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Abstract

A host of novel renal biomarkers have been developed over the past few decades which have 

enhanced monitoring of renal disease and drug-induced kidney injury in both preclinical studies 

and in humans. Since chronic kidney disease (CKD) and acute kidney injury (AKI) share similar 

underlying mechanisms and the tubulointerstitial compartment has a functional role in the 

progression of CKD, urinary biomarkers of AKI may provide predictive information in chronic 

renal disease. Numerous studies have explored whether the recent AKI biomarkers could improve 

upon the standard clinical biomarkers, estimated glomerular filtration rate (eGFR) and urinary 

albumin to creatinine ratio (UACR), for predicting outcomes in CKD patients. This review is an 

introduction to alternative assays that can be utilized in chronic (> 3 months duration) nonclinical 

safety studies to provide information on renal dysfunction, and to demonstrate specific situations 

where these assays could be utilized in nonclinical drug development. Novel biomarkers such as 

symmetrical dimethyl arginine (SDMA), dickkopf 3 (DKK3), and cystatin C (CysC) predict 

chronic renal injury in animals, act as surrogates for GFR, and may predict changes in GFR in 

patients over time, ultimately providing a bridge from preclinical to clinical renal monitoring. (193 

words)
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Introduction

This review will discuss current and novel biomarkers used to monitor chronic renal 

dysfunction including some biomarkers of acute kidney injury that have also been evaluated 

in the chronic setting. Through a weight of evidence approach, gleaning information from 

the published literature regarding biomarkers utilized to monitor chronic renal injury and 

disease in humans and animals, the intent of this review is to highlight the potential 

application of some chronic renal injury biomarkers in nonclinical toxicity studies of 4 

months or longer duration where they may provide clinical translation, aid pharmaceutical 

development, and help resolve regulatory hurdles. One of the primary causes for the attrition 

of promising therapeutic agents from the drug development pipeline is the observation of 

treatment-related microscopic injury to the kidney in animal toxicology studies.1 Therefore, 

identifying, evaluating, qualifying, and utilizing relevant biomarkers of renal injury has 

greatly benefited the drug development process in recent years.2 The inclusion of novel 

urinary biomarkers and other investigative techniques in nonclinical toxicity studies has 

successfully identified nephrotoxic signals in animals and, due to their clinical 

translatability, helped predict and monitor renal toxicity in humans.3 This has helped inform 

clinical risk assessment and provide enhanced clinical safety monitoring through the 

establishment of defined entrance and stopping criteria in clinical trials based on information 

provided by changes in these analytes in laboratory animals in nonclinical studies.4 For 

many decades, the measurement of blood urea nitrogen (UN or urea nitrogen) and creatinine 

in serum or plasma have been the basis for assessment of renal function in both animals and 

humans. The advantage of these two biomarkers is that they progressively increase in both 

acute and chronic renal toxicity, and the magnitude of response correlates with decreases in 

renal function as assessed by glomerular filtration rate (GFR).5,6 Unfortunately, both UN 

and creatinine lack sensitivity in detecting renal disorders as they only begin to increase 

once approximately 50–60% of nephrons are damaged and/or a similar percentage of renal 

function is compromised, depending on the species.7–9 This is unacceptable for a clinical 

biomarker since the goal of any monitoring paradigm in a clinical trial would be to detect the 

earliest nephrotoxic signal prior to significant kidney injury in order to initiate stopping 

criteria for kidney injury before damage occurs. There are also a host of extra-renal factors, 

including dehydration, which can interfere with interpretation of UN and/or creatinine by 

overestimation of renal injury. In addition, several drugs can compete or interfere with the 

renal creatinine transporter system resulting in spurious changes.5,10–13 For animals such as 

dogs that are generally on meat diets, creatinine is vulnerable to diet-related variability (e.g. 

higher creatinine with meat vs casein-based diets) and other factors including muscle mass 

and body weight (i.e. higher serum creatinine levels with larger muscle mass), housing, 

circadian and seasonal variation, hydration status, physical activity, drug treatment, and age.
14

In humans, acute kidney injury (AKI) is defined as damage or loss of kidney function for a 

duration of 7–90 days after an AKI initiating event which would parallel renal injury 

occurring during the acute/subacute nonclinical toxicity study time frame.15 In contrast, 

chronic renal failure or chronic kidney disease (CKD) is defined by the persistence of kidney 

disease for greater than 90 days, which would translate to renal injury that persists in 
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nonclinical toxicity studies of greater than 4 months duration.15 CKD staging in humans is 

based on biomarkers of glomerular function (estimated GFR, eGFR) and tubuloglomerular 

injury associated with saturation of the megalin/cubulin resorptive capacity (e.g. urinary 

albumin to creatinine ratio, UACR).16 Since CKD and AKI share similar underlying 

mechanisms of functional and structural injury, exist on the same pathophysiologic 

continuum, and because the tubulointerstitial compartment has a functional role in the 

progression of CKD17–19, urinary biomarkers of AKI may also provide predictive 

information for chronic renal injury/disease. Recent efforts have focused on identifying 

urine or serum biomarkers of renal tubular injury that are either produced by the kidney or 

accumulate secondary to tubular cell dysfunction. Most of the kidney’s energy expenditure 

supports the maintenance of non-glomerular functions (i.e. tubular functions), so biomarkers 

that correlate with tubular injury may act as indicators of kidney pathology or health. In 

addition, studies have shown that the prognosis of even glomerular origin kidney disease is 

dependent on the extent of tubulointerstitial fibrosis.19 Renal tubule injury biomarkers also 

provide information about kidney tubular injury in early CKD where the “renal filtration 

reserve” is able to compensate for filtration deficits and serum creatinine levels remain 

unchanged.20 However, once renal filtration reserve is lost, additional renal insults result in 

further decreases in glomerular filtration and subsequent increases in serum creatinine, 

limiting the utility of tubular injury biomarkers in patients with diminished renal reserve.21

Numerous studies have explored whether the recent AKI biomarkers (especially kidney 

injury molecule 1 [KIM-1] and neutrophil gelatinase-associated lipocalin [NGAL]) could 

improve upon eGFR and UACR for predicting outcomes in CKD patients.(reviewed in21–32) 

Even though many studies have linked KIM-1 and NGAL to deterioration of renal function, 

there is conflicting evidence that use of KIM-1 or NGAL improves upon risk assessment 

beyond the standard renal biomarkers.21,22,25 One possibility is that tubular injury 

biomarkers may have limited utility in patients with diminished renal reserve because of 

nephron loss.29 CKD is not a discrete disease entity but rather the common result of diverse 

disease processes that can occur simultaneously, and it is unlikely that one biomarker will 

capture all processes.25 Instead, biomarker panels or disease-specific biomarkers may 

provide better prognostic utility for CKD.30,31 In the future, the use of urinary biomarkers in 

CKD may involve a more personalized medicine approach, e.g. by targeting patients 

undergoing therapy for renal fibrosis prevention, or by identifying AKI patients with 

preserved kidney function who are at risk of progression to CKD.22,30

Over the past 10–20 years, many novel renal biomarkers with increased sensitivity and 

specificity for renal disease have been developed and used to monitor drug-induced kidney 

injury (DIKI) in both preclinical studies and human trials.33 Although multiple renal 

biomarkers are available, currently there is no single defined battery of tests which will 

identify the pathophysiologic basis for every potential mechanism of renal injury, and most 

of the established analytes in animals are best suited for acute DIKI because these 

biomarkers were developed and evaluated for detection and monitoring of renal dysfunction 

in the setting of AKI. Urinary assays such as KIM-1, albumin, total protein, clusterin (CLU), 

cystatin-C (CysC), β2 microglobulin (B2M), and renal papillary antigen (RPA-1) have their 

place in renal investigative studies and have achieved qualification by the Food and Drug 

Administration (FDA) for defined contexts of use in rat preclinical studies.34–39 In addition, 
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urinary NGAL and osteopontin (OPN) have also received a Letter of Support by the FDA for 

further evaluation in rat preclinical studies.40 Many of these biomarkers provide nephron 

segment injury localization and have even shown utility as sensitive AKI 

immunohistochemical reagents.33,41 In 2018, the FDA qualified the use of a single 

composite measure of six urine biomarkers (KIM-1, NGAL, CLU, OPN, N-acetyl-beta-D-

glucosaminidase [NAG], and CysC) in conjunction with traditional measures of kidney 

function (creatinine, UN, serum CysC, urine albumin, and urine total protein) to aid in the 

detection of kidney tubular injury in phase 1 trials in healthy volunteers when there is a prior 

concern that a drug may cause tubular injury in humans.42–44 However, KIM-1, albumin, 

and NGAL have demonstrated the most translational applicability and appear to be the most 

commonly used in acute or subacute nonclinical studies.2,45–52

The purpose of this manuscript is: 1) to provide a comprehensive literature review of current 

human and animal renal biomarkers of AKI and CKD and how they are being utilized in 

chronic renal injury/disease (Table 1), 2) to provide a review of alternative assays (Table 2 

and Figure 1) that can be utilized in nonclinical safety studies to evaluate chronic renal 

dysfunction (> 4 months duration), and 3) to identify specific situations where these assays 

could best be utilized. However, only with increased use of these chronic renal injury 

biomarkers by multiple institutions and in many nonclinical studies will enough information 

be generated to establish industry-wide confidence in their use and interpretation. A list of 

abbreviations used in this review can be found in Supplemental Table 1.

The following sections first discuss the current clinical standard biomarker of renal function 

(eGFR) and highlight three established biomarkers of AKI (urine albumin, KIM-1, NGAL) 

that may also be utilized in the chronic setting. Subsequent sections introduce three 

promising novel biomarkers of chronic renal dysfunction (CysC, symmetrical dimethyl 

arginine [SDMA], dickkopf 3 [DKK3]), as well as three other candidate biomarkers 

(uromodulin [UMOD], B2M, β-Trace Protein [BTP]) that hold promise for detecting 

chronic renal injury.

Estimated Glomerular Filtration Rate (eGFR)—GFR is the gold standard used to 

diagnose, manage, and predict risk of ESRD in humans and animals. It is also used clinically 

to adjust dosing of renally excreted medications in patients with renal disease.16 GFR often 

serves as an outcome measure in clinical trials and is used to determine prevalence of CKD 

in epidemiologic studies.53–55 Unfortunately, GFR is not readily measured directly and is 

generally assessed using the clearance of bolus-injected surrogates including creatinine, 

inulin, iohexol, or radiolabeled molecules at specific timepoints.14,56 However, this is rarely 

done in the clinic due to cost, availability, difficulty of measurement, and inconvenience.57,58 

Likewise, it is logistically difficult and expensive to include in animal studies. To the 

authors’ knowledge, measured GFR (mGFR) has not been included routinely in toxicologic 

and safety pharmacology studies59,60, and certainly would not be a practical endpoint to add 

to a routine good laboratory practice (GLP) study. Additionally, for regulatory toxicology 

studies, there could be a hypothetical concern for potential toxicity or drug-drug interactions 

with these surrogate molecules.61 Technological advances in imaging equipment 

(optoacoustic tomography and transcutaneous fluorescent-sinistrin decay) have enabled use 
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of portable units for more direct measurement of GFR in investigational experiments in 

animals and in institutional diagnostic applications, but these techniques are equally difficult 

to incorporate into nonclinical toxicology studies where large numbers of animals and strict 

time-sensitive protocols are in place.3,62–64 This instrumentation requires advanced training 

and practice to effectively standardize or equilibrate between animals, and the time it takes 

to measure even one animal requires prospective planning for staggered dosing if multiple 

dose groups are to be measured on study. Even in human nephrology practice, it is extremely 

uncommon to measure GFR directly, and in clinical trials, GFR is routinely estimated using 

endogenous biomarkers in a variety of specific formulas that estimate urinary clearance 

(eGFR).65–68 All endogenous filtration biomarkers have determinants other than GFR (non-

GFR determinants), which include production, tubular secretion or reabsorption, and extra-

renal clearance which could affect the accuracy of GFR estimates.69,70 Since these processes 

are usually not measured, surrogate variables to adjust for characteristics such as age and sex 

have been incorporated into eGFR equations.71 Additionally, non-GFR determinants in one 

population might differ from the source population used to derive the equation, so estimating 

equations should be used in the populations in which they were developed.72 For example, 

since urea and creatinine are eliminated through the dialysis treatment due to their small 

molecular weight, other LMW proteins (CysC, B2M, BTP) that have higher molecular mass 

are more useful to estimate residual kidney function in ESRD patients.72

Some of the more commonly used eGFR equations include: Cockcroft-Gault (CG), 

Modification of Diet in Renal Disease (MDRD) Study, and the Chronic Kidney Disease 

Epidemiology Collaboration (CKD-EPI) equation.73–75 The CG is no longer recommended 

for clinical use since it does not use standardized creatinine values, does not account for 

body surface area (obese and elderly individuals), lacks inclusion of racial diversity, and 

overestimates kidney function.75–77 In contrast, the MDRD Study and CDK-EPI equations 

use creatinine measurement procedures that are traceable to an isotope dilution mass 

spectrometry reference and contain variables that adjust the eGFR to account for creatinine 

differences due to age, sex, and ethnicity.78 The CKD-EPI equation is currently 

recommended by Kidney Disease Outcomes Quality Initiative (KDOQI) for estimation of 

GFR79 and is more accurate and less biased than the MDRD Study equation in populations 

with eGFR near and above 60 mL/min/1.73 m2 or older than 70 years of age.76,77,80 In 

addition, the CKD-EPI equation more accurately predicts adverse kidney, cardiovascular, 

and mortality outcomes for patients with CKD.81 However, the CKD-EPI equation does not 

work well for all patient populations including renal transplant patients, whereas some 

studies have shown better performance in Asians vs the MDRD.81,82 All estimating 

equations have errors relative to mGFR, and errors will be greater for people who have non-

GFR determinants that differ from the populations used to derive the equations (e. g. 

vegetarians vs. bodybuilders).78 Attempts to adapt human eGFR equations for use in 

veterinary species have been unsuccessful, and currently there are no widely accepted eGFR 

formulas for preclinical species.83–86

One of the measured parameters that are included in the estimation of eGFR in both animals 

and humans has historically been creatinine, therefore creatinine clearance is a major 

determinant of eGFR. However, many other non-GFR determinants can influence creatinine 

levels, including age, sex, race, liver function, and intestinal flora (since creatinine is 
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metabolized by intestinal bacteria).11,12,70,87–93 While the majority of creatinine is filtered 

unchanged through the glomerulus into the urinary filtrate, over 40% may be secreted via 

renal transporters depending on the species, and this transport may be affected by drugs.
12,94–96 Tubular secretion can be increased to up to 50% of total renal elimination as GFR 

declines and can be supplemented with increased extra-renal elimination via the 

gastrointestinal tract.11,89,97,98 Creatinine production differs between patients with stable 

CKD and those with progressive disease due to comorbidities, further limiting its utility.30 In 

addition, patients with glomerular disease have progressive fractional hypersecretion of 

creatinine by renal tubules as the disease worsens leading to overestimation of GFR, so the 

use of creatinine as a filtration biomarker is inaccurate in these individuals.91 Another gap in 

clinical monitoring during early GFR decline referred to as the “creatinine blind region” 

occurs when there is increased creatinine secretion and decreased creatinine generation.99

Even though all current eGFR equations in humans include demographic adjustments of 

creatinine concentrations, GFR estimation remains imprecise for both under and 

overestimation of mGFR.100 In order to improve GFR estimation, several alternate LMW 

biomarkers (CysC, BTP, and B2M) have been proposed and studied. Since these LMW 

proteins are mainly cleared from the blood through glomerular filtration, are almost 

completely reabsorbed by proximal tubular cells, and are degraded to smaller peptides and 

amino acids that are reabsorbed into peritubular circulation with minimal urinary 

excretion101, they were proposed as potential serum biomarkers of impaired GFR, and their 

increased urinary excretion was considered to be an indicator of tubular damage.97,102,103 

Several GFR estimation equations have incorporated these molecules alone or in 

combination.104 The 2012 KDIGO CKD guidelines recommend the use of the CKD-EPI 

CysC or creatinine/CysC equation in certain circumstances where eGFR accuracy is critical 

or when CKD diagnosis using creatinine alone is uncertain.16 Recently, the CKD-EPI 

collaboration has developed equations using the additional serum biomarkers BTP and B2M. 

Although BTP and B2M slightly underestimate mGFR in the higher eGFR range, combining 

these biomarkers has similar accuracy as that of the combined CKD-EPI creatinine and 

CysC equation.58,105 In a recent study that evaluated the performance of six CKD-EPI GFR 

estimation equations (eGFR-EPI) against the gold standard urinary inulin clearance in 

patients with CKD, the combination creatinine/CysC equation provided the best overall 

estimate of mGFR with the lowest bias, highest precision and accuracy, and greatest 

classification.104 The BTP and B2M equations displayed the worst performance with 

significantly less precision at all levels of GFR, and averaging the creatinine/CysC and 

BTP/B2M equations did not improve or worsen the performance compared to the creatine/

CysC equation alone.104

Estimated GFR is absolutely critical to chronic renal functional assessment in human 

patients, but it is clear that to date mGFR is impractical to institute in nonclinical safety 

assessment studies, and eGFR calculations and interpretation in laboratory animals are still 

in their infancy.83,84,106 Thus, surrogate indicators of chronic renal function are essential for 

providing a basis for a reliable nephrotoxic signal in animal trials that can be translated into 

clinical patients.
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Established Biomarkers of Acute Kidney Disease That May Also Be Utilized in the Chronic 
Setting

Urinary Protein and Urinary Albumin—Urine protein excretion is frequently assessed 

in nonclinical toxicity studies, and even in many clinical trials using rapid dipstick 

techniques that are qualitative, but only semi-quantitative. However, in the chronic setting, a 

more quantitative approach is often necessary to properly assess renal function. Both urine 

total protein and urine albumin are typically represented as concentrations and, like other 

urine analytes, are subsequently normalized to creatinine as a ratio. In humans, spot urine 

samples are usually taken from a first morning void, but in laboratory animals, urine is 

collected in a metabolism cage and the total volume collected is recorded for a defined time 

period of up to 16 hours depending on species or experimental design.107 Thus, in laboratory 

animals, urine creatinine or urine volume can be used as normalization parameters. Urinary 

protein to creatinine ratio (UPCR) and UACR are two of the few biomarkers that are used to 

monitor the progression of chronic renal failure in humans, generally in association with 

calculation of eGFR. The 2012 Kidney Disease: Improving Global Outcomes (KDIGO) 

clinical practice guideline for the evaluation and management of CKD includes proteinuria 

in the staging of CKD.16 Proteinuria can be differentiated on the basis of amount of protein 

(nephrotic [>3.5 g protein excreted over 24 hours] vs non-nephrotic), type of protein 

(albuminuria or low molecular weight [LMW] proteins), and underlying pathology 

(glomerular vs non-glomerular).108,109 Proteinuria of renal origin can be classified into one 

or more of the following categories: tubular, overflow, or glomerular.109,110 Tubular 

proteinuria results from tubulointerstitial disease affecting the proximal tubules and 

interstitium resulting in decreased proximal tubule reabsorption of proteins, especially LMW 

proteins (< 25,000 Daltons) which under normal conditions are completely reabsorbed in the 

proximal tubules.109,110 Overflow proteinuria is mostly associated with increased production 

or circulation of large quantities of proteins in disease states (e.g., light chains in multiple 

myeloma, myoglobin in rhabdomyolysis) that exceed the reabsorption capacity of the 

proximal tubule, leading to excessive urinary protein which can be toxic to the tubules and 

cause AKI.109,110 Glomerular proteinuria is associated with damage to the glomerulus, and 

more significant glomerular disease results in more severe proteinuria. Post-renal proteinuria 

can occur with inflammation, hemorrhage, and/or mucosal secretions from the genitourinary 

tract (e.g., infections, nephrolithiasis, tumors) and resolves with resolution of the underlying 

condition.109 Urinary protein levels can fluctuate considerably in both acute and chronic 

renal failure, and may vary considerably even in patients with relatively normal renal 

function.111 Changes in urinary protein levels remain the most reliable method for 

monitoring the progression of glomerular disease in human patients and animals.79,112 In 

general, urinary albumin levels tend to parallel changes in total protein in most species.79,113 

The rat is an exception, as rat urine is protein-rich due to the presence of large quantities of 

proteins known as “major urinary proteins” including alpha2-urinary-globulin.114 This is 

especially true in male rats.114 Consequently, urinary albumin excretion can be more specific 

as a biomarker of renal disease than urinary protein.114–118 Based on a rat renal 

micropuncture study, albumin absorption is distributed almost equally across the three 

segments of the proximal tubule.119 Albumin in the filtrate occurs as both intact 

(immunoreactive) albumin and variably sized albumin fragments. However, an elegant study 

using125 I-albumin intravenously administered to rats demonstrated that only 1–2% of the 
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albumin recovered in urine was the intact form and that the vast majority of recovered 

albumin (98–99%) was fragmented and exocytosed both apically and basolaterally from 

proximal tubule cells.120 Thus, contrary to past dogma, more albumin than previously 

thought crosses the glomerular barrier in health, and not all urinary albumin is completely 

resorbed into the blood stream.120 This observation also has clinical implications in that 

immunoturbidimetric assays can underestimate severity of albuminuria since only intact 

albumin is detected by these assays.108,121 In addition, there are situations, particularly in 

chronic renal disorders, where urine albumin does not parallel total protein in the filtrate. 

Plasma albumin levels can decrease with chronic loss and, with a higher percentage of renal 

uptake, changes in urinary albumin may be overshadowed by large protein spillage. 

Therefore, in these situations (e.g. certain tubulointerstitial and vascular nephropathies 

including polycystic kidney disease), changes in urinary albumin levels may not detect 

progressive renal damage or dysfunction with advanced chronic renal disease.21,22 Thus, 

monitoring urinary protein and albumin levels is of clear benefit in the analysis of acute, 

subchronic, or chronic nonclinical toxicity studies where renal toxicity is predicted or 

suspected. However, there remains a substantial need for biomarkers which can provide 

more sensitive and specific data on the progressive renal dysfunction that may accompany 

drug or chemical administration with more chronic duration.

Kidney Injury Molecule 1 (KIM-1)—KIM-1 is a type 1 transmembrane glycoprotein on 

the cell surface of epithelial and immune cells that serves as a scavenger receptor for 

oxidized low-density lipoproteins and phosphatidylserine-mediated phagocytosis of 

apoptotic cells.122–126 It is virtually absent in healthy kidneys, but its expression is 

upregulated in proximal tubule cells following acute injury. This is especially true after 

ischemia-reperfusion injury and drug-related renal toxicity.127–133 The upregulation of 

KIM-1 following an ischemic insult is thought to be associated with the renewal of 

functional and morphological integrity of kidneys.127 KIM-1 upregulation has an anti-

inflammatory effect by mediating epithelial cell phagocytosis of apoptotic cells leading to 

downregulation of innate immunity and inflammation through effects on NF-κB signaling.
134 In addition to its role in acute tubular damage, glomerular KIM-1 expression was 

increased in parallel with proteinuria and podocytopenia (decreased podocytes in the 

glomerular tuft) in a diabetic animal model supporting its use as a potential biomarker for 

glomerular injury in proteinuric kidney disease.135 KIM-1 has also been shown preclinically 

to be upregulated in the later phases of AKI suggesting a role in renal repair.136 However, 

chronic proximal tubule overexpression of KIM-1 in a mouse model caused interstitial 

inflammation and fibrosis linking acute and recurrent injury in the progression of chronic 

renal disease.132 Thus, KIM-1 can be used as a biomarker of tubular damage, but it can also 

cause tubular damage by promoting interstitial fibrosis, so chronic elevations in KIM-1 may 

warrant additional monitoring for ongoing renal damage.

Following acute injury, the membrane bound domain of KIM-1 is cleaved via a 

metalloproteinase-dependent process releasing it into the urine and extracellular space.137 

Urinary KIM-1 has been shown to be a good predictor of acute renal injury prior to 

detectable changes in eGFR.127,138 Numerous recent studies in humans have evaluated the 

biomarker potential of urinary KIM-1 in CKD.22 KIM-1 was useful in the detection of early 
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CKD of uncertain etiology and was better than conventional biomarkers.28 Urinary KIM-1 

was also higher in patients with proteinuria and normal renal function, suggesting that 

urinary KIM-1 should be evaluated in conjunction with urine protein excretion in patients 

with pre-existing nephropathy.139,140 Antihypertensive therapy in a rat model and in patients 

decreased urinary KIM-1 in parallel with lowering urinary protein excretion suggesting an 

improvement of proteinuria-induced tubular injury, however there was no change in 

creatinine clearance despite decreased KIM-1 excretion.141,142 KIM-1 may also be a 

potential biomarker of CKD caused by tubulointerstitial damage since its expression 

correlates with the degree of interstitial fibrosis and inflammation in affected patient kidneys 

and in a rodent model.143–147 In addition, several studies in various patient disease cohorts 

including diabetics demonstrated the ability of urinary KIM-1 levels to predict the 

development and progression of CKD.21,147–154 A meta-analysis of 10 studies found that 

urinary KIM-1 had borderline significance as an independent predictor of stage 3 CKD.155 

KIM-1 in combination with urinary NGAL improved the ability to predict renal outcomes in 

other human chronic renal disease cohorts (glomerulonephritis, vasculitis, lupus nephritis).
27,156 In a longer term study, plasma KIM-1 predicted future eGFR decline and CKD risk in 

healthy middle-aged patients.157 Serum/plasma KIM-1 was also elevated in patients with 

CKD of various etiologies.158 In longitudinal studies in normoalbuminuric diabetic patients, 

serum/plasma KIM-1 was found to be strongly associated with renal decline (eGFR) and/or 

onset of CKD stage 3 or higher.158–160

Numerous rodent DIKI studies demonstrated the utility of urinary KIM-1 for detection of 

AKI47,52,161–168, but performance of urinary KIM-1 in nonrodent species has been less 

consistent. Early increases in urine KIM-1 were seen in some AKI studies in monkeys,
45,48,165,169 but not in others.170 In the dog, some authors describe diagnostic utility for 

KIM-1171,172, while others, including the current authors, report poor accuracy of KIM-1 in 

dog DIKI studies.3,4,167,173,174

Urinary KIM-1 is rarely used in veterinary clinical practice due to questionable single 

analyte assay performance in dogs. Also, canine-specific KIM-1 enzyme-linked 

immunosorbent assay (ELISA)167,171,172,174 and/or multiplex assays with KIM-1175 have 

underperformed other biomarkers including NGAL in dogs. Nevertheless, in dogs, urine 

KIM-1 has been shown to be increased in AKI and in conditions such as babesiosis171, but 

not in CKD.172 In cats, KIM-1 was detected by a qualitative urine immunoassay in those at 

risk of AKI, but not in cats with CKD.176

In rat investigational studies of DIKI, elevated KIM-1 levels have persisted during 

regeneration phases following dosing with gentamicin and carbapenem A reflecting ongoing 

repair.161 However, in other investigational studies in rodents, peak values of KIM-1 in DIKI 

have occurred at 3–6 weeks, with values steadily declining afterwards despite microscopic 

evidence of ongoing renal degeneration or fibrosis. KIM-1 urine and serum levels rose 

initially in a mouse ischemia-reperfusion injury model, but steadily declined from day 7 post 

injury to day 28 despite ongoing tubulointerstitial fibrosis.177 Additionally, in a rat model of 

Adriamycin nephrotoxicity, urinary KIM-1 was elevated at 12 weeks and reversed following 

6 weeks antiproteinuric treatment (renin-angiotensin system blockade), but was not 

accompanied by reversal of interstitial fibrosis.142 KIM-1 has also been less consistent when 
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utilized in chronic nonclinical drug studies and has often been undetectable in rodents when 

assessed in toxicity studies of 6 months or longer duration (unpublished data). In some 

rodent subchronic studies, KIM-1 levels increased following toxicant exposure concordant 

with renal histopathology and declined to normal or near normal levels during the recovery 

phases.163,178 In other rodent subchronic studies, KIM-1 values remained elevated after 90 

days of Ochratoxin A dosing where it outperformed other biomarkers52, and at 12 weeks 

following Adriamycin administration179, suggesting it could be a biomarker of subchronic 

nephrotoxicity. Interestingly, in a subclinical adenine or aristocholic acid-induced CKD 

model where AKI was induced following a recovery period by low-dose cisplatin180, KIM-1 

responses to AKI were lower and delayed in CKD rats compared to non-CKD rats, and were 

inversely linked to the extent of prior cortical damage.180 These data suggest that in the 

presence of known CKD in rats, urinary KIM-1 levels may vary indicating the need for 

thresholds to be lowered, combined with delaying and/or including serial sampling. The 

totality of these findings indicate that urine KIM-1 alone may not be ideal for detecting 

chronic renal injury in longer term animal toxicity studies, but may add value as part of a 

panel of other biomarkers.

Neutrophil Gelatinase-Associated Lipocalin (NGAL)—NGAL, also known as 

lipocalin-2, is a glycoprotein bound to matrix metalloproteinase-9 in human neutrophils and 

is involved in transport of hydrophilic substances through membranes to maintain cellular 

homeostasis.181 NGAL is involved in the early stages of nephron development182 and is 

widely expressed in adult tissues (lung, gastrointestinal tract, liver, and kidney), but its main 

sites of expression are white blood cells and kidney loop of Henle and collecting ducts.
183,184 NGAL inhibits bacterial growth via binding bacterial siderophores and sequestering 

iron.185,186 Tubule cells process the NGAL-Fe-siderophore complex leading to increased 

cytoplasmic iron concentrations, activation of iron-dependent processes, and decreased 

oxidative stress.187,188 NGAL is markedly induced in epithelial cells in response to injury, 

inflammation, and neoplastic transformation.183,188,189 NGAL was identified as one of the 

earliest and most upregulated genes in rodent tubular and ischemic renal injury models, 

especially in the distal nephron.190,191 However, in a mouse model of cisplatin AKI, NGAL 

was induced predominantly in proximal tubules.192 NGAL was also shown to be an early 

biomarker of tubular injury in dogs with experimentally induced AKI165,174,193–195 or 

naturally occurring AKI.196–201 In an experimental model of septic AKI in pigs, both serum 

and urine NGAL increased in association with tubular histopathology in septic animals 

compared to controls.202 Even though most research supports a protective role for NGAL in 

AKI, studies in mice revealed that NGAL upregulation is involved in the progression of 

chronic renal injury in humans and certain strains of mice by modulation of epidermal 

growth factor-mediated tubular mitogenesis and cyst formation.189 In a mouse model of 

ischemia-reperfusion injury, NGAL increased continuously during the AKI-CKD transition 

(from day 3 to day 28 post injury); whereas KIM-1 declined gradually in the chronic phase 

suggesting that NGAL may be able to dynamically monitor AKI-CKD progression.177 

Similarly, in a rat model of adenine-induced tubulointerstitial injury, urinary NGAL levels 

were increased during the AKI phase and remained elevated for 4–8 weeks in the CKD 

phase.203
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NGAL exists in multiple forms, with 25 kD monomers considered to be of renal tubular 

origin and dimers of the 25 kD monomer of neutrophilic origin.204 It should also be noted 

that certain NGAL forms of systemic origin can cross the glomerular filtration barrier, 

contributing to urinary NGAL excretion. In a study comparing the utility of serum NGAL in 

AKI and chronic kidney injury models in rats and mice, serum NGAL had variable success 

in detection of kidney injury across all of the models, which is not surprising given that 

serum NGAL can lack specificity for renal injury due to production and release by 

neutrophils and non-renal epithelia (liver, bladder, lung, stomach, small intestine, pancreas, 

prostate gland, mammary gland, adrenal gland, thymus) in response to injury.205,206 In a 

mouse ischemia-reperfusion kidney injury model, serum and urine NGAL increased 

continuously during progression of AKI to CKD compared with serum and urine KIM-1 

which peaked in the acute phase and declined during the chronic phase.177 Similarly in 

humans, serum and urine NGAL were good prognostic biomarkers for predicting the 

progression of AKI to CKD in sepsis-associated AKI patients.207 Because of potential non-

renal sources of serum NGAL, the association of serum NGAL changes with renal injury is 

ideally informed by effects on biomarkers of systemic inflammation as well as changes in 

other renal injury biomarkers.

In humans, urinary NGAL has been shown to be a good predictor of renal injury prior to 

detectable changes in eGFR28,147,208, and has also been shown to be inversely correlated 

with eGFR while being directly correlated with interstitial fibrosis and tubular atrophy.
147,209 Investigators have also shown in CKD patients that increased urine NGAL reflects 

residual renal function and is directly correlated with serum creatinine and proteinuria, and 

inversely with GFR.210 As GFR decreases and urine protein and serum creatinine increase in 

early CKD, urine NGAL increased proportionately in the majority of patients until late in 

disease progression when advanced stages of CKD and severe renal tubular degeneration 

and atrophy resulted in diminished renal reserve.210 Unlike KIM-1 and NAG, urine NGAL 

was shown to be an independent predictor of end stage renal disease (ESRD) risk and of 

mortality for patients with CKD.155 Similarly, in elderly CKD patients, increased serum 

NGAL reflected renal impairment and was an independent risk biomarker for progression of 

ESRD.211 However, other studies have shown that urine NGAL did not provide additional 

information beyond the standard renal biomarkers in predicting outcomes in patients with 

ESRD, but did improve prediction of CKD progression in elderly patients with low-grade 

proteinuria212 and in diabetic patients.213 Similarly plasma/serum NGAL improved upon 

serum creatinine and eGFR in predicting the severity of tubulointerstitial infiltrates and 

fibrosis in patients with early CKD and predicted renal dysfunction in patients with early 

diabetes and children with CKD.214–216

In the clinical veterinary setting, urinary and to a lesser extent serum NGAL have shown 

promise as biomarkers of CKD progression. In a study of naturally occurring CKD in dogs, 

higher urine and serum NGAL were associated with death, and serum NGAL was better 

than serum creatinine at predicting clinical outcomes.199 In another study in dogs with 

naturally occurring CKD, serum NGAL was a good indicator of CKD severity and 

correlated with serum creatinine, but the serum NGAL values in dogs with advanced CKD 

had a wide range of variation suggesting that dogs with more stable CKD may not have on-

going renal tubular injury leading to serum NGAL increases, and that urine NGAL may be a 
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more sensitive disease biomarker in these dogs.217 Likewise, in dogs presenting with 

azotemia, plasma NGAL levels were able to differentiate between those with AKI (higher 

NGAL) versus CKD.200 Increased urinary NGAL was shown to occur early in the 

development of CKD, correlate with glomerular and tubulointerstitial lesions, and/or be 

associated with shorter survival in dogs.198–200,218–223 In dogs with x-linked hereditary 

nephropathy, urinary NGAL differentiated affected from unaffected dogs early in the disease 

process, with increases during early to mid-stages of disease, but it was not helpful for 

monitoring mid- to late-stage renal failure.218 Similarly, cats with higher urinary NGAL 

concentrations have more rapid CKD progression.224

Urinary NGAL to creatinine ratios have been quite successful in detecting DIKI in animals 

including mice, rats, dogs and nonhuman primates.3,4,40,45,47,51,52,163–165,195,211,225,226 

However, the ability of NGAL to detect minimal kidney lesions in monkeys was inferior to 

KIM-1 and CLU.45 In addition, NGAL was the most nonspecific biomarker evaluated in a 

series of rat studies comparing renal and non-renal toxins, and increased urine and plasma 

NGAL were observed in a variety of different end-organ toxicities in the absence of renal 

toxicity.40,47 In bacterial nephritis, NGAL was elevated up to 6 weeks post infection in 

rodents.227 Similarly, dogs with lower urinary tract infections or diseases and pyuria can 

have increased urinary NGAL.198,228,229 In cats, three forms of urinary NGAL were 

detected and two were found to be associated with renal diseases of either the upper 

(monomeric form) or the lower (dimeric form) urinary tract.230 Increased NGAL 

concentrations in the urine of animals with lower urinary tract diseases having inflammation 

could be due to the presence of neutrophils, and as with sepsis or systemic inflammation, 

determining the molecular forms of urine NGAL may allow for more specific and precise 

detection of urinary tract disease.221

In chronic animal safety assessment studies of 3 months or longer, urinary NGAL values 

tend to wane over time similar to KIM-1. Therefore, urinary NGAL values appear to be 

ineffective in monitoring the progression of chronic renal injury or fibrosis as NGAL levels 

have been inconsistently elevated despite sustained injury (unpublished data). Both KIM-1 

and NGAL were not increased at any time point throughout a 36-week study tracking the 

progression of nephropathy in hypertensive and obese rats.231 One explanation for this 

negative result is the relatively more severe glomerular damage than tubular injury in these 

rats231, but transiently increased NGAL expression may have been missed. The poor 

performance of NGAL in longer term nonclinical safety studies has led to the search for 

other renal biomarkers that may augment current biomarkers used in chronic animal studies. 

In addition to KIM-1 and NGAL, uromodulin (UMOD, discussed later) has also been shown 

to predict AKI before renal functional decline.127,147,210

Promising Novel Biomarkers of Chronic Renal Dysfunction That Can Be Added to 
Nonclinical Studies

Cystatin C (CysC)—As the authors noted, currently utilized biomarkers generally have 

limitations in the chronic setting, but there are some potential alternatives available to fill 

this important niche. CysC is one of the promising new analytes that may make the 

transition from AKI to CKD biomarker and, in the context of nonclinical safety, work as 
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both an acute and chronic renal biomarker.45,47,51,167,211,232 As noted above, recent eGFR 

calculations in humans have utilized cystatin in blood and urine rather than creatinine to 

more precisely calculate GFR, but this has not generally been an accepted practice in 

nonclinical safety assessment due to limited availability of CysC testing and the overall 

difficulty in validating eGFR calculations in animals.

CysC is a LMW protein produced at a constant rate by all nucleated cells and functions as a 

lysosomal protease and cysteine proteinase.233 It is freely filtered at the glomerulus with 

almost complete reabsorption and catabolism in the proximal tubules and it is not secreted 

by the tubules, so it is minimally present or absent in urine under normal circumstances.
234,235 However, similar to other LMW proteins, impairment or saturation of proximal 

tubule reabsorption can lead to marked increases in levels of urinary CysC in both animals 

and humans and thus is biomarker of acute tubular injury when glomerular function is not 

affected.236,237 Since the sieving coefficient (measure of equilibration of a substance 

through a semipermeable membrane) of CysC is close to unity, the renal clearance of CysC 

approximates GFR, and serum CysC has been considered to be an effective alternative to 

creatinine as a biomarker of GFR.238,239 In addition, CysC–based GFR estimates do not 

require correction for muscle bulk, diet, age, gender, and race.102,240–242 However, some 

researchers found that older age, male gender, greater weight and height, cigarette smoking, 

thyroid disease, malignancy, corticosteroid therapy, pregnancy, inflammation and/or higher 

C-reactive protein (CRP) levels are associated with increased serum CysC values.58,243–247 

In addition, the non-renal clearance of CysC in both healthy humans and rats was found to 

be substantial and approximately 15% of the total clearance.238,248 The relative proportion 

of CysC eliminated extra-renally increases with decreasing GFR and was shown to 

overestimate renal clearance in conditions such as dialysis patients with advanced renal 

failure.248,249 Despite these limitations, serum CysC has been shown to be useful for 

detecting slight decreases in renal function in early renal failure in various patient 

groups78,250–252, and to predict mortality in CKD independent of GFR.253,254 Serum CysC 

also correlated better with mGFR than creatinine concentration in stage 3 CKD patients and 

was a good predictor of kidney dysfunction in patients with portal hypertension.70,255 In 

addition, serum CysC was better able to predict adverse outcomes compared to serum 

creatinine.256,257 Equations utilizing CysC combined with creatinine improve the accuracy 

of GFR estimation compared to equations based on single biomarkers.58,71,81,104,254,258 

Serum CysC has also been shown to be independently associated with cardiovascular 

disease, ESRD, and mortality.259,260 Even though no causal relationship has been 

established to date, these associations may provide a better understanding of the common 

pathways of morbidity and mortality in cardiovascular and renal disease.261 As the 2012 

KDIGO CKD guideline recommends assessment of CysC based on evidence that eGFR with 

CysC instead of creatinine may better classify CKD in human patients16,244,254,258,259,262, 

there is promise for using CysC in chronic animal safety studies.

In the rat, serum CysC was shown to be more sensitive, specific, and reliable than serum 

creatinine and was able to detect different types of acute drug-induced lesions in various 

nephron segments (proximal and distal tubules) independent of the mechanisms of 

nephrotoxicity and even at levels of minimal injury.161 In addition, in rat acute and subacute 

nephrotoxicity studies, urine CysC levels were increased, often earlier than other urine 
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biomarkers.47,52,166,167,178,263,264 In dogs with renal disease, serum CysC outperformed 

serum creatinine when compared to mGFR and it was a more sensitive indicator of 

decreased GFR.265,266 Serum CysC has also been proposed as an early biomarker for kidney 

dysfunction in critically ill dogs, and in dogs with leishmaniasis, chronic nephritis, and 

diabetes mellitus.267–269 In addition, serum CysC had better sensitivity and specificity for 

detection of early stage I CKD in dogs than serum creatinine or symmetrical dimethyl 

arginine (SMDA).270 Serum CysC was also increased in an AKI study in monkeys given 

gentamicin.170 In dogs220,271 and cats272,273, urinary CysC was found to be higher in 

animals with renal disease than in healthy animals or animals with non-renal disease, but it 

was only increased in the urine of dogs with leishmaniasis during the azotemic stages of 

CKD.274 In dogs with gentamicin-induced AKI, urinary CysC was found to be the most 

sensitive indicator of both structural and functional kidney injury relative to traditional and 

novel urinary biomarkers including urinary albumin, Kim-1, and NGAL.174

Although these results are encouraging, considerable biological variability of serum CysC 

concentrations in dogs has been reported, suggesting that serum CysC may not be superior 

to serum creatinine for GFR determination, and further studies will be needed to confirm the 

value of serum CysC compared to serum creatinine.275,276 As CysC analysis becomes more 

routine in the assessment of chronic renal disease in human practice, and eGFR estimation is 

improved in animals, there is the potential that nonclinical use of CysC in both urine and 

serum could also become routine.

Symmetrical Dimethyl Arginine (SDMA)—SDMA, one of the most promising 

candidates for a chronic renal biomarker, was discovered over 40 years ago.277 The essential 

amino acid arginine is metabolized within mitochondria into two structural isomers: SDMA 

and asymmetrical dimethyl arginine (ADMA).278 SDMA and ADMA are released into the 

cytoplasm and subsequently transported out of the cell and into the circulation.279 SDMA is 

excreted primarily through the kidney (>90%) and undergoes minimal metabolism280,281, 

but ADMA is highly protein-bound, extensively metabolized enzymatically, and only 20% is 

excreted in the urine making it unsuitable as a renal biomarker.281,282 In contrast, SDMA 

depends almost entirely on glomerular filtration for excretion, thus its serum levels correlate 

directly with renal function (GFR).283,284 In addition, SDMA is not affected by non-renal 

factors that influence creatinine and/or CysC such as lean body mass, food intake, 

inflammation, diabetes, or estrogen therapy.285,286 Most importantly, SDMA levels have 

been demonstrated to rise progressively with increased renal impairment and progressive 

nephron loss in animals and humans with chronic renal disease.283,287–295 Chronic SDMA 

infusion does not affect renal function or kidney histology, so SDMA is not a direct cause of 

kidney injury.296 In the absence of renal impairment, SDMA is not affected by acute 

inflammatory responses, liver and cardiovascular disease, or by diabetes mellitus.297,298

Multiple studies in human CKD patients have demonstrated significant and progressive 

increases in SDMA relative to control populations with normal renal function.284,285,291,299 

In humans with impaired renal function, there was a strong correlation between SDMA and 

mGFR, and SDMA outperformed creatinine but was equivalent to CysC and eGFR 

equations.283,285 Interestingly, in a study in healthy dogs of various ages fed prescription 

diets designed to maintain lean body mass, SDMA concentrations decreased significantly 
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from baseline at 3 months and decreased further at 6 months, suggesting a dietary effect on 

renal function, and that SDMA could have clinical advantages over serum creatinine in 

monitoring responses to nutritional interventions.300 Based on total biological variability 

(analytical, intra- and interindividual) in healthy dogs, use of SDMA as a single 

measurement is not recommended to screen for early renal functional loss, rather serial 

monitoring and use of the critical difference (CD) is recommended for monitoring kidney 

function instead of comparison with population-based reference values.301 In renal ischemia 

models in both rats and mice, and in nephrectomized dog and rat models, serum SDMA 

levels increased progressively as renal mass was reduced.296,302–305 This increase in SDMA 

associated with nephron loss is not significantly diminished over time in contrast to NGAL, 

KIM-1, or OPN for which responses wane over time.

SDMA has been routinely used in companion veterinary practice for over 10 years as a 

reliable biomarker of progressive kidney disease in dogs and cats with a variety of chronic 

conditions including Lyme nephropathy, familial amyloidosis, renal dysplasia, and 

polycystic kidney disease.287,306,307 One of the advantages of this assay is that it is 

performed in plasma or serum rather than urine, eliminating the need for urine collection or 

use of a metabolism cage. Venipuncture can be easily scheduled in GLP studies at specific 

timepoints weeks or months apart. In animals, SDMA increases compare favorably with 

declines in GFR. An investigative study in dogs comparing SDMA to mGFR demonstrated 

90% sensitivity and specificity, similar to creatinine and much better than CysC.308 In a 

separate study in dogs, similar sensitivity (90%) and specificity (83%) were noted compared 

with GFR as assessed by iohexol, but this depended upon the threshold used.309 It has been 

noted that the optimal SDMA cutoff for detecting greater than a 40% decrease in GFR was 

serum SDMA >18 μg/dL.309 SDMA has begun to be incorporated in target animal safety 

studies in dogs for detection of drug-induced nephrotoxicity by drugs intended for veterinary 

use in this species (personal communication). SDMA has been evaluated in human studies 

and in rare clinical trials, but the liquid chromatography-mass spectrometry analytical 

method required for the assay in humans has limited its availability and utility.283 In 

animals, the liquid chromatography-mass spectrometry method is still the gold standard, but 

a more recent proprietary ELISA assay appears to outperform the older DLD® ELISA.310 

While there is extensive experience in dogs and cats, this assay has only recently become 

commercially available in rodents, and is scaled to be able to be run on large numbers of 

animals with a required serum volume of 50–100 ul.311,312

Dickkopf Homolog 3 (DKK3)—Another surrogate biomarker for GFR that has received 

increased attention in the human literature is DKK3. DKK3 belongs to a family of 

glycoproteins that modulate the Wnt signaling pathway and has promising utility as a 

urinary biomarker of ongoing tubular injury and progressing tubulointerstitial fibrosis in 

animals and humans. DKK3 has been shown to be a stress-induced, profibrotic molecule of 

renal tubular origin with dual roles in promoting repair/regeneration acutely or facilitating 

progression to CKD after AKI, depending on the magnitude and duration of activation.
313,314 Although regenerative processes may occur in the early stages of renal injury via the 

Wnt pathway, continuous Wnt activation is detrimental and induces epithelial-mesenchymal 

transition and tubulointerstitial fibrosis.315,316 DKK3 is expressed in the developing kidney, 
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is suppressed in adult life, and re-expressed in tubular epithelium under pathological 

conditions, eliciting a profibrotic T cell response.313,317

AKI is a known and common complication in patients after cardiac surgery. In preoperative 

cardiac patients at risk for AKI and subsequent loss of renal function, DKK3 has been 

shown to be an effective biomarker of renal tubular stress.318 In a study of 733 patients, 

preoperative urinary DKK3 was found to significantly improve prediction of risk of AKI and 

kidney function loss after cardiac surgery (p<0.0001).318 In one study to investigate the 

potential use of urinary DKK3 as a biomarker of short-term eGFR loss (over 12 months), 

eGFR and urinary DKK3 levels were prospectively assessed in 481 patients with CKD of 

various etiologies and compared with a general population sample and also with samples 

from patients with confirmed IgA nephropathy.319 The investigators were able to 

successfully identify patients at high risk for eGFR decline regardless of the cause of kidney 

injury. Thus, DKK3 was identified as a potential tool to monitor CKD progression and 

assess effects of interventions in patients with short-term risk of eGFR loss beyond what 

established biomarkers were able to do. In IgA nephropathy patients, urinary DKK3 levels 

(normalized to creatinine) were significantly higher in patients with CKD than in the control 

population, closely followed declines in eGFR over 12 months, were related to extent of 

renal fibrosis, and significantly improved prediction of eGFR decline and disease 

progression when compared to urinary albumin levels alone.319 In addition to urinary levels, 

elevated plasma levels of DKK3 were found to be associated with renal graft versus host 

disease progression, sclerosis, and higher mortality.320

DKK3 also appears to be important in progression of renal disease in animals. Using DKK3-

deficient mice, tubular damage and renal interstitial fibrosis were significantly reduced 

compared with wildtype mice after unilateral ureteral ligation, as well as in a mouse adenine 

nephropathy model.313 This study also used antibody-mediated blockade of DKK3 to elicit 

similar findings. Urinary levels of DKK3 in rodents follow disease progression, tubule 

atrophy, and interstitial fibrosis.317 In an Adriamycin nephropathy model in mice, DKK3 

expression was upregulated in the tubule epithelium and interstitium.321 Taken together, 

these findings suggest that DKK3 may be a useful diagnostic biomarker for both acute 

tubular injury and chronic renal disease involving tubulointerstitial fibrosis. DKK3 is just 

beginning to be assessed in rodent and nonrodent toxicology studies (unpublished data), so it 

has yet to be determined whether this potential biomarker will be successful for prediction 

and monitoring of chronic renal disease progression in nonclinical studies, but since the 

biology of the Wnt pathway is similar in humans and animals, the future for this analyte is 

promising. An ELISA assay is available in humans that apparently will cross react with most 

species of laboratory animals (personal communication), although other immunoassays and 

mass spectrometry have also been used for analysis of urinary and plasma DKK3.319,320,322

In summary, DKK3 is a stress-induced, profibrotic, tubular epithelium secreted glycoprotein 

that may be a useful marker for ongoing tubular injury and progressing tubulointerstitial 

fibrosis as it has dual roles in the promotion of acute repair/regeneration and facilitating 

progression to CKD.
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Other Experimental Biomarkers That May Have Potential in Chronic Renal Dysfunction

Uromodulin (UMOD)—UMOD, also known as Tamm-Horsfall protein, is a 

glycosylphosphatidylinositol (GPI) anchored glycoprotein. It is the most abundant protein 

excreted in urine and is the predominant protein in hyaline casts.323,324 UMOD is produced 

exclusively in the thick ascending limb and early distal tubule, and is released via proteolytic 

cleavage of the GPI anchored ectodomain into the tubule where it coats the tubular lumen.
325 In addition to this canonical apical targeting, UMOD also sorts, to lesser degree, to the 

basolateral domain of the tubular epithelial cells and is released into the interstitium where it 

enters the circulation.326 UMOD has been implicated in the pathophysiology of multiple 

human kidney diseases including polycystic kidney disease and nephrolithiasis, and may 

have a protective role in urinary tract infections.327–331 It has a tendency to form gels in 

aggregates, and this is increased by the presence of urinary constituents including albumin, 

sodium and calcium ions, as well as acidic pH.332 In patients with chronic renal failure, 

urinary UMOD has been shown to be decreased suggesting that serum UMOD levels may 

somehow reflect the amount of intact nephrons being linked to the “functional renal mass”.
333,334 Long-term studies in elderly adults, demonstrated that low urine UMOD may identify 

persons at risk of progressive kidney disease and mortality.335,336 In a study comparing urine 

and plasma UMOD levels in patients with and without CKD, decreases in plasma UMOD 

paralleled decreases in eGFR and outperformed urinary UMOD in the identification of early 

stages of CKD, discrimination between non-CKD versus advanced CKD, and correlation 

with eGFR.8 Several studies have reported direct correlations between serum/plasma UMOD 

levels and kidney function.337–340 Because serum UMOD often correlates significantly with 

albuminuria, which is itself a strong predictor of CKD progression, UMOD may also play an 

important role in the prediction of CKD progression.341 One prospective study showed that 

low serum UMOD concentrations in CKD patients was associated with an increased risk of 

ESRD, independent of the traditional risk factors for progression of CKD.342 On the other 

hand, higher serum UMOD levels have been associated with better mortality outcomes for 

cardiovascular disease.341,343 Thus, the evidence suggests that high levels of urine and 

serum UMOD are associated with better kidney, cardiovascular disease, and mortality 

outcomes.329 Recent investigations in humans and transgenic mice demonstrated that 

UMOD inhibits the generation of reactive oxygen species in the kidney and systemically by 

suppressing transient receptor potential cation channel, subfamily M, member 2 (TRPM2) 

activity, which may explain why lower UMOD levels are linked to poor outcomes and 

increased mortality.344

Both animal and human studies suggest that UMOD may be involved in inflammation and 

progression of chronic urinary disease by entering the renal interstitium, either through 

basolateral secretion or urinary back-leakage in damaged tubules, and stimulating cells of 

the immune system.345 Rare mutations in UMOD can result in autosomal dominant 

tubulointerstitial kidney disease, leading to CKD.346 Another study showed that 

tubulointerstitial nephritis could be produced in rabbits by intravenous injection of urine or 

UMOD, and was the result of a predominately cellular immune response directed against 

UMOD.347 UMOD also has renoprotective effects, as shown in a mouse model of ischemia-

reperfusion injury where UMOD knockout mice had more severe renal injury and increased 

toll-like receptor 4 (TLR4) expression that was localized on the basolateral rather than apical 
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membrane of the proximal tubule S3 segment where it is normally expressed in wild-type 

mice.348 These findings suggest that UMOD protects the outer medulla during renal injury 

by reducing inflammation through decreased interaction between interstitial 

proinflammatory TLR4 ligands and the TLR4 receptor.348 However, in a rat model of 

pyelonephritis-induced AKI, urinary UMOD levels decreased, but paradoxically increased 

after 3 weeks, and the authors concluded urine UMOD was not a suitable biomarker in this 

model.263 In a few AKI studies in primates, urine UMOD was shown to decrease early 

following injury, but its use in chronic studies or CKD has not been reported for this species.
170,349

In veterinary clinical practice, UMOD performance has been inconsistent in CKD. A few 

reports in dogs with chronic renal failure or urolithiasis have shown reduced renal excretion 

of UMOD.350–353 In dogs with stage 4 CKD, UMOD was undetectable or lower than 

controls in a long-term prospective study.354 In dogs with babesiosis, UMOD did not 

distinguish between diseased and normal dogs, and did not correlate with urine protein 

increases, in contrast with other biomarkers including KIM-1 and SDMA.171,355 In a study 

comparing dogs with various degrees of CKD, only the most azotemic and proteinuric 

animals showed significant decreases in urine UMOD compared with controls.356 However, 

in a recent study, decreased UMOD was observed by sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) in stage 1 non-proteinuric CKD dogs, suggesting that 

UMOD may be an early biomarker of renal dysfunction in dogs.357 In a study of familial 

glomerular nephritis in Doberman dogs, the levels of UMOD changed throughout the course 

of disease such that UMOD levels increased above normal during the early course of 

nephropathy, but declined as disease progressed.358 Similar observations have been made in 

patients with early diabetes without GFR impairment, animal models of diabetes, and 

patients prior to the onset of CKD.8,341,359–361 However, as CKD progresses and GFR 

declines, continued fibrosis causes additional nephrons to drop out leading to decreased 

UMOD production.8,337,361

Various animal knockout and transgenic studies have been done to further characterize 

UMOD and its role in CKD.362 Recently, the use of urinary UMOD as a diagnostic 

biomarker of chronic renal disease in humans has been questioned since an analysis of 

UMOD in 77 CKD patients demonstrated that as many as 22% had normal urinary levels.
333,362 Although more studies are required to fully understand the biological function of 

UMOD, the fact that UMOD levels may either increase or decrease following injury makes 

use of UMOD as a biomarker of CKD challenging. At present, UMOD alone may not be a 

candidate chronic renal biomarker for nonclinical toxicity studies, but it might add value in a 

panel of chronic analytes.

In summary, decreases in plasma UMOD have been shown to parallel decreases in eGFR 

and outperform urinary UMOD in the identification of early stages of CKD, discrimination 

between non-CKD versus advanced CKD, and correlation with eGFR. Because UMOD is 

produced exclusively in the thick ascending limb and early distal tubule, it may be decreased 

in chronic renal disease and aid in the identification of early stages of CKD.
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Beta 2 Microglobulin (B2M)—Early in the search for renal biomarkers of AKI and 

tubule injury, urinary B2M was proposed as an effective biomarker in humans. B2M is a 

LMW protein that is found in every nucleated cell and forms the light chain component of 

class I histocompatibility antigens. It is normally filtered through the glomerulus and then 

almost entirely reabsorbed by the proximal tubules where it is subsequently catabolized into 

its constituent amino acids.363 B2M renal handling studies in rats364, dogs365 and humans366 

suggested that extraction of B2M may also occur from the peritubular capillary circulation 

into proximal tubules; however, another study in rats was unable to show that the extraction 

rate of B2M exceeded the rate of filtration.367 B2M urine levels increase following proximal 

tubular damage due to causes ranging from cardiac surgery, renal transplantation or drug-

induced renal injury.368 In a prospective study of 252 children, urine B2M, NGAL and 

KIM-1 all demonstrated good accuracy in predicting AKI in the emergency room situation.
369

In rats, urine B2M is sensitive to functional alterations of the proximal tubules, and albumin 

to B2M ratios may be used to determine the origin of proteinuria since glomerular injury is 

expected to have a higher albumin to B2M ratio than tubular injury.370 Because urinary 

albumin levels increase 10-fold more than B2M in rats between the ages of 2 and 20 months, 

B2M may be of benefit in evaluation of renal injury in rats with chronic progressive 

nephropathy (CPN) since tubular function is thought to be preserved more than glomerular 

permeability in CPN.370 Over the past decade, urine B2M has been studied extensively and 

qualified for preclinical use in tubular and glomerular DIKI in rat.47,162,166 In a few cases, 

urine B2M was better able to detect glomerular injury than tubular damage in rats162, 

paralleling findings in human renal diseases with predominantly glomerular lesions (IgA 

nephropathy and systemic lupus erythematosus).371,372 Thus, caution is warranted when 

interpreting high urine B2M levels as increased filtered protein load may also be due to 

glomerular injury and competitive tubular uptake.349,373 B2M assays are not widely 

available for nonrodent laboratory species, and even in the rat, values can be highly variable,
47,162,166 with normal values in males approximately 3 times those in females.114 B2M is 

degraded in acidic urine or after short periods at room temperature.374,375 A few studies 

have demonstrated increased concentrations of urine B2M via western blot in dogs with X-

linked hereditary nephropathy and progressive renal disease, but B2M (as well as urine 

NGAL) was not helpful for monitoring mid- to late-stage renal failure, which was best 

monitored using retinol binding protein (RBP), another LMW protein.218,376 For these 

reasons, B2M has not been very successful or widely used in nonrodent laboratory animals 

or veterinary nephrology. Other LMW biomarkers such as alpha 1 microglobulin or RBP can 

be substituted to assess proteinuria of tubular origin in AKI, however many have not been 

evaluated in CKD. Despite these caveats, there is some evidence, mostly from the human 

literature, that urine B2M might provide some support for monitoring renal injury as an 

additive parameter in the clinic, e.g. with lithium-treatment, cadmium toxicity, and human 

immunodeficiency virus patients treated with tenofovir.377–379

B2M accumulates in the serum when GFR is impaired380; however, serum B2M 

concentrations can be increased in conditions other than CKD such as neoplastic and 

inflammatory conditions.381 Systolic blood pressure, age, weight, gender, total cholesterol, 

Obert et al. Page 19

Toxicol Pathol. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



smoking, and urine protein excretion have been shown to be associated with increased serum 

B2M independent of GFR.70,382 In humans serum B2M has shown good correlation with 

eGFR, especially in genetic kidney diseases, but poor correlation with urine protein or 

albumin.383 In human nephrology, its use as a non-creatinine renal filtration marker has been 

surpassed by CysC. Similarly, serum B2M was outperformed by serum CysC in the 

detection of renal damage in dogs with CKD and other kidney diseases.384 This is because 

there are many non-renal diseases that can affect serum values and there are conflicting data 

about the relationship between B2M and disease progression.385,386 For example, 

catabolism in the kidney results in a very small percentage of B2M left in the filtrate under 

normal conditions, and altered cell binding from interaction with proteins that B2M 

chaperones in serum may cause fluctuations of serum B2M during periods of inflammation.
385,386 Since it has been known for over 50 years that B2M can be catabolized in rat 

proximal tubules, there are additional reasons that it is not a good substitute for creatinine or 

CysC in GFR equations.364 These poorly understood factors may therefore affect both serum 

and subsequently urine levels387, and the degree of correlation between B2M and GFR 

varies greatly with the nephrotoxin studied.385,388

In human CKD, B2M increased with the stage of disease389, and could reliably predict GFR 

in many situations.390,391 However, in a recent meta-analysis by the CKD Biomarkers 

Consortium, it was determined that B2M and BTP (discussed below) did not provide 

“substantial additional prognostic information over eGFR-creatinine or albuminuria, but 

might be appropriate in certain circumstances where eGFR was inaccurate or albuminuria 

was unavailable”.392 Given the current data, we believe other biomarkers are better suited 

for use in monitoring chronic kidney injury in nonclinical safety studies although B2M may 

have added value in a panel of biomarkers in certain situations.

Beta Trace Protein (BTP)—BTP is also known as lipocalin-type prostaglandin D 

synthase. Glycoforms of varying molecular weights exist due to differences in post-

translational glycosylation that occur between tissues.99,393–395 The smaller “brain” origin 

glycoform predominates in the cerebrospinal fluid (CSF); whereas, the larger “plasma” type 

glycoform predominates in serum and urine.394 BTP was identified first in human CSF396 

and in rat brain.397,398,395,399 BTP represents almost 3% of the total CSF protein making it a 

useful diagnostic biomarker of CSF leakage.396,400 It is also found in smaller concentrations 

in serum, breast milk, aqueous and vitreous humor, seminal fluid, and amniotic fluid.401 In 

monkey, BTP was localized via in situ hybridization and immunohistochemistry to the 

proximal tubules, loop of Henle, and glomerulus.402 Similarly in a diabetic rat model, BTP 

was detected in the proximal tubules, but was not present in glomeruli.403 Unlike serum 

creatinine, BTP is not physiologically inert and has both ligand-binding and enzymatic 

properties. BTP binds with high affinity to a number of lipophilic substances including 

thyroid hormones, retinoids, β amyloid and bilirubin.399,404,405 It catalyzes the conversion 

of prostaglandin H2 to prostaglandin D2 (PGD2).399 PGD2 has several important 

physiologic functions including sleep regulation, nociception, inflammation, vasodilation, 

bronchoconstriction, platelet aggregation, bone remodeling and adipogenesis.99 Thus, there 

are many clinical conditions that could influence BTP levels.406–408 In addition, many of 

these non-GFR determinants of BTP are not included as variables in the eGFR equations.
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70,99,406 However, unlike serum creatinine which can be decreased with hepatic dysfunction 

due to reduced hepatic production of the precursor creatine, BTP concentrations are not 

affected by liver dysfunction.409

BTP is almost completely excreted by the kidneys. It is freely filtered by the glomeruli, 

reabsorbed and metabolized in the proximal tubule, with minimal tubular secretion.
387,393,399,410,411 Unlike CysC and B2M, BTP is not completely reabsorbed by tubular cells 

and is detectable in urine of healthy individuals, which argues against tubular dysfunction as 

the sole cause of increased urinary levels.103,393,394 In humans, 90–100% of radiolabeled 

BTP was recovered in urine indicating almost total renal elimination.412 In a similar study in 

dogs, only 10.3% of intravenous radiolabeled BTP was recovered in the urine, suggesting 

that BTP was primarily degraded in the tissues.413 However, both studies demonstrated rapid 

elimination of BTP from the serum, with a half-life of <1 hour.412,413 The reason for the 

discordance between these two studies is not known. BTP is highly lipophilic with a 

distribution volume in the dog comparable to the volume of canine plasma indicating 

primarily distribution within the blood,413 but different BTP isoforms used in the two studies 

could have had different filtration properties.99 Others speculated that BTP could be 

metabolized by tubular cells or other cell types, so additional studies are needed to 

understand renal BTP handling.414

Serum BTP levels in humans were shown to have a good correlation with mGFR based on 

inulin clearance and nuclear medicine methods.415 BTP serum levels were found to be 

elevated in patients with decreased kidney function suggesting that this protein could be 

used as a diagnostic biomarker in kidney disease.394,416 Multiple studies showed that 

increased BTP in serum and urine correlated well with decreased GFR in patients with 

CKD, and that the increase was observed in the early stages of the disease.417–422 Studies of 

diverse patient groups including kidney transplant recipients, children, and patients with 

CKD found that BTP was better for detecting reduced GFR than serum creatinine423–425; 

whereas others did not.417,419,426,427 BTP has been reported to be associated with higher 

mortality in patients with CKD and ESRD.392,428–430 Studies suggest age387,417,427,431,432, 

muscle mass433, gender93, ethnicity434, serum albumin levels70, urine protein excretion70 

and body weight406 may have an effect on BTP serum concentrations. BTP was not 

considered to be an appropriate biomarker of GFR in pregnancy435–437, but serum BTP for 

estimating GFR was reliable for assessment of kidney function in neonates.438 BTP is less 

affected by glucocorticoids than CysC as a biomarker of GFR in patients, especially after 

renal transplantation.395 However, high dose (but not low dose) steroid therapy has been 

shown to lower serum BTP.426,439 In studies of elderly patients comparing the novel eGFR 

equations to mGFR, the BTP equation was less precise and accurate than the creatinine/

CysC equation.432,440 In other studies, the BTP equation alone or added to the creatinine/

CysC equation did not improve upon mGFR.380,441,442 White et al.99 found that the BTP 

equations provided no clear advantage over the traditional creatinine-based equations in 

adults due to imprecision of the equations and substantial non-GFR-dependent influences on 

serum BTP concentrations. As predicted, in a recent study comparing multiple CKD-EPI-

GFR equations against the gold standard of inulin clearance, the BTP and B2M equations 

displayed the worst performance with significantly less precision at all levels of GFR and 

did not improve GFR estimation when added to the creatinine/CysC equation.104 Taken 
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together, these data suggest that increased serum BTP may occur due to non-renal 

pathophysiologic processes or biological functions of BTP beyond its association with GFR, 

therefore the utility of BTP for evaluation of chronic renal disease in patients is 

questionable.99

Limited information is available regarding serum, urine, or tissue BTP levels in normal or 

diseased animals.397,402,403,413,443 To the authors’ knowledge, neither urine nor serum BTP 

have been assessed in nonclinical studies. However, given the abundant human literature 

demonstrating its many issues, BTP is not likely as useful as CysC for GFR estimation. 

Based on current information, its use in animals for GFR estimation or as a biomarker of 

chronic DIKI cannot be recommended until further data regarding its utility in chronic renal 

toxicity in nonclinical species becomes available.

Other Alternative Methods for Assessing Chronic Renal Function—A variety of 

other biomarker modalities have been considered for noninvasive monitoring of CKD and 

chronic renal diseases including microRNA assessment444–446, metabolomics357,447, and 

peptidomics448–452, as well as biomarkers originally intended for detection of glomerular 

diseases (e.g. slit diaphragm proteins453–455). Unfortunately, while these approaches may 

have some utility in some chronic renal diseases in humans, they do not lend themselves to 

the high throughput and rapid analysis required for nonclinical GLP studies, nor can they be 

extrapolated to GFR estimation. Also, they provide no translational advantages in the 

nonclinical safety domain to help monitor potential DIKI in clinical trials. Such approaches, 

despite their promise in clinical CKD, are not discussed in this review.

Applications for Biomarkers of CKD

When it comes to renal biomarker implementation in nonclinical safety, the most frequent 

question from toxicologists and clinical pathologists is “In what situation should I utilize 

these biomarkers where they are most appropriate, and can they provide clinically 

translatable information without encumbering study logistics?” It is inappropriate to include 

these or any other analytes in a toxicity study simply because they are available. It is likely 

that these parameters will be part of a panel of renal biomarkers that include acute 

biomarkers such as urinary KIM-1, NGAL, and albumin to cover both acute and chronic 

renal events. However, there are specific situations where the judicious use of the SDMA, 

CysC, DKK3 or other assays discussed above may be valuable to clinicians overseeing 

patients in clinical trials. The first situation is probably the most obvious and common, but 

potentially has the most potential for overuse. This occurs when a potentially progressive 

tubulointerstitial kidney lesion is noted in 2 to 4-week acute or subacute toxicity studies in 

animals and there is concern that the lesion could progress to chronic renal failure. If the 

lesion initiated in the acute period, these chronic biomarkers can be evaluated in studies of 6 

months or longer where NGAL or KIM-1 might no longer be increased since these 

biomarkers tend to wane over time. In other cases, a renal lesion is found that is very subtle 

when it is noted in 2 to 4-week studies and there is no meaningful increase in biomarkers 

such as urinary KIM-1, NGAL, or albumin. It is possible that progression could result in a 

more severe lesion by 3 or 6 months of dosing, and that a panel of renal biomarkers which 

would include both acute and chronic biomarkers could provide some confidence for 
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clinicians that the lesion could be monitored in the clinic, particularly if the safety margin 

was small and the lesions occurred at or near clinical parity. It should be stressed that the 

clinical safety margin, nature of the lesion, and potential clinical translatability are all 

important factors in the decision to add chronic biomarkers in subsequent studies. If a 

nephrotoxic signal occurs only at animal doses that represent 20-fold or higher multiples of 

clinical exposure or was limited to non-tolerated doses resulting in morbidity in animals, 

there is little to be gained by adding any renal biomarkers in longer term animal studies. If 

the renal toxicity is represented by recurrent tubule degeneration and/or necrosis typical of 

AKI, then acute renal biomarkers are likely to be as effective in detecting renal injury as the 

novel biomarkers discussed above, and may be useful in the clinic to monitor for potential 

nephrotoxicity as additional nephrons undergo degenerative changes. In contrast, a very 

subtle lesion or changes that are distinct from AKI (e.g. fibrosis or atrophy as noted below) 

may be better candidates for inclusion of chronic renal functional biomarkers than acute 

injury biomarkers which are less likely to demonstrate modest structural changes.

As another example, a problematic gap in long-term safety evaluation occurs when the 

lesion is not typical of AKI and necrosis or degeneration are not the primary features. In this 

circumstance, most acute renal biomarkers would not be expected to change significantly. 

Examples include animal studies where drugs that have induced minimal interstitial fibrosis 

and tubular atrophy after several weeks of dosing may cause regulatory or clinical concern 

for progressive renal fibrosis in humans, or inflammatory conditions that raise concern for 

potential chronic interstitial nephritis in patients. The authors are familiar with two different 

proprietary drug candidates that induced mild fibrosis in definitive GLP studies in rats or 

dogs, but while the lesions were still present after 3 months, neither progressed in severity in 

longer-term chronic studies based on histopathology. However, regulatory concern over the 

lesions resulted in clinical holds and a project cancellation due to a lack of a reliable 

translatable biomarker in the clinic to augment eGFR alone. There are also examples of 

drugs which have induced transient vascular ischemia in the kidney causing very small 

infarcts at irregular and unpredictable intervals. In these cases, acute renal biomarkers could 

miss the lesion if sampling is not performed near the time of injury, and the long-term 

decline in renal function would be difficult to monitor or prevent due to minimal severity, 

renal compensatory changes, or sampling at a time that is distant from the peak injury or 

functional defect. With the trend among pharmaceutical companies for developing highly 

immunomodulatory molecules/biologics as anticancer therapeutics, we have noted a large 

number of compounds (proprietary information) which induce enhanced inflammatory 

infiltration into the renal interstitium replacing parenchyma as a function of 

suprapharmacology. There are similar examples in the literature, including lymphohistocytic 

inflammation reported in the kidneys of monkeys treated with an anti-cytotoxic T-

lymphocyte-associated protein 4 antibody,456 and there are several clinical reports of acute 

interstitial nephritis associated with check point inhibitor administration.457–461 In many of 

these examples, urinary biomarkers have not been effective in identifying lesions except in 

the most severe cases, and regulatory concern has extended to the possibility that these may 

mimic the syndrome of drug-induced interstitial nephritis, which is life threatening in 

humans (albeit very rare) and generally not predicted in animals.462 Antisense 

oligonucleotide therapies, particularly of the 2’-O-methyl or 2’-O-methoxyethyl class, have 
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often been associated with perivascular inflammatory infiltrates, and the kidney is one of the 

more common locations for this lesion.463,464 There have been several highly publicized 

regulatory issues in the kidney with these compounds, and the practical use of chronic renal 

biomarkers would help alleviate some of this regulatory concern.465

Applications for Biomarkers of Glomerular Injury—Another relatively common 

situation where the use of chronic renal biomarkers in nonclinical studies would be 

extremely beneficial to safety scientists overseeing clinical trials involves nephrotoxic 

compounds that affect the glomerulus rather than the tubules. While by far the most common 

glomerular toxicity encountered by nonclinical toxicologic pathologists is related to immune 

complex disease associated with the administration of humanized antibodies and peptides to 

nonhuman primates, this is not a situation that lends itself to the use of chronic renal 

biomarkers.465–467 The rapidly progressive glomerulonephritis (RPGN) produced by anti-

drug antibody-related immune complexes are too fulminant to require chronic dosing to 

observe a signal, and these preclinical immune reactions are not predictive in humans.465 

Also, most cases of immune-mediated glomerulonephritis due to drug or chemical treatment 

may have a rapid onset and fulminant course typical of human RPGN, thus human trials 

would not benefit from the addition of chronic renal biomarkers in longer term animal 

studies. In contrast, there are other types of glomerular disease in toxicologic studies that 

have a more protracted progression and where the clinical translatability is less clear, 

including glomerulosclerotic lesions and/or those that are related to intracellular 

accumulation of xenobiotic substances.465,468 In these situations, serial UPCR measurement 

along with surrogate biomarkers of GFR such as SDMA, CysC, or DKK3 could track the 

decline in renal function that accompanies glomerular injury enabling assessment of the 

development of the lesion in individual animals over time, instead of comparing microscopic 

lesions across dose groups at the end of dosing. While these analytes may be utilized 

directly as human biomarkers in clinical trials, the information derived from animal data can 

also be directly compared to alterations in eGFR in humans, which assesses the same 

factors. Thus, direct comparison of biomarker data or clinical translation would not be 

necessary.

Applications in Discovery Pathology—The final area of unexplored utility for these 

chronic renal biomarkers is in discovery pathology. Clinical pharmacology studies of renal 

impairment in human patients are often required in phase II or III trials when the intended 

target population for a drug includes patients with below normal renal function. In general, 

supportive studies in animal models of renal disease are not necessary to begin these trials. 

However, in early phases of candidate selection of potential drugs that may be intended for 

these renally impaired populations, it is quite common to compare candidate compounds or 

to run investigational studies with lead candidates in rodent renal models looking for 

efficacy in restoring or maintaining renal function, as well as eliminating candidates with 

unacceptable nephrotoxic profiles. In these situations, SMDA, DKK3, CysC, or even GFR 

measurement are an excellent means of determining potential effects on renal function over 

weeks or months. For some drug indications such as lysosomal storage diseases or 

polycystic kidney disease, serial use of these biomarkers in the same animal is probably the 

most critical area where information might be obtained that could have a direct effect on the 
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prospects of drug success. Currently, histopathology and urine protein are the main 

parameters utilized in these long-term animal model studies to compare between drug 

candidates, but the variability of morphologic changes between individual animals often 

makes histopathologic assessment difficult and inadequate.

Summary and Conclusion

Estimation of GFR is a critical component in assessing chronic renal function in human 

patients and along with UPCR and UACR is the cornerstone of monitoring potential kidney 

adverse events during clinical trials. Unfortunately, GFR measurement is often logistically 

impractical to implement in nonclinical safety assessment studies, and eGFR calculations in 

animals are not yet available.83,84,106 Thus, surrogate analytes of chronic renal function are 

needed to provide a basis for reliable translation of potential nephrotoxic signals in chronic 

animal safety studies to clinical trials and for monitoring potential adverse renal events.

Biomarkers that have promising potential applicability in chronic nonclinical studies which 

may directly parallel changes in GFR currently include SDMA, CysC, and DKK3 alone or 

in combination in a panel of analytes along with proven AKI biomarkers such as KIM-1 or 

NGAL. These individual biomarkers and/or biomarker panels may provide substantial 

advantages over using KIM-1 or NGAL alone in studies > 3 months duration, increasing the 

sensitivity and specificity of current approaches. Other biomarkers such as UMOD or BTP 

may be included in a panel as additional parameters to support a weight-of-evidence 

approach in certain situations. This additional information on renal function may highlight 

potential clinical risk and provide a direct bridge to predict potential adverse declines in 

GFR in patients. Therefore, although there is a translational aspect to their use and they may 

be added to clinical trials to monitor changes observed in nonclinical studies, the fact that 

they can act as surrogate GFR biomarkers indicates that significant changes in SDMA, 

DKK3, CysC, KIM-1, and/or NGAL (with changes in urine protein) in chronic animal 

studies may reflect or predict possible changes in GFR in patients over time. Therefore, 

routine eGFR and UPCR measurements in clinical trial patients may be sufficient to provide 

confidence that chronic renal signals in animals are not occurring in clinical patients, even if 

the same biomarkers are not used in both animal and human studies. Additional toxicity 

studies with these exploratory biomarkers will demonstrate which of the alternative chronic 

renal biomarkers hold the most promise or, like acute renal biomarkers, if a panel of 

biomarkers will best monitor progression of chronic renal injury. The use of several of these 

chronic renal biomarkers can be implemented almost immediately in drug discovery or 

animal model studies and should provide a great benefit over current renal biomarkers for 

assessment of safety and efficacy of drugs intended to target CKD and inherited chronic 

renal diseases.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Renal Injury Biomarkers Along the Continuum of Animal Toxicity Studies. Acute renal 

injury biomarkers (KIM-1, NGAL, B2M, urine CysC) have shown some utility in 

monitoring the progression of acute to chronic injury, but often their successful usage in 

subacute to subchronic renal injury has been dependent upon type of injury and/or species 

(italicized). In addition to the standard renal functional biomarkers (ALB, Protein, mGFR), 

other biomarkers have shown promise in predicting and monitoring subacute to subchronic 

(SMDA, DKK3, serum CysC, UMOD) or chronic renal injury (SDMA, DKK3, serum 

CysC) in animal toxicity studies. u: urine, s: serum, p: plasma, kidney injury molecule 1: 

KIM-1, neutrophil gelatinase-associated lipocalin: NGAL, beta 2 macroglobulin: B2M, 

cystatin C: CysC, symmetrical dimethyl arginine: SDMA, dickkopf homolog 3: DKK3, 

uromodulin: UMOD, albumin: ALB, measured glomerular filtration rate: mGFR.
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Table 1:

Human Clinical Research Biomarkers Evaluated in Chronic Kidney Injury and Disease in Animals

Marker Matrix Source Usage Veterinary 
Diagnostics

Veterinary 
Research

Preclinical 
Research

KIM-1 Urine ↑PCT Released Tubular Injury/
Regeneration X X X

KIM-1 Blood ↑PCT Released Tubular Injury/
Regeneration - X -

a

NGAL Urine ↑Tubular Released Tubular Injury/
Regeneration X X X

NGAL Blood ↑Tubular Released Tubular Injury/
Regeneration X X -

CysC Urine ↓PCT Resorption Tubular Injury X X X

CysC Blood Glomerular Filtration eGFR X X -
a

SDMA Blood Glomerular Filtration eGFR X X X

DKK3 Urine ↑Tubular Released Tubular Injury/Fibrosis - X X

DKK3 Blood ↑Tubular Released Tubular Injury/Fibrosis - X X

B2M Urine ↓PCT Resorption Tubular Injury - X -
a

B2M Blood Glomerular Filtration eGFR - X -
a

UMOD Urine ↓TAL/DT Released Tubular Injury/Fibrosis - X -
a

UMOD Blood ↓TAL/DT Released Tubular Injury/Fibrosis - - -

BTP Blood Glomerular Filtration eGFR - - -

a
Acute kidney injury reports published, but no chronic injury usage reported. KIM-1: kidney injury molecule 1, NGAL: neutrophil gelatinase-

associated lipocalin, CysC: cystatin C, SMDA: symmetric dimethylarginine, DKK3: dickkopf homolog 3, B2M: beta-2 microglobulin, BTP: beta 
trace protein, UMOD: uromodulin, PCT: proximal convoluted tubule, TAL: thick ascending limb, DT: distal tubule, eGFR: estimated glomerular 
filtration rate
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Table 2:

Summary of Biomarkers of Acute and Chronic Renal Injury Evaluated in Chronic Kidney Injury and Disease

Biomarker
Regulatory 

Status
a Comments R D NP MP H

Acute Renal Injury Biomarkers

uKIM-1 Q (H)

Functions in tubular repair as epithelial scavenger receptor for phosphatidyl 
serine-mediated phagocytosis of apoptotic cells.67 Expression is upregulated 
with PT injury.87 Chronic PT upregulation was associated with interstitial 
inflammation and fibrosis in mice suggesting a link between acute and 
chronic injury.76 Current dog assays are problematic.117

X X X

uNGAL LOS (R) / Q (H)

Transport protein originally found in neutrophil specific granules. Located 
primarily in distal nephron. Induced with injury, inflammation, and 
neoplastic transformation in many epithelia.127 Functions as Fe-binding 
siderophore involved in host defense and is involved in nephron 
development.130 AKI marker with a large dynamic range in many species.
38,45,141,146 Good at predicting the progression of AKI to CKD.150 Systemic 
inflammation or sepsis can cause increased serum levels which can lead to 
increased urine levels in the absence of renal injury.146

X X X X X

Acute Renal Injury: LMW Biomarkers of PT Injury with Normal Glomerular Function

uB2M Q

Found in every nucleated cell and forms the light chain component of class I 
histocompatibility antigens. Normally filtered through the glomerulus and 
almost entirely reabsorbed by the PT.357 Urine levels increase with 
glomerular and/or PT damage due to a variety of causes.362 Has poor 
stability at room temperature and in acid urine.369 Less useful than other 
LMW biomarkers such as CysC or retinol binding protein, particularly in 
dog.161,370

X X
b X X

uCysC Q (H)

Produced at a constant rate by all nucleated cells and functions as a 
lysosomal protease and cysteine proteinase.228 Normally filtered through the 
glomerulus and almost entirely reabsorbed by the PTs.229 Urine levels 
increase due to impairment or saturation of PT reabsorption.228 

Demonstrated utility in clinic and in animals.31,33,227

X X X X

Acute Renal Injury and Chronic Renal Dysfunction: Intermediate to HMW Biomarkers of Glomerular / Tubular Damage

uAlbumin Q (H standard)

High specificity for renal injury. Parallels changes in total urinary protein 
levels in most species, except in male rats.55,58 Both intact and fragmented 
albumin is normally reabsorbed in PTs, but immunoassays can underestimate 
low level injury due to PT resorption/excretion of variably sized non-
immunoreactive albumin fragments.51,64

X X X X X

uProtein Q (H standard)

Common method for monitoring the progression of glomerular disease in 
humans and animals.55,56 Can have lower specificity than albumin due to 
post-renal inflammation or increased production of abnormal LMW proteins.
52,53

X X X X X

Chronic Renal Dysfunction: Candidate Biomarkers

sCysC NQ (H standard)

Recent eGFR calculations in humans have used cystatin in blood and urine 
rather than creatinine to more precisely calculate GFR.15 Outperforms 
creatinine in rats with subacute renal injury and in dogs with decreased 
mGFR.105,261

X X X X

sSDMA NQ

By-product of cellular arginine metabolism and continually released into the 
circulation.274 Depends on glomerular filtration for excretion and serum 
levels correlate with renal function.278 Increases progressively with increased 
renal impairment and progressive nephron loss in animals and humans with 
CKD.285,286

X X X

u/pDKK3 NQ

Member of a family of glycoproteins in the Wnt signaling pathway.309 

Demonstrates promising utility as a urinary biomarker of ongoing tubular 
injury and progressing tubulointerstitial fibrosis.312,314 Another surrogate 
renal biomarker for GFR.315

X X

Chronic Renal Dysfunction: Other Experimental Biomarkers

u/sUMOD NQ
Also known as Tamm-Horsfall protein, is the most abundant protein in urine.
319 Produced exclusively in the thick ascending limb and the early distal 

X X X X
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Biomarker
Regulatory 

Status
a Comments R D NP MP H

tubule.320 Several studies have reported positive correlations between serum/
plasma UMOD levels and kidney function.331

sB2M NQ
Accumulates in serum when GFR is impaired and increases with stage of 
renal disease, but use in humans and dogs as a non-creatinine renal filtration 
marker has been overshadowed by CysC.374,378

X X X

sBTP NQ

Also known as lipocalin-type prostaglandin D synthase. Is not 
physiologically inert. Has ligand-binding, enzymatic properties, and is 
associated with multiple physiologic functions which can affect its levels.393 

In humans, BTP levels have good correlation with mGFR and increase with 
decreased GFR in CKD especially in early stages.409,414 Limited use in 
animals.

X X

a
Regulatory status refers to rat unless otherwise specified,

b
Western blot, R: rat, D: dog, NP: nonhuman primate, MP: minipig, H: human, Q: qualified, NQ: not qualified, LOS: letter of support, LMW: low 

molecular weight, HMW: high molecular weight, u: urine, s: serum, p: plasma, KIM-1: kidney injury molecule-1, PT: proximal tubule, NGAL: 
neutrophil gelatinase-associated lipocalin, B2M: beta 2 microglobulin, BTP: beta trace protein, CysC: cystatin C, SDMA: symmetrical dimethyl 
arginine, DKK3: dickkopf homolog 3, UMOD: uromodulin, eGFR: estimated glomerular filtration rate, mGFR: measured glomerular filtration rate, 
CKD: chronic kidney disease
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