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Vascular smooth muscle cells (VSMCs) play fundamental roles in the pathophysiology of 

atherosclerosis. A crucial step in VSMC biology is the switch from contractile 

(differentiated, quiescent, non-migratory) to synthetic (dedifferentiated, proliferative, 

migratory) phenotypes (Fig. 1). The exact mechanisms underlying VSMC phenotypic switch 

are not fully known and various pieces of information have been recently added to this 

puzzle [1–5]. For instance, in this issue of Atherosclerosis, Bente Halvorsen’s team elegantly 

demonstrates that Neil3, known to participate in DNA repair, can mediate VSMC 

phenotypic switch via non-canonical mechanisms [6].

Intriguingly, Neil3 deficiency was shown for the first time to trigger a shift in VSMC 

phenotype towards a proliferating, lipid-accumulating, and secretory macrophage-like cell 

phenotype, without major changes in DNA damage [6].

We report herein a concise overview of the main mechanisms regulating VSMC phenotypic 

switch, mainly relying on transcription factors and epigenetic mechanisms.

1. Regulation of transcriptional activity in VSMC phenotypic switch

The main transcription factors involved in VSMC phenotypic switch are myocardin 

(MYOCD), Krüppel-like factor 4 (KLF4), and octamer binding transcription factor (Oct4).
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MYOCD, a potent cardiac and smooth muscle tissue-specific transcriptional coactivator of 

serum response factor (SRF), plays a vital role in inducing smooth muscle differentiation. 

Numerous downstream muscle-specific genes including Sm22α, Calponin, and Acta-2 are 

activated following the binding of MYOCD to the SRF on the CArG DNA motifs [7]. 

MYOCD-related transcriptional factors A and B (MRTFs) activate SRF-driven transcription. 

Several studies have shown that the overexpression of MYOCD and MRTFs induces anti-

proliferative effects [8] while their inactivation promotes cell growth and oncogenesis [9]. 

Equally important, reduction of MRTFs inhibits normal cell cycle progression resulting in an 

anti-proliferative effect [10]. As a result of this effect, changes such as shortening of G1 

phase and extension of S and G2 phase occur under normal growth conditions, whereas 

under serum-starved conditions there is aberrant entry into the S and G2 phases without any 

subsequent cell division [11]. MYOCD, along with DNA repair factors like thymine-DNA 

glycosylase (TDG), recognizes DNA damage in actively expressed areas of the genome and 

repairs the region-specific DNA [12,13]. Proliferating cells have high expression of TDG 

and thus instructs the cells to repair DNA mismatches. Moreover, proliferating smooth 

muscle cells express increased levels of TDG that inhibits both the antiproliferative and 

promyogenic activities of MYOCD [14].

KLF4 plays an essential role in VMSC proliferation and differentiation [15]. Among the 

numerous transcriptional regulators that mediate responses to inflammation, proliferation, 

and differentiation in vascular tissues, KLF family of zinc finger transcription factors have 

been gaining attention, especially KLF4. There are three different domains of KLF4: 

transcriptional repression, transcriptional activation, and DNA-binding domains. There are 

speculations that KLF4 might have anti-proliferative properties because increased levels of 

KLF4 in numerous cell types have shown growth arrest, reduced cell cycle progression, and 

inhibition of DNA synthesis [16]. KLF4 regulates gene expression by recognizing and 

binding to GC-rich DNA sequences or CACCC (GT-box) through its DNA-binding domain. 

However, studies have demonstrated that KLF4 may transition from pro-cell survival to pro-

cell death in certain circumstances [17]. After gamma-irradiation-induced DNA damage 

[18], KLF4 expression has been shown to be activated in a p53 dependent fashion. The role 

of p53 is to induce an arrest in the G [1] and S phase of the cell cycle following DNA 

damage, thereby preventing the irradiated cell to undergo apoptosis [18].

Oct4 is a transcription factor primarily expressed in germline cells that is required to 

maintain embryonic stem cell (ESC) pluripotency. Oct4 transcription plays a critical role for 

inner cell mass of blastocysts formation, and loss of expression of Oct4 is associated with 

spontaneous ESC differentiation; moreover, Oct4 regulates VSMC phenotypic transition and 

plays an important role in the pathogenesis of atherosclerosis [5,19]. Downregulation of 

Oct4 contributes to cell cycle regulation of ESCs by blocking G0/G1 cycle and preventing 

proliferation. Further, Oct4 downregulation induces p21 in ESC; inhibition of CDK2 induces 

G1 phase arrest followed by apoptosis or differentiation of impaired ESC and causes DNA 

damage response [20].
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2. Role of epigenetics and non-coding RNAs in VSMC phenotypic switch

Mounting evidence has demonstrated that VSMC phenotype switching is regulated by non-

coding RNAs, including miRNAs [21], small (approximately 22 nucleotides) single-stranded 

non-coding RNA molecules that repress protein expression via binding to the 3’ untranslated 

region of specific mRNAs and either blocking the transcription or promoting mRNA 

degradation [22].

The contractile phenotype of VSMCs is sustained by miR-143/145 and miR-1; miR-1 

expression is triggered by the master regulator of contractile phenotype, MYOCD [23,24]; 

miR-1 targets the 3′UTR of Kruppel-like factor 4 (Klf 4) – a transcriptional factor that 

inhibits MYOCD and induces the expression of genes switching VSMCs to a macrophage-

like phenotype [24,25]. Moreover, miR-1 limits VSMC proliferation targeting Proto-

oncogene serine/threonine-protein kinase Pim-1 and Histone deacetylase 4 (HDAC4) [23]. 

Some data suggest that an augmented miR-1 expression may also play a role as a negative 

feedback loop [26].

Similarly, miR-143/145 expression mirrors VSMC differentiation [27]. Their expression is 

driven by serum response factor (SRF) – an indispensable coactivator of MYOCD [28,29]. 

In vivo experiments demonstrated that miR-143/145 deficiency results in VSMCs being 

locked in the synthetic phenotype [27]. miR-143/145 can target and downregulate Klf4, ETS 

Like-1 protein (Elk-1), and angiotensin converting enzyme (Ace) [27,28]. Moreover, 

miR-143/145 downregulation by cholesterol was demonstrated in vitro, and VSMCs with a 

low miR-143/145 expression were found in atherosclerotic plaques in vivo [28,30].

miR-221 promotes cell proliferation via repression of p27Kip1 and inhibits the contractile 

phenotype via targeting Proto-oncogene c-kit and [31]. VSMCs proliferation is also induced 

by miR-222 which targets the 3′UTR of p27Kip1 and p57Kip2 [32]. When both miR-221 and 

miR-222 are upregulated, they can trigger a transformation of VSMCs in an osteogenic 

phenotype, characterized by high calcification activity [33]; miR-21 and miR-124 were also 

found to cause dedifferentiation of VSMCs targeting Specificity protein 1 (Sp1) expression 

[34].

Several miRNAs were shown to play an opposite role, favoring the contractile phenotype. 

One of the most potent factors in this sense is Platelet derived growth factor BB (PDGF-BB) 

[35–38]: PDGF-BB induces expression of miR-24 and miR-26a and the inhibition of these 

miRNAs mitigated PDGF-BB induced proliferation and dedifferentiation of VSMCs 

[31,39,40]. For instance, miR-24 was shown to suppress the contractile phenotype of 

VSMCs via repression of Tribbles-like protein-3 (Trb3), a negative regulator of NFκB, 

which in turn downregulates MYOCD transcription [39,41].

Another class of non-coding RNAs – long-non-coding RNA (lncRNAs) – was recently 

identified as a regulator of VSMCs phenotype. Among them are SMILR and MALAT1 [42]; 

the mechanism of their action is not fully understood, however, most likely it involves 

“sponging” or acting as a decoy for miRNAs [43]. Other lncRNAs that have been shown to 

modulate VSMC biology are CARMN, PEBP1P2, PVT1, NEAT1, AK098656, and ANRIL 

[2,44–48].
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Epigenetic mechanisms also play significant roles in establishing the VSMCs phenotype. 

The expression of key genes defining the contractile phenotype of VSMCs – Acta2 and 

Myh11 – are controlled via histone acetylation in SRF binding regions [49]. MYOCD and 

KLF4 activities heavily rely on HDACs recruitment [12,13]. Methylation of histones H3 and 

H4 also increases SRF binding to its target regions [12]. Interestingly, di-methylation of 

lysine 4 of histone H3 (H3K4me2) in Myh11 could be used as a highly specific marker of 

non-differentiated VSMCs both in human and mice [50].
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Fig. 1. 
VSMC phenotypic switch.

The cartoon summarizes the main mechanisms underlying the phenotypic switch of vascular 

smooth muscle cells (VSMCs) from contractile to synthetic. ECM: extracellular matrix; 

IL-1: interleukin-1; KLF4: Krüppel-like factor 4; MYOCD: myocardin; PDGF: platelet-

derived growth factor; TGF-β1: transforming growth factor beta 1; TNF-α: Tumor necrosis 

factor alpha; SRF: serum response factor.
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