.5 6.50±7.59 28.03

DenseNet-121 89.9±11.3 88.2±9.7 5.74±7.02 74.90

ResNet-101 90.3±10.3 88.6±8.8 5.53±6.07 96.92

ResNet34+HR-L2 91.2±9.7 89.0±8.6 5.30±7.11 34.96

ResNet34+HR-L3 91.1±10.2 89.1±8.8 5.07±5.88 42.19

ResNet34+HR-L4 90.3±10.9 88.5±9.6 5.42±6.37 67.62
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