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SUMMARY

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in 

perception, cognition, emotion and learning. We profiled ~1.3 million cells covering the entire 

adult mouse isocortex and HPF and derived a transcriptomic cell type taxonomy revealing a 

comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the 

traditional view of HPF as having a simpler cellular organization, we discover a complete set of 

glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, 

suggesting that HPF and isocortex share a common circuit organization. We also identify large-

scale continuous and graded variation of cell types along isocortical depth, across isocortical sheet 

and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a 
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molecular architecture of mammalian isocortex and hippocampal formation and begins to shed 

light on its underlying relationship with the development, evolution, connectivity and function of 

these brain structures.

Graphical Abstract

ETOC:

Single-cell transcriptomics of entire mouse isocortex and hippocampal formation shows shared 

cellular and circuit organization and large-scale continuous gradients of neuron type variation that 

illuminates the underlying relationship between these two critical brain structures.

INTRODUCTION

The cerebral cortex occupies a large portion of the mammalian brain and executes multiple 

functions, from sensory perception and generation of voluntary behavior to emotion, 

cognition, learning and memory. The cortex is partitioned into multiple areas with specific 

input and output connections with many subcortical and other cortical regions (Rakic, 2009; 

Van Essen and Glasser, 2018). This area specialization is likely a major contributing factor 

to the diversity of functions supported by cortex (Cadwell et al., 2019).

Developmentally, cortex originates from pallium, a main part of the telencephalon, which 

can be divided into several parts (Pessoa et al., 2019). Medial pallium gives rise to 
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hippocampal formation (also called archicortex), ventral pallium gives rise to olfactory 

cortex (also called paleocortex), and in mammals, dorsal pallium gives rise to isocortex (also 

called neocortex). Archicortex and paleocortex are considered evolutionarily older 

structures, whereas iso/neocortex emerged later and substantially expanded in vertebrate 

evolution, culminating in its current form in mammals (Rakic, 2009) with a general belief 

that archicortex and paleocortex neurons are arranged in 3 to 5 layers and iso/neocortex in 6 

layers.

Functional areas of the iso/neocortex (~180 in humans and ~30 in mice) (Van Essen and 

Glasser, 2018) tile the cortical sheet and include primary and higher-order sensory areas 

across all sensory modalities, primary and secondary motor areas, as well as multiple 

associational areas in the frontal, medial, and lateral parts of the isocortex that perform a 

variety of integrative functions. Extensive connectivity tracing and in vivo neural imaging 

studies have shown that these neocortical areas together form a hierarchical neural network 

with functionally distinct modules and feedforward and feedback pathways both within and 

between modules (Coogan and Burkhalter, 1993; Felleman and Van Essen, 1991; Harris et 

al., 2019; Markov et al., 2014; Siegle et al., 2021).

Hippocampal formation (HPF) is also a complex multi-areal structure, which includes the 

hippocampal region, the subicular complex, and the medial and lateral entorhinal cortex. 

Neurons in these regions are interconnected to form a network that underlies many functions 

of HPF – learning, memory, spatial navigation, and regulation of emotions (Bienkowski et 

al., 2018; van Strien et al., 2009). In particular, there is a prominent functional transition 

along the dorsal-ventral axis of HPF, with the dorsal network mainly mediating spatial 

navigation and the ventral network mainly mediating emotional behaviors (Cembrowski and 

Spruston, 2019).

Many molecular, anatomical, and physiological studies have revealed a broad spectrum of 

neuronal cell types in different cortical and hippocampal regions, whose variety of cellular 

properties are likely related to specific functions in the circuits they are embedded in (Zeng 

and Sanes, 2017). But a systematic study is needed for a complete picture of the number and 

distribution of cell types in these regions and for understanding how different cortical and 

hippocampal regions interact with the rest of the brain and carry out their individual 

functions.

Both isocortex and HPF have two major classes of neurons, glutamatergic excitatory and 

GABAergic inhibitory, each containing multiple types. Glutamatergic neuronal types are 

organized by layers and their long-range projection patterns (Harris and Shepherd, 2015); 

their tremendous diversity in interareal axon-projection patterns forms the structural basis of 

the hierarchical network (D’Souza et al., 2016; Harris et al., 2019). Isocortical and 

hippocampal GABAergic interneuron types are similarly organized by their embryonic 

origins, firing characteristics and local connectivity patterns (Fishell and Rudy, 2011; Pelkey 

et al., 2017; Tremblay et al., 2016).

Single-cell RNA-sequencing (scRNA-seq) studies have systematically characterized and 

classified cell types in individual regions of isocortex and hippocampus (Harris et al., 2018; 
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Hodge et al., 2019; Tasic et al., 2016; Tasic et al., 2018; Yao et al., 2020; Zeisel et al., 2015). 

Previously, we analyzed single-cell transcriptomes to define 133 cell types in two isocortical 

areas, primary visual cortex (VISp) and anterolateral motor cortex (ALM), in mice (Tasic et 

al., 2018) and found that they have shared GABAergic interneuron types but distinct 

glutamatergic neuron types. More recently, using the Patch-seq approach, we simultaneously 

profiled the transcriptomic, electrophysiological, and morphological properties of a large set 

of GABAergic interneurons from mouse visual cortex and found excellent correspondence 

among the three modalities (Gouwens et al., 2020). Similar findings were made in another 

Patch-seq study focused on mouse primary motor cortex (MOp) (Scala et al., 2020). These 

studies demonstrate the validity and power of using the highly scalable scRNA-seq approach 

to generate a comprehensive census of cell types as a foundation for further structural and 

functional studies of brain circuits.

Here we cover all of the adult mouse isocortex and HPF, analyzing >1.3 million cells with 

two different scRNA-seq platforms (10x and SMART-Seq). We developed a consensus 

clustering approach to combine the two datasets and derived a cell type taxonomy 

comprising 388 transcriptomic types of which 364 are neuronal. The coverage enabled 

defining neuronal cell type composition across the entire spatial landscape without 

significant gaps, including the discovery of many, to the best of our knowledge, newly 

identified cell types in associational cortical areas and HPF. Comparing between isocortex 

and HPF, we find that all GABAergic neuron types in isocortex are shared with HPF, 

whereas HPF also contains additional GABAergic types unique to itself. On the other hand, 

glutamatergic neuron types from different HPF regions are highly distinct from but also, 

surprisingly, homologous to those in isocortex. This homologous relationship is supported 

by both shared molecular signatures, including canonical transcription factors, and similar 

layer-specific distributions. Many isocortical glutamatergic types are shared across multiple 

areas and exhibit gradient-like gene expression variations along the cortical sheet. Similarly, 

hippocampal and subicular glutamatergic types are organized along multiple spatial 

dimensions. Our study reveals the molecular organizational structure of the entire isocortex 

and HPF, suggesting an evolutionarily conserved cellular and circuit organization between 

these two major brain structures.

RESULTS

Generation of the transcriptomic cell type taxonomy

To conduct large-scale single-cell transcriptomic characterization of cell types, we used two 

complementary approaches: SMART-Seq v4 (SSv4) (Tasic et al., 2018), and 10x Genomics 

Chromium platform based on version 2 chemistry (10xv2) (STAR Methods, Methods S1).

Brain regions for profiling and boundaries for dissections were defined by Allen Mouse 

Brain Common Coordinate Framework version 3 (CCFv3) (Wang et al., 2020) and sampled 

at mid-ontology level covering all regions of isocortex (CTX) and HPF (Fig. 1A, Table S1, 

Methods S1), listed here for reference. Covered areas in CTX: frontal pole (FRP), primary 

motor (MOp), secondary motor (MOs), primary somatosensory (SSp), supplemental 

somatosensory (SSs), gustatory (GU), visceral (VISC), auditory (AUD), primary visual 

(VISp), anterolateral visual (VISal), anteromedial visual (VISam), lateral visual (VISl), 
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posterolateral visual (VISpl), posteromedial (VISpm), laterointermediate (VISli), postrhinal 

(VISpor), anterior cingulate (ACA), prelimbic (PL), infralimbic (ILA), orbital (ORB), 

agranular insular (AI), retrosplenial (RSP), posterior parietal association (PTLp), temporal 

association (TEa), perirhinal (PERI), and ectorhinal (ECT) areas. Covered regions in HPF 

are divided into two main parts: the hippocampal region (HIP), including fields CA1, CA2, 

CA3, and dentate gyrus (DG), and the retrohippocampal region (RHP), including lateral 

entorhinal area (ENTl), medial entorhinal area (ENTm), parasubiculum (PAR), 

postsubiculum (POST), presubiculum (PRE), subiculum (SUB), and prosubiculum (ProS). 

The few remaining small regions in HPF, i.e., fasciola cinereal (FC), induseum griseum (IG), 

hippocampo-amygdalar transition area (HATA), and area prostriata (APr), were included in 

the dissection of their neighboring regions.

We used transgenic driver lines for cell isolation by fluorescence-activated cell sorting 

(FACS) to enrich for neurons (STAR Methods, Methods S1, Table S2) to obtain 1,228,636 

single-cell 10xv2 transcriptomes and 76,381 single-cell SSv4 transcriptomes after the 

quality control (QC) process. We first clustered 10xv2 and SSv4 cells separately, resulting in 

332 10xv2 clusters and 324 SSv4 clusters. Integrative clustering of the 10xv2 and SSv4 

datasets resulted in 388 consensus clusters (Fig. 1B, Table S3). Despite the large difference 

in gene detection for the two platforms (8,894 ± 1,551 genes per cell for SSv4 and 4,125 ± 

1,176 for 10xv2, average ± SD), there was good correlation for the numbers of genes 

detected at each cluster level between the two methods (Methods S1, Detection rates).

Post-clustering, we constructed a taxonomy tree (Fig. 1B) by hierarchical clustering of 

transcriptomic clusters based on the average gene expression per cluster of 5,981 

differentially expressed (DE) genes (Table S4). We explored the relationships among the 388 

clusters by visualizing cells belonging to them with Uniform Manifold Approximation and 

Projection (UMAP) and constellation plots (Fig. 1C–E, Data S1, Taxonomy). These different 

approaches for exploring a cell type landscape, which is a combination of discrete and 

continuous gene expression variation, provide a holistic description of the taxonomy. 

Taxonomical trees are simple but artificially discrete: they do not preserve all the 

multidimensional relationships among types, but they highlight the dominant hierarchical 

relationships which are less clear in UMAP representations. UMAPs and constellation plots 

enable visualization of continuity in addition to discreteness. With this base, we label sets of 

cells within the taxonomy from coarse to fine categories as: class, neighborhood, subclass, 

supertype, and type (Fig. 1B).

To annotate this taxonomy containing many new transcriptomic types, we collated sets of 

DE genes selective for each cluster and each branch of the taxonomy to represent different 

levels of granularity, and examined their anatomical expression patterns using the Allen 

Brain Atlas (ABA) RNA in situ hybridization (ISH) data (Lein et al., 2007). Based on this 

anatomical (both regional and laminar) annotation and prior knowledge, we assigned the 388 

clusters into 4 classes, 8 neighborhoods, 42 subclasses, and 101 supertypes. The GABAergic 

neuronal class contains 6 subclasses and 119 clusters; the glutamatergic neuronal class 

contains 28 subclasses and 241 clusters; the astrocyte/oligodendrocyte non-neuronal class 

contains 2 subclasses and 14 clusters; and the immune/vascular non-neuronal class contains 

4 subclasses and 10 clusters (Fig. 1B, Table S3). We grouped the subclasses into 8 
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neighborhoods, 2 GABAergic (CGE and MGE), 5 glutamatergic (L2/3 IT, L4/5/6 IT Car3, 

PT, NP/CT/L6b, and DG/SUB/CA), and one ‘Other’ neighborhood.

Detailed analyses of the neuronal neighborhoods are presented in sections below. The 

‘Other’ neighborhood, briefly mentioned here, includes all non-neuronal subclasses, as well 

as two neuronal subclasses, Cajal-Retzius (CR) (glutamatergic, mostly in layer 1) and Meis2 

(GABAergic, mostly in white matter) (Fig. 1B, Table S3). Meis2 neurons were identified as 

related to olfactory bulb interneurons (Frazer et al., 2017). For the astro/oligo class, we 

identified 3 astrocyte clusters and 11 oligodendrocyte clusters. For the immune/vascular 

class, there were 1 endothelial cell cluster, 3 smooth muscle cell (SMC) and pericyte 

clusters, 3 vascular/leptomeningeal cell (VLMC) clusters and 3 microglia/perivascular 

macrophage (PVM) clusters. Since the cell isolation in this study aimed toward enrichment 

for neurons, we had limited sampling of non-neuronal cells (15,241 10xv2 cells and 1,828 

SSv4 cells after QC) and this study is focused on neuronal cell types.

Comparing this taxonomy with six previous studies (Cembrowski et al., 2018; Harris et al., 

2018; Saunders et al., 2018; Tasic et al., 2018; Yao et al., 2020; Zeisel et al., 2018), we 

found generally good but variable correspondences (Data S1, Taxonomy comparison). While 

these studies focused on one or two individual regions, our current taxonomy provides an 

overview of cell type variation across regions.

GABAergic cell type taxonomy

The GABAergic inhibitory neuronal class is divided into two neighborhoods that correlate 

with distinct developmental origins: caudal ganglionic eminence (CGE) (Fig. 2A–E) and 

medial ganglionic eminence (MGE) (Fig. 2F–J). Note that some of the CGE cell types (e.g., 

some neurogliaform cells) may, in fact, be developmentally derived from the nearby preoptic 

region (PO) (Niquille et al., 2018). Each neighborhood is further divided into 3 subclasses: 

Lamp5, Sncg and Vip in CGE, and Sst Chodl, Sst and Pvalb in MGE.

In the CGE neighborhood, the Lamp5 (mostly neurogliaform cells), Sncg and Vip subclasses 

are divided into 4, 5 (one containing Vip cells), and 6 supertypes, respectively (Fig. 2D, 

Table S3). In the MGE neighborhood, the Sst Chodl subclass remains as one group 

(representing long-range projecting Sst cells); the Sst and Pvalb subclasses are divided into 

11 and 3 supertypes, respectively (Fig. 2I, Table S3). The current CTX-HPF GABAergic 

taxonomy is largely consistent with previous transcriptomic taxonomies derived from 

cortical areas VISp-ALM (Tasic et al., 2018) and MOp (Yao et al., 2020) at the supertype 

level but exhibits notable ambiguity at the type/cluster level (Fig. S1). It is also consistent 

with the large body of literature on cortical GABAergic interneurons (Lim et al., 2018; 

Pelkey et al., 2017; Tremblay et al., 2016), and our Patch-seq study (Gouwens et al., 2020) 

with MET types defined in that study corresponding well with the supertypes defined here 

(Fig. S1).

As shown in dot plots (Fig. 2A, F) and UMAPs (Fig. 2C, H), most clusters are shared by all 

isocortical areas, consistent with our previous observations (Tasic et al., 2018), and also by 

RHP regions. Even the relative proportions of cells in these clusters, based the large number 

of 10xv2 cells, appear consistent across the different regions (Fig. 2A, F). At the same time, 
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we also observe a set of clusters that are specific to or highly enriched in HPF. These include 

the Lamp5 Lhx6, Ntng1 HPF, Vip Cbln4 HPF, Sst Lmo1 HPF and Sst Ctsc HPF supertypes, 

and select clusters within shared supertypes (Fig. 2A, D, F, I). Conversely, some clusters are 

largely absent from HIP (e.g. Lamp5 Pax6, Sst Syndig1l and Sst Hpse supertypes), while 

others have CTX- or HPF-selective counterparts (e.g. Sst Myh8 and Sst Etv1 clusters in 

CTX versus those in HPF). The greatest distinction in GABAergic interneuron type 

composition is between CTX and HIP itself; the RHP regions often contain both CTX and 

HIP clusters, with a few exceptions.

Our CTX-HPF GABAergic taxonomy corresponds well with a previous scRNA-seq study of 

CA1 interneurons (Harris et al., 2018), particularly for some HPF-specific clusters identified 

here (Data S1, Taxonomy comparison). For CGE, the Ntng1 HPF supertype does not express 

canonical pan-CGE marker Prox1 (Miyoshi et al., 2015; Rubin and Kessaris, 2013) nor its 

subclass markers Vip, Sncg or Lamp5 (Fig. 2A). Ntng1+ cells in HIP are seen at the stratum 

radiatum/stratum lacunosum-moleculare border (Fig. 2E) and may be the trilaminar cells or 

radiatum-retrohippocampal neurons projecting to RSP. The Lamp5 Lhx6 supertype is much 

more abundant in HIP than in cortex and is likely derived from MGE instead of CGE 

(Pelkey et al., 2017); its clusters #5, 8 and 9 are HPF-specific and are marked by Rxfp3 
which is found in CA3 (Fig. 2E). Clusters #54–55 in supertype Vip Cbln4 HPF are marked 

by Qrfpr, also expressed in CA3 (Fig. 2E).

The Sst subclass has multiple HPF-enriched clusters, most of which are marked by Npffr1. 

Since isocortical Sst Myh8 and Etv1 cells are L5 Martinotti cells (Gouwens et al., 2020) 

(Fig. S1B), the HPF Myh8 and Etv1 cells are likely the Martinotti-like oriens lacunosum-

moleculare (OLM) cells (Leao et al., 2012). Sst Ctsc HPF is a highly distinct HPF-specific 

supertype; clusters #102–103 are marked by Rxfp3 which is expressed in CA3, while 

clusters #104–105 are marked by Cxcr4 expressed in the polymorphic layer of DG (DG-po, 

also known as the hilus) (Fig. 2J). The Cxcr4+ cells may correspond to the hilar performant 

path-associated (HIPP) or DG somatostatin-expressing-interneurons (DG-SOMIs) described 

previously (Yuan et al., 2017). We also identified a HIP-specific Pvalb chandelier cell cluster 

#122 with unique markers Ntf3 and Sntb1.

Glutamatergic cell type taxonomy

The glutamatergic neuronal class is much more complex than the GABAergic class (Table 

S3). Excluding the CR type, we defined 5 neighborhoods, 28 subclasses, 56 supertypes and 

241 types/clusters in the glutamatergic class and visualized them in a taxonomy tree (Fig. 

1B), a UMAP and a constellation plot (Fig. 1C–D), together with marker gene expression 

(Data S1, Glutamatergic subclasses) and regional distribution (Fig. 1E, S2) for each subclass 

and type.

The L2/3 IT and L4/5/6 IT Car3 neighborhoods are composed of intratelencephalic (IT) and 

related neuronal types from all layers of all CTX regions as well as RHP regions. They 

constitute the largest proportion of cell types, with 14 subclasses that correspond well to 

specific layers (L2–6) and/or regions. The distinct subclass of Car3, which includes neurons 

from L6 of many lateral cortical areas, is included here as our previous study showed that 

these Car3+ L6 neurons, like cortical IT neurons, have extensive intracortical axon 
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projections (Peng et al., 2020). The PT neighborhood contains the subclass of CTX L5 

pyramidal tract (PT) neurons (also known as extratelencephalic or subcerebral projection 

neurons, SCPNs) and two related, region-specific subclasses, L4 RSP-ACA and L5 PPP. The 

NP/CT/L6b neighborhood includes both CTX and HPF cells that are divided into 7 

subclasses: CTX L5/6 near-projecting (NP), L6 corticothalamic (CT), L6b neuron 

subclasses, and related subclasses from HPF. Lastly, the DG/SUB/CA neighborhood 

comprises cells that are specifically located in CA1, CA2, CA3, ProS, SUB and DG which 

are divided into 5 region-specific subclasses. The SUB-ProS and CA1-ProS subclasses both 

contain clusters from ProS, suggesting ProS contains cell types similar to either SUB or 

CA1, as in our previous study (Ding et al., 2020).

We systematically identified a large number of neuronal types and subclasses from different 

HPF regions that are highly distinct from those in CTX and from each other. At the same 

time, the presence of these cell types in close proximity with isocortical neuron types 

(particularly in the L2/3 IT, L4/5/6 IT and NP/CT/L6b neighborhoods) in taxonomy tree and 

UMAP suggests homologous relationships between HPF and CTX cell types (Fig. 1B–E). 

We further explored this by searching for gene expression covariation between HPF and 

CTX despite of regional difference and correlating gene expression for each HPF cell to the 

average expression of each CTX cluster (STAR Methods). The CTX cluster with the highest 

correlation to each HPF cluster was selected as the match, and the matches were aggregated 

by CTX subclasses (Fig. 3A). This approach revealed that most HPF cell types match a 

specific CTX subclass. We then calculated the number of DE genes between the highest 

correlated HPF-CTX cluster pair, which could indicate the overall degree of relatedness or 

similarity of the pair (the fewer DE genes, the more related).

CTX NP, CT and L6b subclasses have the greatest similarity with their counterparts in ENT, 

PPP and SUB, as do CTX L2/3, L4/5 and L6 IT subclasses (Fig. 3A). Interestingly, L3 IT 

ENT, L2 IT ENTl and some L2/3 IT PPP clusters were mapped to L4/5 IT CTX. We further 

uncovered a resemblance of SUB-ProS and HIP cell types to isocortical cell types. All SUB 

and ProS clusters are most related to L5 PT CTX, so is cluster L5 PPP #263 (though more 

distantly). The mapping relationships between different hippocampal fields (CA1, CA2, 

CA3 and DG) and CTX subclasses are more remote (i.e., many more DE genes) and thus 

less certain. Overall, these similarities are consistent with our marker gene-based annotation 

of HPF clusters into corresponding layers, providing a mutual confirmation (see next 

section). In particular, the homology is demonstrated by a large set of canonical isocortical 

cell type marker genes that show similar type and layer specificity in HPF regions, including 

transcription factors Cux2 and Lhx2 for L2/3/4 IT types, Fezf2, Pou3f1, Bcl6, Bcl11b and 

Etv1 for L5 PT and its corresponding SUB-ProS-CA1 types, and Tle4 and Foxp2 for 

CT/NP/L6b types (Fig. S3).

A graphical summary of glutamatergic cell types across all CTX and HPF regions, based on 

analyses from both above and below sections, illustrates all the supertypes (and clusters 

under each) and their regional and layer distributions, potential projection patterns and 

homologous relationships between CTX and HPF types (Fig. 3B).
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Comparison of glutamatergic cell types between hippocampal formation and isocortex

Comparing HPF and CTX cell types also uncovered parallel correlation between molecular/

transcriptomic and spatial/anatomical organization of cell types in both brain structures.

As shown in the UMAPs containing all putative IT-projecting cells (excluding the highly 

distinct Car3 subclass) from CTX and HPF (Fig. 4A–B), HPF IT cell types form two groups 

around the relatively continuous CTX IT types, one mainly from ENT and the other from 

PPP.

The ENT IT group (Fig. 4B–D, F–H) has 10 supertypes organized in a layer-selective 

manner, in the order of L2, L2/3, L3, L5 and L6, consistent with their correspondence with 

CTX L2/3-L6 IT types, and shows differential spatial distribution along the anterior-

posterior axis, as shown by marker gene ISH and the Visium spatial transcriptomics platform 

(Fig. 4G–H). The L3 IT ENT subclass is found in the caudal part, including the Plch1 

supertype specific to ENTm and the Fign supertype specific to ENTl. The Penk+ L2/3 IT 

ENTl subclass, including the Fign and Ndst4 supertypes, sits in the rostral ENTl. Two 

supertypes, L2 IT ENTm Lef1 and L2 IT ENTl Chn2 (Grik1+), are located at the border 

between L1 and L2. The L2/3 RHP subclass contains two supertypes assigned to the 

superficial layers of ProS (L2/3 IT ProS Dcn Cbln4, Fig. 4I–J) and HATA (IT HATA Id4, 

also extending to ventral ENT) regions (Ding et al., 2020). The L5/6 IT TPE-ENT Dcn 

supertype (Rorb+) contains L5/6 cells in ENTl and caudal ventral part of ENTm. The L6 IT 

ENTl Dlk1 supertype is specifically located in L6 of the rostral and middle ENTl.

The PPP IT group (Fig. 4B–C, E–F, I–J) contains the L2/3 IT PPP subclass and is most 

closely related to supertype L2 IT RSP-ACA Npnt (cluster #134), consistent with the 

anatomical proximity of PPP and RSP. The supertypes within L2/3 IT PPP follow a rostral 

dorsal to caudal ventral transition (Fig. 4E, I–J), starting with the Pdlim1 supertype in L2 of 

RSPv, POST and PRE, then the Kit supertype in L2/3 of POST-PRE, followed by the Wfs1 

Prlr supertype in L2/3 of PAR, and the Cfap58 supertype (#145) in caudal PAR. The Cdh7 

supertype is specific to L2 of the APr region.

The NP/CT/L6b neighborhood contains sets of L5/6 NP, L6 CT and L6b subclasses well 

matched between CTX and HPF (Fig. 5A–D). L5/6 NP CTX is closely related to NP SUB 

and more distantly related to NP PPP. L6 CT CTX is closely related to CT SUB as well as 

supertype L6 CT ENT Rasgrf2 Rmst. The L6b CTX subclass also contains cells from ENT, 

PPP and SUB; these cells are mostly in supertype L6b RHP Nxph4 Cobll1. L6b CTX is also 

closely related to supertype L6b ENT Cplx3 Cobll1. We observe two parallel continuous 

transitions between L6 CT and L6b types for both CTX and ENT, and a continuous 

transition of L6b cells between CTX and all HPF regions (Fig. 5A–C). As with the IT cells 

(Fig. 4), the CTX L5 NP, L6 CT and L6b clusters are largely shared across cortical areas 

(Fig. 5A, D, S2), whereas the HPF NP and CT cell types are highly distinct among SUB, 

ENT and PPP. Multiple marker genes and Visium data confirm the regional specificity of 

these HPF subclasses and supertypes (Fig. S4A–B).

The PT neighborhood (Bcl6+) is segregated into three region-specific subclasses, L5 PT 

CTX (Fam84b+), L4 RSP-ACA, and L5 PPP (the only HPF-specific cell type identified in 
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this neighborhood) (Fig. 5E–H). L5 PT CTX contains 4 supertypes: Chrna6 (enriched in 

posterior sensory areas and highly distinct from the other three supertypes), Npnt, Cdh13 

and C1ql2 (enriched in RSP-ACA). The three ALM L5 PT types previously identified 

(Economo et al., 2018; Tasic et al., 2018) correspond to cluster #248 (thalamus-projecting 

cells) in the Npnt supertype and clusters #249 and #252 (medulla-projecting cells) in the 

Cdh13 supertype, respectively (Fig. S4D). It will be interesting to see if cells in other 

cortical areas belonging to these two supertypes have similarly differential projection 

patterns. Of note, in the Cdh13 supertype, clusters #251–255 (Nnat+) are mostly populated 

by cells from prefrontal, medial and lateral associational areas, and #251 is highly specific to 

PL-ILA and ACA-RSP, based on marker genes Ndnf and Dlk1 (Fig. 5H, S4C).

L4 RSP-ACA Scnn1a is an unusual subclass/supertype. It expresses PT marker gene Bcl6 
but not Fam84b; it also expresses a pan-IT marker Slc30a3, as well as L4 IT-specific 

markers Rspo1 and Scnn1a but not Rorb (Fig. 5H). It is located more superficially than 

supertype L5 PT C1ql2 in RSP (Fig. S4C). Projection mapping (http://connectivity.brain-

map.org/; experiments 166269090, 166458363 and 181860879) (Oh et al., 2014) showed 

that neurons labeled via Scnn1a-Tg3-Cre driver line in RSP have long-range projections to 

both intra- and extratelencephalic targets; they project to ACA, RHP regions, contralateral 

RSP, and anteroventral nucleus (AV) of thalamus (Fig. S4E). The gene expression makeup, 

layer specificity and projection pattern altogether suggest that L4 RSP-ACA Scnn1a has an 

IT/PT hybrid identity.

Multidimensional variation of cell type distribution in the hippocampal and subicular 
regions

In the DG/SUB/CA neighborhood, DG, CA2 and CA3 subclasses are highly distinct, 

whereas SUB-ProS and CA1-ProS subclasses are more closely related (Fig. 6A–D). In the 

CA3 subclass, we identify a hilar mossy cell supertype, Mossy Rgs12, based on multiple 

marker genes including Gal, Rgs12, Glipr1, Necab1 and Calb2 (Scharfman and Myers, 

2012) (Data S1, HPF markers).

The DG subclass, marked by Prox1, has a dominant cluster, #363, which contains vast 

majority of the granule cells (Fig. S2). We did not find clusters strongly related to adult 

neurogenesis in DG (Goncalves et al., 2016), indicating that immature neurons or 

progenitors might not be well labeled by the pan-neuronal or pan-glutamatergic Cre lines we 

used for this study. The CA2 subclass also contains cells from the small IG and FC regions.

CA1, CA3 and SUB have gradual gene expression and connectivity changes along multiple 

dimensions – superficial-deep, proximal-distal and dorsal-ventral (Cembrowski and 

Spruston, 2019). To understand the relationship between all the hippocampal and subicular 

clusters and the three-dimensional spatial structure of these regions (Fig. 6E), we used 

UMAP and principal component analysis (PCA) to evaluate the patterns of variation among 

our CA/SUB cell types and their correlation with previously described dimensions.

We first extracted one main axis that drove CA1, ProS and SUB variation by one 

dimensional UMAP of all the cells in the CA1-ProS and SUB-ProS subclasses, and found 

that this axis corresponded to a proximal-distal (Pr-Di) gradient from CA1 to SUB, for 
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which each stage of the transition was driven by a different set of genes (STAR Methods, 

Fig. S5A–B, Data S1, HPF gradients).

To examine other axes of variation, we performed PCA for CA1 and CA3 (excluding the 

Mossy Rgs12 supertype) separately and found the top PC corresponded to a dorsal-ventral 

(Do-Ve) gradient (Fig. 6F–I). We identified a core set of genes that specify this gradient not 

only in CA1 and CA3 but also in SUB/ProS and DG (STAR Methods), which we 

hypothesize is the core program for dorsal-ventral gradient specification. The distribution of 

cells in each cluster from all regions, segregated by subclasses, along this axis is shown 

along with a subset of genes in the core program (Fig. S5C) and ISH images of selected 

genes that are dorsal or ventral specific (Fig. S5D, Data S1, HPF gradients).

In both CA1 and CA3, key genes contributing to the second PC corresponded to the 

superficial-deep (Su-De) radial axis, as validated by RNA ISH images (STAR Methods, Fig. 

6F–I, S5G–J, Data S1, HPF gradients). The separation of layer markers is more prominent in 

the ventral part of CA3 than its dorsal part. In CA1 and CA3, superficial and deep clusters 

have a weak correlation with L2/3 IT CTX and L5 PT CTX, respectively (Fig. S5G, I).

The Do-Ve distribution of CA1 and CA3 clusters follow the taxonomy branches well (Fig. 

6C, F–I). In CA1, supertype CA1-ve Gpc3 (#334–336) is in the most ventral location, 

followed by CA1 Lefty1 (#337–345), and CA1-do Plekhg1 (#346–348) most dorsal. In 

CA3, supertype CA3-do Iyd (#356–358) is in the dorsal location, and CA3-ve Fam107a 

(#351–355) more ventral. In the less diverse parts of CA1 (most ventral) and CA3 (most 

dorsal), the Su-De distinction is also less obvious; correlated with this, clusters in CA1-ve 

Gpc3 and CA3-do Iyd are often related to L6 IT CTX (Fig. S5G, I).

Besides Pr-Di, Do-Ve, and Su-De gradients, we also observed an activity-dependent 

transcriptional signature shared in selected clusters across DG/CA3/CA1/ProS/SUB (Fig. 

6G, I, S5E–F). It includes many well-established immediate early genes (IEGs) such as Ier5, 

Arc, Fos, Egr4 and Nr4a1, known to label neuronal ensembles encoding memory traces 

(Minatohara et al., 2015). We also identified activity-dependent genes co-expressed with 

IEGs in a cell type-dependent manner. For example, Gadd45b shows highest expression in 

DG and is known to be required for activity-induced DNA demethylation of genes critical 

for adult neurogenesis (Ma et al., 2009).

Finally, we plotted the average values for each cluster along all four dimensions of variation 

together (Fig. 6J). Overall, glutamatergic cell types exhibit gradient distribution in the Do-Ve 

axis in all hippocampal-subicular regions; CA1, ProS and SUB cell types together form a Pr-

Di transition zone; CA1 and CA3 cell types are also distributed along a Su-De division. 

While there is a large divergence between the dorsal clusters of SUB and CA1 along the Pr-

Di axis, there is a convergence in the ventral parts of CA1 and ProS (and HATA). Also 

notably, the most dorsal clusters in CA1, CA3 and SUB show high levels of activity-

dependent gene expression compared to the ventral part, consistent with a previous study of 

spatial distribution of Arc expression in the hippocampus associated with the differential 

response to spatial/nonspatial information along the dorsal-ventral axis (Chawla et al., 

2018).
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Continuous variation of glutamatergic neuron types across layers and regions of isocortex

Here we further investigated observed continuous variations in CTX glutamatergic 

subclasses. First, we identified a vertical gradual transition of all CTX IT clusters along the 

cortical depth. UMAP containing the four common CTX IT subclasses (L2/3, L4/5, L5 and 

L6) revealed a gradual transition of the subclasses from L2/3 to L6 (Fig. S6A). To further 

define this continuum, we computed one-dimensional UMAP for all the IT cells based on 

the PCs in imputed space, which corresponded well with cortical depth, and from this we 

calculated a pseudo-layer dimension and colored the IT UMAP according to this dimension 

(Fig. S6B). Distribution of cells in each cluster along the pseudo-layer dimension showed 

that the clusters fall along a gradient (Fig. S6D). Correspondence between the pseudo-layer 

dimension and actual cortical layers was established by calculating the expression of layer-

specific marker genes (e.g., Otof, Rspo1, Fezf2, Osr1) for cells ordered along the pseudo-

layer dimension (Fig. S6D–F, Data S1, IT layer markers). Collectively the clusters, and the 

supertypes and subclasses they belong to, transition continuously across cortical depth from 

superficial to deep, making the traditional layer separation less clear, especially for the 

borders between L4 and L5 and between L5 and L6. We identified a L4 specific supertype, 

L4 IT CTX Rspo1, which predominantly contains cells from all sensory areas but 

surprisingly, some from non-sensory isocortical areas as well (Fig. S6D). This supertype 

likely represents the L4 spiny stellate or star pyramid neurons that are morphologically 

distinct from the pyramidal neurons in other layers (Harris and Shepherd, 2015), however, 

it’s worth noting that transcriptomically this type is continuous with the L4/5 IT cells (Fig. 

S6A–D).

Next, we examined regional distribution specificity of all CTX glutamatergic subclasses (IT, 

PT, NP, CT and L6b). Nearly all clusters in these subclasses contain cells from multiple 

isocortical areas (Fig. S2). Although enrichment in specific areas is seen for some clusters, 

there is rarely one-to-one correspondence between clusters and regions. To further 

investigate cross-area variations, we created a separate UMAP for each subclass (Fig. 7A), 

excluding cell types with strong regional specificity (e.g., L4 RSP-ACA Scnn1a, L5 PT 

Chrna6, and transitional types to HPF). In almost all cases, the medial (RSP/ACA) and 

lateral (TEa-PERI-ECT, collectively TPE) regions are more distinct while the anterior-to-

posterior transition is more continuous. Individual clusters within each subclass occupy 

specific domains on the gradient map, with more similar clusters located closer to each other 

(Fig. S7), in agreement with the existence of modules along the cortical sheet (Harris et al., 

2019).

To assess the global relationship among isocortical regions, we built a dendrogram based on 

their average gene expression profiles within each subclass, concatenated across all 

subclasses (Fig. 7B). We observe the following grouping based on the tree: lateral and 

prefrontal areas TPE/AI/PL-ILA-ORB, medial areas RSP/ACA, motor areas MOp and MOs, 

then all the sensory areas AUD, SSp, SSs-GU-VISC, PTLp and VIS. The pairwise 

correlation heatmaps of all areas for each subclass reveal consistent patterns with the tree, 

and again showing TPE and RSP as the most distinct areas (Fig. 7B). Next, we assessed 

separability of different cortical areas based on their transcriptomes (Fig. 7C, STAR 

Methods). In most cases, cells were preferentially predicted to belong to the region they 
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were dissected from, particularly for the medial, lateral, and prefrontal areas. There is very 

little confusion between regions that are distant, whereas considerable confusion exists 

between neighboring regions, particularly for sensory areas. Region separation is more 

distinct for L5 PT and L4/5 IT than for other subclasses. We also identified key 

transcriptional signatures that contribute to regional diversity (Fig. 7D–E).

Finally, we extended the analysis of activity-dependent clusters described in HPF to all 

regions (Fig. S8A–C) and identified a few highly activated clusters in L2/3 IT, L6 IT and L6 

CT subclasses. Particularly, supertype L2/3 IT CTX Baz1a (cluster #171) is a strongly 

activated cluster and likely corresponds to a subset of cortical L2/3 neurons that express IEG 

c-fos under basal conditions and are preferentially interconnected within the L2/3 network 

(Yassin et al., 2010). We also characterized the distribution of activity gradient among 

different cortical areas within each subclass (Fig S8D). Visual areas (VIS and PTLp) have 

higher fractions of activated cells than other regions, particularly in L2/3 IT subclass, 

possibly due to their response to light. On the other hand, the TPE region has a consistent 

depletion of activated cells across all subclasses. L5/6 NP and GABAergic cells appear 

much less activated and show little regional difference.

DISCUSSION

In this study, we present a comprehensive taxonomy of transcriptomic cell types across the 

adult mouse isocortex and hippocampal formation (Fig. 1, 3). Major findings regarding 

neuronal cell type organization within these two brain structures can be summarized as 

follows.

1. At transcriptomic level, cell types can be organized in a hierarchical manner over 

a complex landscape with both discrete and continuous variations. Such 

molecular relationships correlate strongly with the spatial arrangement (both 

location and layer) of the cell types.

2. Glutamatergic neuron types are more diverse than GABAergic neuron types, 

both molecularly and spatially. We define 28 subclasses, 56 supertypes and 241 

types/clusters in the glutamatergic class and 6 subclasses, 30 supertypes and 119 

types/clusters in the GABAergic class. In both classes, some cell types are highly 

specific to a region, layer or location, while others are widely distributed and 

shared among multiple regions.

3. Extending from our previous study (Tasic et al., 2018), we find that GABAergic 

neuron types are shared among all isocortical areas and HPF. We also identify an 

additional set of GABAergic types that are specific to HPF (Fig. 2). Our current 

CTX-HPF GABAergic taxonomy corresponds well with previous transcriptomic 

and multimodal studies from individual regions; the correspondence is the most 

robust at supertype level (Fig. S1). The identification of both shared and HPF-

specific GABAergic types will facilitate comparative studies between HPF and 

isocortical GABAergic neurons and bridge the vast literature for both, as these 

neurons from the two regions often have substantially different morphological 

and connectional patterns and, without transcriptomic classification, it had been 
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difficult to establish the precise correspondence between them (Fishell and Rudy, 

2011; Pelkey et al., 2017).

4. Across all isocortical areas, most glutamatergic cell types are shared among 

multiple areas (Fig. 3B, S2), contrary to what we found in our previous study of 

two distantly located cortical areas, VISp and ALM (Tasic et al., 2018). This 

difference is reconciled by our finding that these transcriptomic cell types are 

distributed in a continuous and graded manner across cortical sheet, often along 

anterior-posterior (more continuous) and medial-lateral (more discrete) 

dimensions (Fig. 7). In addition, isocortical IT neuron types are continuously 

distributed across the entire cortical depth, from L2/3 to L6 (Fig. S6). 

Furthermore, glutamatergic cell types in subiculum (SUB) and different fields of 

hippocampus (HIP) exhibit simultaneous continuous variation in three 

dimensions – proximal-distal, dorsal-ventral and superficial-deep (Fig. 6). Thus, 

continuous gradient-like distribution of closely related cell types in various 

spatial dimensions appears to be a widely applicable rule.

Many previous studies had shown the existence of continuous or discrete subdivisions along 

the said axes in HIP and SUB (Bienkowski et al., 2018; Cembrowski and Spruston, 2019; 

Ding et al., 2020; Thompson et al., 2008). However, since these variations in multiple 

dimensions are intermingled in the convoluted hippocampal and subicular structures, in the 

absence of comprehensive and systematic transcriptomic data it had been impossible to tease 

out the exact pattern of these variations. Here, we computationally extracted large sets of 

genes associated with the principal components (PCs) of the variations across cell types. 

Using the in situ expression patterns of these genes, the correspondence between these PCs 

and spatial dimensions or anatomical locations emerges and allows for deriving a more 

complete picture of the multidimensional variation of gene expression and cell type 

distribution all at once (Fig. 6, S5).

5. We find a small number of isocortical glutamatergic cell types that are specific to 

one or two regions (Fig. 3B), mostly to anterior cingulate (ACA) and 

retrosplenial (RSP) areas. We also identify cell types that are shared between 

ventral RSP and post- and presubiculum (POST-PRE), and between lateral 

associational cortical areas and entorhinal cortex (ENT), suggesting relatedness 

of these regions. The combination of these region-specific cell types and the 

continuous variation of shared cell types across isocortical areas collectively 

defines cortical areal modularity (Fig. 3B, 7), providing a molecular basis for the 

cortical modularity revealed in connectivity and brain imaging studies (Harris et 

al., 2019).

6. We discover a parallel organization of homologous sets of glutamatergic neuron 

types between HPF and isocortex, revealing the complexity of cell type 

composition in HPF (Fig. 3, S3). The superficial (and deep) layers of lateral and 

medial ENT and POST-PRE-PAR (PPP), as well as smaller regions ProS, HATA 

and APr, resemble the superficial (and deep) layers of isocortex with parallel sets 

of IT types (Fig. 4). The deep layers of ENT and PPP, as well as SUB, resemble 

the deep layers of isocortex with parallel sets of NP/CT/L6b types (Fig. 5). 
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Surprisingly, ENT and PPP do not have major cell types resembling L5 PT, 

which are the major output projection neuron types from isocortex to subcortical 

regions, except for a single cluster (L5 PPP, #263) (Fig. 5). Instead, we find that 

majority of the cell types in SUB, ProS and CA1 are homologous to isocortical 

PT cells (Fig. 3A), suggesting that these cell types may be the major HPF output 

projection neurons to other cortical and subcortical regions. Therefore, we can 

find homologous cell types in HPF for all subclasses of isocortical glutamatergic 

neurons (Fig. 3). These homologous relationships are supported by similar 

expression patterns of a large set of marker genes including canonical isocortical 

subclass-specific transcription factors (Fig. S3), and similar laminar localization 

as demonstrated by ISH and Visium data, between corresponding pairs of 

IT/NP/CT/L6b cell types. For SUB/ProS/CA1 cell types and isocortical L5 PT 

cells, even though they do not have similar layer specificity, their homology is 

supported by the co-expression of at least five L5 PT defining transcription 

factors in SUB/ProS/CA1 cell types (Fig. S3).

These homologous relationships raise the intriguing possibility that the axon projection 

patterns of the HPF glutamatergic types may follow similar rules for those of isocortical 

neurons (e.g., corticocortical, subcerebral/corticofugal, corticothalamic, or local/near 

projections for IT, PT, CT or NP subclasses, respectively). Thus the transcriptomic cell type-

based molecular architecture of HPF predicts an isocortex-like circuit organization, with IT-

like projections from superficial (and deep) layers of ENT and PPP to other HPF regions 

(including HIP) and within HIP from DG to CA3 to CA1, output projections from PT-like 

CA1, ProS and SUB going out of HPF to widespread cortical and subcortical targets, and 

additional output projections from CT-like cells from deep layers of ENT, PPP and SUB to 

thalamus or related regions. This prediction is highly consistent with the currently known 

interareal connections of HPF, providing a level of validation to the transcriptomic cell type 

framework (Bienkowski et al., 2018; Ding et al., 2020; Gergues et al., 2020; van Strien et al., 

2009). For example, it has been shown that superficial neurons in SUB mainly project within 

HPF whereas its deep-layer neurons have subiculo-fugal or subiculo-thalamic projections 

(Bienkowski et al., 2018). A major implication of this is that we can now begin to dissect the 

interareal connections at transcriptomic cell type level and build a cell type-based 

comprehensive wiring diagram of this highly complex circuit.

The glutamatergic neurons in HPF across the dorsal-ventral axis display differential cellular 

properties and connectivity patterns, and have been associated with different behavioral roles 

(Cembrowski and Spruston, 2019). A prominent function of the hippocampal formation is 

spatial navigation, with a number of functionally specific cell types identified in various 

HPF regions, such as grid cells in ENTm, head direction cells in PPP and ENTm, and place 

cells in CA1 (Moser et al., 2017). Underlying the functions are complex yet highly 

organized input and output connections across many regions both within and outside HPF 

(Bienkowski et al., 2018; van Strien et al., 2009). It will be of immense interest to examine 

the extent to which transcriptomic cell types are the nodes underlying specific connectional 

pathways and playing specific functional roles. For example, we hypothesize that the Calb1+ 

L3 IT ENTm Plch1 cells and the Reln+ L2 IT ENTm Lef1 cells may contain the pyramidal 

and stellate grid cells, respectively, based on the expression of these known grid cell marker 
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genes (Ferrante et al., 2017; Nilssen et al., 2019). In addition, it has been shown that dorsal 

and ventral parts of the hippocampal-subicular regions form distinct interconnected 

networks (Bienkowski et al., 2018; Ding et al., 2020). The shared dorsoventral differentially 

expressed gene sets across these regions identified in our study suggest a common regulatory 

program for these specific circuits (Fig. S5C).

7. Finally, the above findings suggest that relationships among cell types revealed 

by the adult-stage transcriptomic profiles are likely rooted in the developmental 

and evolutionary processes; consequently, developmental and evolutionary 

relationships between regions and cell types may also be inferred from 

transcriptomic cell type relationships.

During embryonic development, isocortical glutamatergic neurons are born within the 

ventricular and subventricular zones (VZ/SVZ) underneath the cortical plate, which is laid 

out into a protomap by a gradient or compartmentalized gene expression (Cadwell et al., 

2019; O’Leary et al., 2007; Rakic, 1988). In contrast, GABAergic interneurons originate 

from medial and caudal ganglionic eminences (MGE and CGE, and some from the preoptic 

area) in the subpallium, and migrate into cortex in tangential streams to populate all cortical 

regions (Fishell and Rudy, 2011; Hu et al., 2017; Lim et al., 2018). This difference in 

developmental origins may be the underlying reason for the dichotomy between the 

extensive regional diversity of glutamatergic types and the sharing of a common set of 

GABAergic types across isocortical regions, as we previously hypothesized (Tasic et al., 

2018).

Hippocampal GABAergic neurons also originate from MGE/CGE like the isocortical ones 

and follow the same migration streams (Fishell and Rudy, 2011; Pelkey et al., 2017). This 

may explain our finding that all isocortical GABAergic types are also present in all 

retrohippocampal regions and most of them are found in HIP as well. It will be interesting to 

investigate if the HPF-specific GABAergic types arise from a unique developmental 

program. It has been known that MGE and CGE are not homogeneous but each contains 

multiple subdomains defined by combinatorial expression of transcription factors; 

progenitors from different subdomains give rise to different GABAergic types (Hu et al., 

2017; Lim et al., 2018). Furthermore, different types can be generated at different temporal 

stages from the same progenitors. The developmental trajectory of these neurons is also 

modulated by activity-dependent mechanisms that influence their integration into the 

specific circuits. Thus, GABAergic interneuron diversity is defined by spatially and 

temporally precise genetic programming and refined by network interactions.

Similarly, area patterning of isocortex is a multi-faceted developmental process, involving an 

interplay between intrinsic genetic mechanisms and extrinsic inputs from thalamocortical 

projections (Cadwell et al., 2019; O’Leary et al., 2007). At the early stage of cortical 

development, signaling molecules and morphogens secreted from localized patterning 

centers lead to gradient expression of transcription factors in progenitors in VZ/SVZ, 

establishing a protomap along the cortical sheet. Subsequent formation of more refined 

functional areas with sharp boundaries in the isocortex is thought to be mainly driven by 

thalamocortical inputs and activity-dependent mechanisms. Both processes could shape the 

repertoire and landscape of adult-stage glutamatergic neuron types in isocortex as seen here.
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For glutamatergic types in isocortex, we find a small number of types that are specific to one 

or two regions, all in associational areas; but most types are shared among several or 

multiple areas with graded variations (Fig. 3B). Regional variations are not uniform among 

different subclasses, for example, L5 PT and L4/5 IT types appear more distinct across areas 

than types in other subclasses, and different subclasses contain types that are enriched in 

different areas (Fig. 7). Overall, we find that medial, prefrontal and lateral associational 

areas are more distinct from sensorimotor areas and from each other; sensorimotor areas are 

more continuous but several domains (posterior sensory, lateral sensory and frontal motor) 

can be discerned. If considering all glutamatergic types together, it is possible to distinguish 

each area from all other areas (Fig. 7). Thus, the uniqueness of each region can be defined 

by combining all glutamatergic types together, even though individual types often are not 

confined to single areas. It should also be noted that our transcriptomic types are defined by 

unsupervised clustering based on overall gene expression variation, there might be region-

specific gene signatures existing in our datasets but not strong enough to drive clustering 

results. It is also possible that the variation of relative proportions of cells within a given 

type contributes to regional specificity (Fig. S2).

The hierarchical organization and degree of distinction between glutamatergic types may 

reflect the evolutionary distance between cell types and the regions they are embedded in, 

similar to comparison of cortical cell types across vertebrate species (Tosches and Laurent, 

2019). Glutamatergic types in different HPF regions are highly distinct from each other and 

from those in isocortex, consistent with the notion of a more ancient emergence of HPF and 

its subregions. Interestingly, we find that all major glutamatergic subclasses in isocortex 

(i.e., L2/3-L6 IT, L5 PT, L5/6 NP, L6 CT and L6b) also exist in various HPF regions. These 

cell types are components of the integrated HPF circuit that follows similar connectional 

rules seen in a canonical isocortical circuit. This finding challenges the traditional view that 

isocortex is newly evolved whereas HPF remains as an older structure during vertebrate 

evolution (Northcutt and Kaas, 1995; Tosches and Laurent, 2019). Instead, we suggest that 

both isocortex and HPF in mammals evolved from the simpler three-layered cortex in 

reptiles into two parallel “six-layered” circuit organizations, while isocortex further went 

through accelerated evolution resulting in a multiplication of areas each as an independent 

circuit unit.

In conclusion, our current study establishes a blueprint of the molecular architecture that 

potentially reflects the developmental/evolutionary origins as well as the connectional/

functional specificity of isocortex and hippocampal formation and their subregions. This 

work also provides the roadmap to genetically target the numerous cell types discovered and 

categorized here, and lays the foundation for systematic, cell type-specific investigation of 

the structure and function of these brain circuits.

Limitations of the Study

In this study we assigned anatomical locations of major cell types (mostly at the supertype 

level) using existing RNA ISH data from the Allen Mouse Brain Atlas and a limited Visium 

dataset; we also provided an estimate of the relative proportions of different cell types in 

each region using the 10xv2 data. However, the precise spatial distribution and relative 
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proportion of various cell types should ultimately be established through more 

comprehensive spatially resolved transcriptomic studies using approaches such as 

multiplexed FISH, in situ sequencing, or in situ capture followed by sequencing (Close et 

al., 2021; Larsson et al., 2021; Zhuang, 2021).

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Requests for further information should be directed to and will be fulfilled 

by the Lead Contact, Hongkui Zeng (hongkuiz@alleninstitute.org).

Materials Availability—Transgenic mouse lines and viral vectors used in this study are 

available from The Jackson Laboratory, MMRRC or Allen Institute for Brain Science as 

indicated in the above Key Resources Table.

Data and code availability—The raw and processed sequencing data is deposited in the 

NeMO Archive for the BRAIN Initiative Cell Census Network (https://

assets.nemoarchive.org/dat-jb2f34y). Full metadata for all samples are available in Table S2, 

S3. Transcriptomic data can be visualized and analyzed using the Transcriptomics Explorer 

at https://portal.brain-map.org/atlases-and-data/rnaseq. We also provide an accompanying 

website at https://taxonomy.shinyapps.io/ctx_hip_browser_v2/, with a Cell Card for each 

cell type. The website can be browsed by cell type and provides information on specific 

markers, cell type metadata, and relation to neighboring cell types.

R packages for the iterative clustering method utilized in this analysis (scrattch.bigcat and 

scrattch.hicat) are available on GitHub at https://github.com/AllenInstitute/scrattch.hicat, 

https://github.com/AllenInstitute/scrattch.bigcat.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse breeding and husbandry—All procedures were carried out in accordance with 

Institutional Animal Care and Use Committee protocols at the Allen Institute for Brain 

Science. Animals were provided food and water ad libitum and were maintained on a regular 

12-h day/night cycle at no more than five adult animals per cage. Animals were maintained 

on the C57BL/6J background, and newly received or generated transgenic lines were 

backcrossed to C57BL/6J. We obtained Gng7-Cre_KH71 (Gerfen et al., 2013) mice from 

Charles Gerfen and Th-P2A-FlpO (Poulin et al., 2018) mice from Raj Awatramani.

Standard tamoxifen treatment for CreER lines included a single dose of tamoxifen (40 μl of 

50 mg ml−1) dissolved in corn oil and administered via oral gavage at postnatal day (P)10–

14. Tamoxifen treatment for Nkx2.1-CreERT2;Ai14 was performed at embryonic day (E)17 

(oral gavage of the dam at 1 mg per 10 g of body weight), pups were delivered by cesarean 

section at E19 and then fostered. Cux2-CreERT2;Ai14 mice received tamoxifen treatment at 

P35 ± 5 for five consecutive days. Trimethoprim was administered to animals containing 

Ctgf-2A-dgCre by oral gavage at P40 ± 5 for three consecutive days (0.015 ml per g of body 

weight using 20 mg ml−1 trimethoprim solution). Ndnf-IRES2-dgCre animals did not 

receive trimethoprim induction, since the baseline dgCre activity (without trimethoprim) was 
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sufficient to label the cells with the Ai14 reporter. We excluded any animals with 

anophthalmia or microphthalmia.

We used 530 male and female animals to collect 76,381 cells for SSv4 and 54 male and 

female animals to collect 1,561,952 cells for 10xv2. Animals were euthanized at P53–59 (n 
= 531), P50–52 (n = 7), and P60–121 (n = 46). No statistical methods were used to 

predetermine sample size. All donors used in this study are listed in Table S2.

METHOD DETAILS

Retrograde Labeling—We injected rAAV2-retro-EF1a-Cre (Tervo et al., 2016), RVΔGL-

Cre (Chatterjee et al., 2018), or CAV-Cre (Hnasko et al., 2006) (gift of Miguel Chillon 

Rodrigues, Universitat Autònoma de Barcelona) into brains of heterozygous or homozygous 

Ai14 mice as previously described (Tasic et al., 2016; Tasic et al., 2018). For ALM 

experiments, we also injected rAAV2-retro-CAG-GFP or rAAV2-retro-CAG-tdTomato 

(Tervo et al., 2016) into wild-type mice. We injected rAAV2-retro-EF1a-dTomato (Tervo et 

al., 2016) into Gnb4-IRES2-CreERT2;Ai140 and Cux2-CreERT2;Ai140 (Daigle et al., 

2018) mice with the goal of collecting the Car3 cell types. We collected both singly positive 

(dTomato+) and double-positive (GFP+/dTomato+) cells when possible. We injected 

rAAV2-retro-EF1a-dTomato into Ctgf-T2A-dgCre;Snap25-LSL-F2A-GFP mice with the 

goal of collecting L6b projection neurons. Stereotaxic coordinates were obtained from 

Paxinos adult mouse brain atlas (Supplementary Table 6 in (Tasic et al., 2018)). For two 

VISp experiments, we injected into SCs by inserting the needle through the cerebellum at a 

45°-angle in the posterior to anterior direction. Injection information for each donor is 

available in Table S2.

Retro-orbital Labeling—We delivered viruses that contain an enhancer element with 

putative specificity to L5 PT types (rAAV-mscRE4-minBGpromoter-FlpO-WPRE3) and L5 

IT and L6 IT types (rAAV-mscRE10-minBGpromoter-FlpO-WPRE3, rAAV-mscRE16-

minBGpromoter-FlpO-WPRE3) (Graybuck et al., 2021) into heterozygous or homozygous 

Ai65F mice into the retroorbital sinus as previously described (Chan et al., 2017). This 

approach allows the virus to cross the blood-brain barrier for brain-wide delivery of the viral 

particles. Due to the difficulty of isolating L5 PT neurons, we used this approach to enrich 

for labeling of specific types for more efficient cell isolation.

Single-cell isolation—We isolated single cells by adapting previously described 

procedures (Tasic et al., 2018). The brain was dissected, submerged in ACSF, embedded in 

2% agarose, and sliced into 250-μm (SMART-Seq) or 350-μm (10x Genomics) coronal 

sections on a compresstome (Precisionary Instruments). Block-face images were captured 

during slicing. Regions of interest (ROIs) were then microdissected from the slices and 

dissociated into single cells with 1 mg/ml pronase (SMART-Seq before 28 June 2018, Sigma 

P6911–1G) and processed as previously described (Tasic et al., 2018). Fluorescent images of 

each slice before and after ROI dissection were taken from the dissecting scope. These 

images were used to document the precise location of the ROIs using annotated coronal 

plates of CCFv3 as reference (see below).
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We used Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3) ontology 

(http://atlas.brain-map.org/) to define brain regions for profiling and boundaries for 

dissections. We covered all regions of CTX and HPF and chose sampling at mid-ontology 

level with judicious joining of neighboring regions (Fig. 1A, Methods S1, Table S1). For 

tissue dissections, we chose to combine some neighboring regions to avoid microdissections 

of very small regions and to collect enough cells for profiling, especially for 10xv2. For 

example, orbital area (ORB) covers ORBl, ORBm and ORBvl, and primary somatosensory 

area (SSp) covers all SSp subfields. GU-VISC, PL-ILA and TEa-PERI-ECT were 

combinations of two or three cortical areas, respectively. PAR, POST and PRE were 

combined into a single dissection region named PPP for SSv4 profiling, and PPP was further 

combined with SUB and ProS into a joint dissection region named PPP-SP for 10xv2 

profiling. Note that manual microdissections are imperfect, but despite the presence of cells 

from neighboring regions, the dissections still contain substantial enrichment of cells for the 

targeted regions. In total, for 10xv2, we profiled 12 joint regions for CTX and 3 joint regions 

for HPF with 30,000–300,000 cells per region; for SSv4, we profiled 17 regions for CTX 

and 5 regions for HPF with 1,100–14,000 cells per region.

We used transgenic driver lines for fluorescence-positive cell isolation to enrich for neurons, 

with the vast majority being Cre driver lines crossed to the Ai14-tdTomato reporter 

(Madisen et al., 2010) (Table S2). A small fraction of SSv4 cells were labeled by retrograde 

tracing (Retro-seq) or retroorbital injection of AAVs (Table S2). All 10xv2 cells from all 

regions were isolated from the pan-neuronal Snap25-IRES2-Cre line; Gad2-IRES-Cre line 

was used to isolate additional GABAergic interneurons from HIP (Methods S1). For SSv4, 

the transgenic mice used, dissection scheme, and sampling rate varied by regions (Methods 

S1, Table S2). Our previously published VISp and ALM (part of MOs) SSv4 dataset 

(~24,000 cells) (Tasic et al., 2018) were also included in the current study; this dataset had 

utilized a large number of driver lines with either broad or highly specific coverage of 

different cell types and employed extensive layer-specific dissections. Three other cortical 

regions, MOp, SSp and ACA, had 5,000–6,600 SSv4 cells each that were also from multiple 

driver lines and layer-specific dissections. The hippocampal region (HIP), which includes 

CA1, CA2, CA3, and DG, was divided into four anteroposterior (i.e. dorsoventral) segments, 

and each segment was profiled using both pan-glutamatergic and pan-GABAergic Cre lines, 

totaling ~6,600 SSv4 cells. All the other CTX and HPF regions had 1,100–2,000 SSv4 cells 

each, profiled from pan-glutamatergic and pan-GABAergic Cre lines without layer-specific 

dissections.

Number of donor animals and proportion of cells contributed by each transgenic line for 

each cluster are shown in Table S3. Since nearly all clusters are dominated by 10xv2 cells 

from Snap25-IRES2-Cre mice, and SSv4 cells mainly came from pan-glutamatergic and 

pan-GABAergic lines with other specialized Cre lines contributing to only a small fraction 

of cells, the effect of transgenic line variation is minimal. The number of animals 

contributing to each cluster varies between 2 and 213, with an average of 56 and median of 

44. Only 8 clusters had fewer than 4 donor animals each. Thus, individual mouse variability 

should not affect the cell type identities.
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We used mice of both sexes, except that MOp 10xv2 data had only male cells (Methods S1). 

There were three small, sex specific clusters, #158, #262, #335, all female specific and 

almost all the cells in these clusters are from highly specific regions in AI, RSP and HIP 

respectively.

For all 10xv2 samples and for SSv4 samples after 28 June 2018, we improved our protocol 

with the following changes. Tissue pieces were digested with 30 U/ml papain (Worthington 

PAP2) in ACSF for 30 minutes at 30°C. Due to the short incubation period in a dry oven, we 

set the oven temperature to 35°C to compensate for the indirect heat exchange, with a target 

solution temperature of 30°C. Enzymatic digestion was quenched by exchanging the papain 

solution three times with quenching buffer (ACSF with 1% FBS and 0.2% BSA). Samples 

were incubated on ice for 5 minutes before trituration. The tissue pieces in the quenching 

buffer were triturated through a fire-polished pipette with 600-μm diameter opening 

approximately 20 times. The tissue pieces were allowed to settle and the supernatant, which 

now contained suspended single cells, was transferred to a new tube. Fresh quenching buffer 

was added to the settled tissue pieces, and trituration and supernatant transfer were repeated 

using 300-μm and 150-μm fire polished pipettes. The single cell suspension was passed 

through a 70-μm filter into a 15-ml conical tube with 500 ul of high BSA buffer (ACSF with 

1% FBS and 1% BSA) at the bottom to help cushion the cells during centrifugation at 100 × 

g in a swinging bucket centrifuge for 10 minutes. The supernatant was discarded, and the 

cell pellet was resuspended in the quenching buffer.

All cells were collected by fluorescence-activated cell sorting (FACS, BD Aria II) using a 

130-μm nozzle. Cells were prepared for sorting by passing the suspension through a 70-μm 

filter and adding DAPI (to a final concentration of 2 ng/ml). Sorting strategy was as 

previously described (Tasic et al., 2018), with most cells collected using the tdTomato-

positive label. For SSv4, single cells were sorted into individual wells of 8-well PCR strips 

containing lysis buffer from the SMART-Seq v4 kit with RNase inhibitor (0.17 U/μl), 

immediately frozen on dry ice, and stored at −80°C. For 10x Genomics, 30,000 cells were 

sorted within 10 minutes into a tube containing 500 μl of quenching buffer. We found that 

sorting more cells into one tube diluted the ACSF in the collection buffer, causing cell death. 

We also observed decreased cell viability for longer sorts. Each aliquot of sorted 30,000 

cells was gently layered on top of 200 μl of high BSA buffer and immediately centrifuged at 

230 × g for 10 minutes in a centrifuge with a swinging bucket rotor (the high BSA buffer at 

the bottom of the tube slows down the cells as they reach the bottom, minimizing cell death). 

No pellet could be seen with this small number of cells, so we removed the supernatant and 

left behind 35 μl of buffer, in which we resuspended the cells. The immediate centrifugation 

and resuspension allowed the cells to be temporarily stored in a high BSA buffer with 

minimal ACSF dilution. The resuspended cells were stored at 4°C until all samples were 

collected, usually within 30 minutes. Samples from the same ROI were pooled, cell 

concentration quantified, and immediately loaded onto the 10x Genomics Chromium 

controller.

cDNA amplification and library construction—For SSv4 processing, we performed 

the procedures with positive and negative controls as previously described (Tasic et al., 

2018). We used the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara Cat# 
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634894) to reverse transcribe poly(A) RNA and amplify full-length cDNA. We performed 

reverse transcription and cDNA amplification for 18 PCR cycles (neurons) or 21 PCR cycles 

(non-neuronal cells) in 8-well strips, in sets of 12–24 strips at a time. All samples proceeded 

through Nextera XT DNA Library Preparation (Illumina Cat# FC-131–1096) using Nextera 

XT Index Kit V2 (Illumina Cat# FC-131–2001) and custom index sets (Integrated DNA 

Technologies). Custom index sets were validated to confirm the same performance as 

Nextera Index sets before being used on experimental samples. Nextera XT DNA Library 

prep was performed according to manufacturer’s instructions, with a modification to reduce 

the volumes of all reagents and cDNA input to 0.4x or 0.5x of the original protocol. Details 

are available in ‘Documentation’ on the Allen Institute data portal at: http://celltypes.brain-

map.org.

For 10xv2 processing, we used Chromium Single Cell 3’ Reagent Kit v2 (10x Genomics 

Cat# 120237). We followed the manufacturer’s instructions for cell capture, barcoding, 

reverse transcription, cDNA amplification, and library construction. We targeted sequencing 

depth of 60,000 reads per cell; the actual median achieved was 59,728 reads per cell across 

175 libraries.

Sequencing data processing and QC—Processing of SSv4 libraries was performed as 

described previously (Tasic et al., 2018). Briefly, libraries were sequenced on an Illumina 

HiSeq2500 platform (paired-end with read lengths of 50 bp) to a target read depth of 0.5M 

reads per cell (range 100,275–12,329,698, median 1,003,867). The Illumina sequencing 

reads were aligned to GRCm38.p3 (mm10) using a RefSeq annotation gff file retrieved from 

NCBI on 18 January 2016 (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/). 

Sequence alignment was performed using STAR v2.5.3. (Dobin et al., 2013) in the two-pass 

mode. PCR duplicates were masked and removed using STAR option 

‘bamRemoveDuplicates’. Only uniquely aligned reads were used for gene quantification. 

Gene counts were computed using the R GenomicAlignments package (Lawrence et al., 

2013) and summarizeOverlaps function in ‘IntersectionNotEmpty’ mode for exonic and 

intronic regions separately. For the SSv4 dataset, we only used exonic regions for gene 

quantification. Cells that met any one of the following criteria were removed: < 100,000 

total reads, < 1,000 detected genes (with CPM > 0), < 75% of reads aligned to genome, or 

CG dinucleotide odds ratio > 0.5. Doublets were removed by first classifying cells into 

broad classes of excitatory, inhibitory, and non-neuronal based on known markers. Reads 

that did not map to the genome were then aligned to synthetic constructs (i.e. ERCC) 

sequences and the E. coli genome (version ASM584v2) and were used as a QC metric.

10xv2 libraries were sequenced on Illumina NovaSeq6000 and sequencing reads were 

aligned to the mouse pre-mRNA reference transcriptome (mm10) using the 10x Genomics 

CellRanger pipeline (version 3.0.0) with default parameters. Cells that had < 1,500 detected 

genes (with UMI count > 0) were filtered out for downstream processing in each 10x run. 

Doublets were identified using a modified version of the DoubletFinder algorithm 

(McGinnis et al., 2019) and removed when doublet score > 0.3. Doublets were further 

removed by first classifying cells into broad cell classes (neuronal versus non-neuronal) 

based on the co-expression of any pair of broad class marker genes.
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Clustering—Clustering for both SSv4 and 10xv2 datasets was performed independently 

using the in-house developed R package scrattch.hicat (available via github https://

github.com/AllenInstitute/scrattch.hicat) (Methods S1). In addition to the classical single-

cell clustering processing steps provided by other tools such as Seurat (Butler et al., 2018), 

this package features automatic iterative clustering while ensuring all pairs of clusters, even 

at the finest level, are separable by fairly stringent differential gene expression criteria (Tasic 

et al., 2018). For the 10xv2 dataset, we used q1.th = 0.4, q.diff.th = 0.7, de.score.th = 150, 

min.cells = 20; for the SSv4 dataset, we used q1.th = 0.5, q.diff.th = 0.7, de.score.th = 150, 

min.cells = 4. The package also performs consensus clustering by repeating the iterative 

clustering step on 80% subsampled set of cells 100 times, and then derives the final 

clustering result based on cell-cell co-clustering probability matrix. This feature enables us 

to both finetune clustering boundaries and to assess clustering uncertainty.

Due to the large data size of the 10xv2 dataset, we adapted the existing scrattch.hicat 

package to scrattch.bigcat package (available via github https://github.com/AllenInstitute/

scrattch.bigcat), which uses bigstatsr package as backend. Bigstatsr allows for manipulation 

of matrices that are too large to fit in memory through memory mapping to files on disk. 

This enables storage of the gene count matrix from the complete >1 million cells while 

facilitating efficient random access of cells. During each iteration of clustering, the 

algorithm randomly samples up to 5,000 cells and loads them to memory to perform high-

variance gene selection and principal component analysis (PCA), then computes the reduced 

dimensions for the whole dataset by applying the same projection on all the cells. The 

reduced dimensions are used to compute the K nearest neighbors (KNN) using the RANN 

package (https://github.com/jefferislab/RANN) that are then used to perform Jaccard-

Louvain clustering.

Joint clustering between the 10xv2 and SSv4 datasets—To provide one consensus 

cell type taxonomy based on both 10xv2 and SSv4 datasets, we developed an integrative 

clustering analysis across multiple data modalities, now available via the i_harmonize 
function of the scrattch.hicat package. This method extends the clustering pipeline 

described above to incorporate datasets collected by different transcriptomic platforms. 

Unlike the Seurat CCA approach (Butler et al., 2018) and scVI (Svensson et al., 2020), 

which aim to find aligned common reduced dimensions across multiple datasets, this method 

directly builds a common adjacency graph using all cells from all datasets, then applies the 

standard Jaccard-Louvain clustering algorithm. We extended the cluster-merging algorithm 

described above to ensure that all clusters can be separated by conserved DE genes across 

platforms. The i_harmonize function, similar to the iter_clust function in the single dataset 

clustering pipeline, applies the integrative clustering across datasets iteratively while 

ensuring all clusters at each iteration are separable by conserved DE genes. This is an 

important feature of this method; as we aim to build a fine resolution taxonomy of 

increasing complexity, no clustering algorithm can provide proper resolution of cell types in 

one round.

To build the common graph that incorporates the samples from all the datasets, we first 

chose a subset of reference datasets from all available datasets, which either provides more 

sensitive gene detection and/or more comprehensive cell type coverage. For this study, as the 
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10xv2 dataset includes more cells while the SSv4 dataset provides more sensitive gene 

detection, both datasets were used as reference datasets.

The key steps of the pipeline are outlined below:

1. Select anchor cells for each reference dataset. For each reference dataset, we 

randomly sampled max  100, 5000
#clusters  anchor cells per cluster to achieve more 

uniform coverage of cell type. This is the only place during the joint clustering 

step that uses the platform-specific clustering information.

2. Select high variance genes. We selected high variance genes and performed 

PCA dimension reduction using the scrattch.hicat package. We first defined 

several vectors that corresponded to potential technical bias: the number of genes 

detected in each cell, mitochondrial gene expression, and donor specific gene 

expression. Particularly, we identified a set of highly specific genes (Table S4) 

with significantly elevated gene expression in two out of three male donors used 

in TPE 10xv2 experiments. The top principal component (PC) based on this gene 

set is used to help us track donor-specific bias. PCs with more than 0.6 Pearson 

correlation with any of the technical bias vectors defined above were removed. 

For each remaining PC, Z scores were calculated for gene loadings, and the top 

100 genes with absolute Z score greater than 2 were selected. The high variance 

genes from each reference datasets were pooled.

3. Compute K nearest neighbors (KNN). For each cell in each dataset, we 

computed its K nearest neighbors among anchor cells in each reference dataset 

based on the high variance genes selected above. The RANN package was used 

to compute KNN based on the Euclidean distance when the query and reference 

dataset was the same. To compute nearest neighbors across datasets, we used 

correlation as a similarity metric.

4. Compute the Jaccard similarity. For every pair of cells from all datasets, we 

computed their Jaccard similarity, defined as the ratio of the number of shared K 

nearest neighbors (among all anchors cells) over the number of combined K 

nearest neighbors.

5. Perform Louvain clustering based on Jaccard similarity.

6. Merge clusters. To ensure that every pair of clusters were separable by 

conserved differentially expressed (DE) genes across all datasets, for each 

cluster, we first identified the top three nearest clusters. For each pair of such 

close-related clusters, we computed the DE genes in each dataset and chose the 

DE genes that were significant in at least one dataset while also exhibiting more 

than two-fold change in the same direction in both datasets. We then computed 

the overall statistical significance based on such conserved DE genes for each 

dataset independently. If any of the datasets passed our DE gene criteria 

described in the “clustering” section, the pair of clusters remained separated; 

otherwise they were merged. DE genes were recomputed for the merged clusters 

and the process repeated until all clusters were separable by the conserved DE 
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genes criteria. If one cluster had fewer than the minimal number of cells in a 

dataset (four cells for SSv4 and 20 cells for 10xv2), then this dataset was not 

used for DE gene computation for all pairs involving the given cluster. This step 

allows detection of unique clusters only present in some data types.

7. Repeat steps 1–6 for cells within a cluster to gain finer-resolution clusters until 

no clusters can be found.

8. Concatenate all the clusters from all the iterative clustering steps and perform 

final merging as described in step 6.

This integrative clustering pipeline allows us to resolve clusters at fine resolution while 

ensuring proper alignment between datasets by requiring presence of conserved DE genes. It 

also allows us to leverage the strengths of different datasets. For example, between clusters 

that are separated by weakly expressed genes, the SSv4 dataset provides the statistical power 

for separation, and the relevant genes help to separate 10xv2 cells into clusters with 

consistent fold changes. On the other hand, for clusters that have very few cells in SSv4, the 

10xv2 samples provide the statistical power for separation and relevant genes are used to 

split SSv4 cells accordingly, allowing us to identify rare clusters that are present 

predominantly only in one platform.

Excluding noise clusters—We identified 408 clusters by the integrative clustering 

pipeline. There were three main categories of noise clusters: clusters located outside areas of 

interest due to inaccurate dissection, clusters with significantly lower gene detection due to 

extensive drop out, and clusters due to doublets or contamination.

We identified six clusters that were outside of CTX and HPF which we located to the 

striatum based on the expression of marker genes such as Six3, Adora2a, and Drd2.

The remaining clusters were grouped at subclass level based on the taxonomy tree and 

correspondence with our previous cortical taxonomy (Tasic et al., 2018). While we observed 

differences in the number of genes detected at the subclass level, cells within a subclass had 

relatively homogeneous distribution. For every subclass, we assigned those clusters with an 

average number of detected genes below a certain threshold (defined by mean and sd of the 

subclass) as putative low-quality clusters. If we also identified another cluster with more 

cells, at least 500 more detected genes, and no more than one down-regulated gene relative 

to the putative low-quality cluster, then we considered the putative low-quality cluster 

confirmed.

To identify doublet clusters, we searched for triplets of clusters A, B, and C, wherein A is 

the putative doublet cluster, such that up-regulated genes of A relative to B largely overlap 

with up-regulated genes in C relative to B, and up-regulated genes in A relative to C largely 

overlap with up-regulated genes of B relative to C. This criterion ensures that A includes the 

most distinguished signature of B and C. To rule out the possibility that A is a transitional 

type between B and C, we required that B and C cannot be closely related types based on the 

correlation of their average gene expression of marker genes. After we systematically 

produced the list of all the candidate triplet clusters, the final determination was an iterative 

process that involved setting different thresholds and manual inspection.

Yao et al. Page 25

Cell. Author manuscript; available in PMC 2022 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Marker gene selection—For each pair of clusters, we computed the conserved DE genes 

(at least significant in one dataset, and at least 2-fold change in the same direction in the 

other datasets). We selected the top 50 genes in each direction and pooled such genes from 

all pairwise comparisons with a total of 5,981 gene markers (Table S4).

Assessing concordance of joint clustering between 10xv2 and SSv4—We first 

compared the joint clustering results with the independent clustering result from each 

dataset. We then calculated the cluster means of marker genes for each dataset. For each 

marker gene, we computed the correlation between its average expression for each cluster 

across two different datasets to quantify the consistency of its expression at the cluster level 

between datasets.

Imputation—To facilitate direct comparisons, we projected gene expression of the SSv4 

dataset to the 10xv2 reference data and vice versa. To achieve this, we leveraged the KNN 

matrices computed during the iterative joint clustering step. During each iteration of the joint 

clustering, we used the average gene expression of the K nearest neighbors among the 10xv2 

anchor cells as the imputed expression for each SSv4 cell. At the top-level clustering, we 

imputed the expression for all genes. For each following iteration, we only imputed the 

expression of the high variance genes or the DE genes computed for the cells involved in the 

given iteration. We used this iterative approach for imputation because the nearest neighbors, 

based on the genes chosen at the top level, may not reflect the distinction between the finer 

types, and the imputed values for the DE genes that define the finer types consequently are 

not accurate based on these nearest neighbors. Therefore, we deferred imputation of the DE 

genes between the finer types to the iteration when these types were defined. This method is 

now provided in the impute_knn_global function in the scrattch.hicat package. We 

computed the imputed gene expression matrix using either SSv4 or 10xv2 data as reference. 

Unless specified, we used 10xv2 imputed gene expression by default.

Building cell type taxonomy tree—We computed the average expression of marker 

genes at the cluster level based on imputed gene expression using 10xv2 data as reference, 

and the tree was constructed using the build_dend function in the scrattch.hicat package as 

described in (Tasic et al., 2018).

UMAP projection—We performed PCA based on the imputed gene expression matrix of 

5,981 marker genes based on 10xv2 reference and selected the top 54 PCs based on the 

elbow test, after removing PCs with more than 0.7 correlation with any technical bias 

vectors. We used PCs from 10xv2-based imputed data as input to create 2D and 3D UMAP 

(McInnes et al., 2018), using parameters nn.neighbors = 25 and md = 0.4.

Assigning cluster names—We assigned cluster IDs based on the order of clusters in the 

taxonomy tree. Based on the topology of the taxonomy tree, we defined classes and 

subclasses following the convention from (Tasic et al., 2018). We grouped clusters into 

supertypes based on several factors: hierarchical tree structure, discreteness between clusters 

in UMAP and cross-correlation between our current and previous taxonomies. Based on the 

Allen Institute proposal for cell type nomenclature (Miller et al., 2020), we also assigned 

accession numbers to cell types, as included in Table S3.
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Constellation plot—The global relatedness between cell types is visualized using 

constellation plots. These summarize the identity and relationship between clusters and were 

generated as follows. In the constellation plot, each transcriptomic cluster is represented by a 

node (circle) whose surface area reflects the number of cells within the cluster in log scale. 

The positions of nodes are based on the centroid positions of the corresponding clusters in 

UMAP coordinates. The relationships between nodes are indicated by edges that are 

calculated as follows. For each cell, 15 nearest neighbors in reduced dimension space are 

determined and summarized by cluster. For each cluster, we then calculate the fraction of 

nearest neighbors that are assigned to other clusters. The edges connect two nodes in which 

at least one of the nodes has >5% of nearest neighbors in the connecting node. The width of 

the edge at the node reflects the fraction of nearest neighbors that are assigned to the 

connecting node and is scaled to the node size. For all nodes in the plot, we then determine 

the maximum fraction of “outside” neighbors and set this as edge width = 100% of node 

width. The function for creating these plots, plot_constellation, is included in scrattch.hicat.

Correspondence between CTX and HPF clusters—Glutamatergic cell types are 

highly distinct between CTX and HPF regions, but they also have intricate relationships 

according to the taxonomy tree, UMAP projections, and constellation plots. To study their 

correspondence systematically, we first computed the top 50 DE genes in each direction for 

all pairs of glutamatergic clusters in CTX (2,100 genes) and HPF (2,467 genes) separately, 

with 1,633 genes in common. Transitional clusters between CTX and HPF in L5/6 IT TPE-

ENT and L2/3 IT PPP were excluded from this analysis. Using this common set of DE genes 

that discriminate cell types in both structures, we mapped each cell in HPF clusters to the 

most correlated CTX cluster. Then we computed the frequency of the cells in each HPF 

cluster mapped to each CTX cluster or subclass. Between each HPF cluster and its most 

correlated CTX cluster, we also computed the number of DE genes in each direction.

Gradient analysis for glutamatergic neurons in hippocampus and subiculum
—We performed extensive study of gradients in SUB/CA1/CA3 regions using PCA and 

UMAP projection. First, we extracted one main axis that drove CA1, ProS and SUB 

variation by one dimensional UMAP of all the cells in the CA1-ProS and SUB-ProS 

subclasses, and aligned clusters along this axis based on their average values (Fig. S5A). 

Then we computed genes that either strongly correlate with this axis, which specify two 

ends of the spectrum, or whose expression is confined within a narrow range in the middle 

of the spectrum (Fig. S5A). ISH images of the selected genes (Fig. S5B, Data S1, HPF 

gradients) indicate that this axis corresponds to proximal-distal gradient, where cell types 

transition from the proximal end of CA1 (marked by Lct), to distal CA1, CA1/ProS 

transition zone (Glipr, Dlk1, Dcn), ProS (S100b, Klhl1), and finally to distal SUB (Fn1, 

Cyp26b1).

To examine other axes of variation, we performed PCA for CA1 and CA3 (excluding the 

Mossy Rgs12 supertype) separately. In each case, we observed that the top PC corresponded 

to a dorsal-ventral (Do-Ve) gradient (Fig. 6F–I), validated by ISH images of the key genes 

that drive the axis. We computed the correlation of the CA1 and CA3 marker genes with the 

top PC in CA1 and CA3, respectively. Closer examination revealed significant overlap 

Yao et al. Page 27

Cell. Author manuscript; available in PMC 2022 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the genes that specify this gradient in either region, which we hypothesize is the 

core program for dorsal-ventral gradient specification. We selected a core set of genes with 

absolute correlation greater than 0.4 in both cases. These include 84 dorsal-specific genes 

and 116 ventral-specific genes that are shared by CA1 and CA3. Using this core set of 

genes, we computed the top PC for cells in both regions and found it highly concordant with 

the original top PC for each region separately. We used the same gene set to compute the top 

PC in SUB/ProS and DG regions and again observed segregation of clusters along this 

gradient, which also corresponded to dorsal-ventral axis in SUB/ProS/DG based on ISH of 

key marker genes. This gene set was used to compute the top PC within each subclass and 

scaled in range of [0,1] as shown in Fig. S5C, which corresponds to the Ve-Do axis in all 

these regions. Besides the genes in the core program, each region also has a specific set of 

genes that contribute to this axis (Fig. S5C), e.g., ventrally Coch (CA3) and Gpc3 (CA1/

ProS, likely in HATA), dorsally Rxfp1 and Elfn1 (SUB/ProS), Wfs1 (CA1), and Rph3a 
(CA3). All the genes shown in the heatmap have ISH images from ABA that support their 

specificity along this axis, with only a subset shown in Figure S5D and Data S1, HPF 

gradients.

We further noticed that many genes in this set still showed variation along the Pr-Di axis, 

particularly, ProS and CA1-ProS clusters marked by Dcn and Dlk1 overall had stronger 

expression of ventral specific genes, pushing these clusters close to the ventral end of the 

axis. To recalibrate Do-Ve axis to be more faithful to the actual spatial Do-Ve location, we 

binned the clusters into supertypes along Pr-Di axis shown in Fig. S5A: #318–320 for SUB, 

#321–328 for ProS, #329–333 for CA1-ProS, and #334–347 for CA1, and separately for 

CA3 and DG. Within each bin, we then used the core gene set to recompute the top PC and 

scaled the values in the range of [0,1]. These rescaled values were used to compute the 

cluster coordinates along the Y-axis in Fig. 6J. For CA3, we didn’t identify the proximal-

distal axis as a major PC. However, close examination revealed a previously known CA3 

proximal gene, Fmo1 (Thompson et al., 2008), that is expressed in dorsal clusters #356 and 

#358, but not #357. We computed the DE genes between clusters #356 and #357, most of 

which also separate clusters #356 and #358 from #357 and other ventral CA3 clusters. The 

top PC based on this set of genes is defined as the CA3 Pr-Di axis, which also correlates 

heavily with the Do-Ve axis. This is consistent with the previously defined CA3 subdomains 

(Thompson et al., 2008), which divided CA3 into a series of diagonal bands oriented septal-

distally (toward CA2) to temporal-proximally (toward DG).

ISH images of some marker genes in CA1 and CA3 indicate their layer specificity. Based on 

these markers, we defined CA1 clusters #343–345 as deep layer and #338–340 as superficial 

layer clusters, computed the top DE genes between these two groups, and defined the pseudo 

superficial-deep (Su-De) axis as the top PC based on these layer-specific genes. Layer 

separation is more subtle in the very ventral or very dorsal areas of CA1. Many markers 

expressed at the superficial layer such as Dio3 in the middle section of the Ve-Do axis have 

ubiquitous expression in the ventral CA1, positioning the ventral CA1 closer to the 

superficial end of the pseudo Su-De axis, while many deep layer markers such as Lpl have 

ubiquitous expression in the dorsal distal CA1, positioning these cells closer to the deep end 

of the pseudo Su-De axis. Therefore, the pseudo Su-De axis is confounded with the Ve-Do 

axis. Nevertheless, the relative positions along pseudo Su-De axis for ventral and dorsal 
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clusters still make sense. For example, dorsal cluster #348 is physically more superficial 

than clusters #346 and 347, while ventral clusters #335 and 336 marked by Kdr are deeper 

than cluster #334. We applied a very similar method to infer the pseudo layers for CA3, 

although we did not observe notable layer separation for dorsal part of CA3. In the ventral 

part, we defined clusters #354–355 as deep layer and #352–353 as superficial layer based on 

ISH of marker genes. We computed the top DE genes between these two groups and defined 

pseudo Su-De axis as the top PC based on these layer specific genes. Overall, in CA1, 

Nptx2, Sulf2, Lpl are expressed in the deep layer, while Pde11a, Anln are in the superficial 

layer (Fig. S5G–H, Data S1, HPF gradients). Similarly, in CA3 we identified a set of 

markers, including St18, Hopx, Sgcd and Prss23, that are expressed in a very thin deep layer, 

while Nos1, Kctd4, Kcnq5 have complementary expression pattern and label most of the 

CA3 cells (Fig. S5I–J, Data S1, HPF gradients).

Additionally, we also observed that some clusters differ from neighboring clusters mostly by 

immediate early genes (IEGs) such as Fos and Arc. We extracted activity-induced genes (25 

genes, Table S4) from a previous study (Hrvatin et al., 2018), and computed the top PC 

based on this gene set as the activity axis. To extend this analysis for all the cell types (Fig. 

S8), we computed the top PC based on the activity-induced genes for all the cells and 

defined it as the activity axis for all the types.

Gradient analysis for glutamatergic neurons in isocortical regions—We also 

used PCA and UMAP projection to extract major gradients that drive CTX cell type 

diversities. To extract the most dominant gradient for isocortical IT types, we computed one 

dimensional UMAP for all the IT cells based on the PCs in the imputed space (see section 

UMAP projection), which corresponded very well with cortical depth. UMAP instead of 

PCA was chosen here as we observed a nonlinear relationship. Particularly, in the PCA 

space, L6 IT types were more similar to L2/3 IT types than L5 IT types to L2/3 IT types. On 

the other hand, there were clear transitions between adjacent layers, which were preserved 

faithfully, by one dimensional UMAP.

For cells within each subclass, which had relatively homogenous distribution along the 

cortical depth, we re-computed 2D UMAP for this subset of cells only based on the PCs in 

the imputed space. The UMAP for each subclass revealed much clearer regional diversities. 

Particularly, the medial (RSP/ACA) and lateral (AI/TPE) regions were highly distinct, and 

anterior-posterior gradient could be observed in almost all cases.

To assess the global relationship of all the cortical regions, we built a dendrogram based on 

their average gene expression within each subclass, concatenated across all the subclasses. 

Then we tried to quantify how each cortical region could be separated from each other by 

building a classifier for regional identities. While our initial attempt using random forest 

classifier produced a very strong result (data not shown), we realized that the results were 

partially driven by donor-specific genes. Note that we only isolated one cortical region from 

each donor, so regional signatures were confounded with donor-specific transcriptional 

signatures. While donor-specific transcriptional signatures are subtle and do not affect the 

global clustering results, they can be chosen by supervised classifier as the most informative 

features. To address this concern, we trained a KNN classifier using 10xv2 cells and tested 
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on SSv4 cells, with no shared donors. More specifically, for each subclass, we first sampled 

similar numbers of 10xv2 cells for each region, such that each region was well represented, 

then for each SSv4 cell, we predicted its regional identity based on the majority voting of its 

top 15 nearest 10xv2 sampled cells in the imputed space, i.e., top PCs used to compute 

UMAP. Therefore, the prediction was based on global transcription signatures that are 

conserved across platforms, with no particular genes heavily weighted. This is a very 

conservative estimate of regional specificity, as it is possible that we might have missed the 

specificity contributed by very small sets of genes.

We identified key transcriptional signatures that contribute to regional diversity (Fig. 7D). 

Due to space limit, only 12–13 genes with regional distinct patterns are shown in the 

heatmap, including those that are enriched or depleted in medial, lateral, anterior or posterior 

areas, and ISH images of a subset are shown in Figure 7E. Interestingly, most regional 

markers we identified show distinct layer specificity, and very few genes show the same 

regional preference across all layers. One exception is Tshz2, which are highly enriched in 

RSP/ACA across all layers except for cells in L5/6 NP subclass, which have strong 

expression of Tshz2 in all regions. Tshz2, a zinc finger homeobox transcription factor 

predicted to be a transcriptional repressor, could be a master regulator establishing medial/

lateral gradient during cortical development. Other markers such as Rorb in L4/5 IT and 

Foxp2 in L6 CT show mutually exclusive expression patterns with Tshz2 in RSP (Fig. 7E).

Assessing correspondence to external datasets—The median gene expression for 

each cell type in the 10xv2 and SSv4 datasets was computed separately using the cell type 

marker genes defined in the “Marker gene selection” section. For each external dataset, we 

used the genes that intersect with our marker list. If the RNA-seq method of the external 

dataset was Smart-seq, then we used our SSv4 cells as the reference for mapping, and if it 

was 10x, we used our 10xv2 cells as reference. Correlation-based mapping was performed to 

find the cell type for each individual cell from each external dataset. Mapping for each cell 

was performed 100 times. In each iteration, 80% of the genes were selected randomly and 

the correlation of gene expression of that cell with each cluster median in our dataset was 

computed, with the cluster with the highest correlation chosen as the cluster for that cell in 

that round. After 100 iterations, the percentage of time a cell was mapped to a given cell 

type in our reference dataset was defined as the probability of mapping to that cluster for 

that cell. Finally, the cell type with the highest probability of mapping was chosen as the 

corresponding cell type of that cell.

Visium spatial gene expression library generation—The right hemisphere from a 

wild type C57BL/6J mouse was fresh-frozen, embedded in OCT (TissueTek Sakura), and 

cryo-sectioned at 10 μm thickness at −20°C. Tissue sections were placed in 6.5 mm-squared 

capture areas on a pre-cooled Visium Spatial Gene Expression slide (2000233, 10x 

Genomics), adhered by warming the backside of the slides, and stored at −80°C for later use. 

The spatial gene expression slide was processed according to the manufacturer’s protocols. 

Briefly, tissue sections were warmed to 37°C for 1 minute and fixed for 30 min in ice-cold 

methanol, followed by 1 min isopropanol incubation at room temperature. Next, the tissues 

were stained following the hematoxylin and eosin (H&E) protocol. Brightfield images were 
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taken with a VS110 microscope (Olympus) using the 10x objective. Images were stitched 

together with the VS110 software (Olympus) and exported as TIFF files. Optimal 

permeabilization time for 10 μm thick adult brain sections was found to be 18 minutes. RNA 

released from the tissue was converted to cDNA by priming to the spatial barcoded primers 

on the glass via reverse transcription in the presence of template-switching oligo to generate 

full-length, spatially barcoded, UMI-containing cDNA. Subsequently, following second 

strand synthesis, a denaturation step released the cDNA, followed by PCR amplification. 

Finally, sequencing-ready, indexed spatial gene expression libraries were constructed. 

Libraries were sequenced on an Illumina NextSeq 500/550 using 150 cycle high output kits 

to a target read depth of 50,000 reads per spot.

Visium spatial gene expression data processing and analysis—Raw FASTQ files 

and the histology H&E images were provided as input to the SpaceRanger software (10x 

Genomics) version 1.0.0. Sequencing reads were mapped to the mm10 pre-mRNA reference 

mouse genome using STARv2.5 mapping as part of the SpaceRanger suite. Spatial barcodes 

were assigned by SpaceRanger to the barcoded spatial spots and aligned with the tissue 

image. Barcodes/UMI and genes were counted for the individual spots to generate an output 

gene expression per-spot matrix used as input for downstream data analysis. Over 9,100 

barcoded spots from four 10x Visium capture areas were transformed and normalized using 

the Seurat v3.4 package (Stuart et al., 2019). To integrate the spatial RNA-seq data with 

scRNA-seq data, the FindTransferAnchors function was used, using the SMART-seq v4 

scRNA-seq as reference and the 4,905 differentially expressed (DE) genes that identify all 

cell types as input features. Following integration, the supertype labels were transferred to 

the spatial dataset using the TransferData function, providing a prediction score for each 

scRNA-seq supertype per spot.

Data analysis software and visualization tools—Analysis and visualization of 

transcriptomic data were performed using R v3.5.0 and greater (https://www.R-project.org), 

assisted by the RStudio IDE (http://www.rstudio.com/) and the scrattch.hicat, 

scrattch.bigcat, and scarttch.vis packages in scrattch suites (https://github.com/

AllenInstitute/scrattch).

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample sizes, but the sample sizes here are 

similar to those reported in previous publications. No randomization was used during data 

collection as there was a single experimental condition for all acquired data. Data collection 

and analyses were not performed blind to the conditions of the experiments as all 

experiments followed the same experimental condition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Single-cell transcriptomics from >1.3 million cells in mouse cortex and 

hippocampus

• Many neuron types specific to associational cortex and hippocampal regions 

identified

• Parallel cell type & laminar organization between isocortex & hippocampal 

formation

• Large-scale continuous neuron type variation in isocortex and hippocampus/

subiculum
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Figure 1. Transcriptomic cell type taxonomy of the isocortex and hippocampal formation.
(A) Overview of sampled brain regions rendered in Allen CCFv3. The PPP-SP joint region 

includes PAR-POST-PRE-SUB-ProS.

(B) The transcriptomic taxonomy tree of 388 clusters organized in a dendrogram (10xv2: n 
= 1,169,213; SSv4: n = 73,346). Bar plots represent fractions of cells profiled according to 

platform, sex, and region, and the total number of cells per cluster on a log10 scale.

(C) Constellation plot of the global relatedness between glutamatergic types. Each cluster is 

represented by a dot, positioned at the cluster centroid in UMAP coordinates shown in D. 

Clusters are grouped by subclass. Clusters with more than 80% of cells derived from HPF 

are labeled green.

(D-E) UMAP representation of glutamatergic types colored by cluster (D) or region (E).

See also Tables S1–S4, Methods S1, Data S1, Figure S2.
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Figure 2. GABAergic cell types of isocortex and hippocampal formation.
(A) Dendrogram of CGE clusters followed by dot plots showing proportion of cells within 

each cluster derived from each region of dissection and marker gene expression in each 

cluster from the 10xv2 dataset. Dot size and color indicate proportion of expressing cells and 

average expression level in each cluster, respectively.

(B-C) UMAP representation of CGE clusters, colored by cluster (B) or region (C).

(D) Constellation plot of CGE clusters using UMAP coordinates shown in B. Clusters are 

grouped by supertype. Clusters with more than 80% of cells derived from HPF are labeled 

green.

(E) RNA ISH from Allen Mouse Brain Atlas (ABA) for select markers expressed in the 

HPF-specific CGE supertypes.
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(F-J) Same as A-E but for MGE clusters.

See also Figure S1, Data S1.
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Figure 3. Comparison of glutamatergic cell types in isocortex and hippocampal formation.
(A) Correspondence of HPF clusters to CTX subclasses, represented as a proportion of total 

matches. Lower panel shows the number of differentially expressed genes between each 

HPF cluster and its best-matched CTX cluster.

(B) Overview of glutamatergic cell types across all regions in CTX and HPF. Cell types are 

shown by supertypes and clusters within each supertype. CTX and HPF are separated by a 

solid line. Cell types in each CTX and RHP region (but not HIP) are displayed according to 

their layer specificity from top down. Cell types from RHP regions are aligned with those 

from CTX based on their similarity in layer specificity. IT types are shaded with pinkish 

ovals, PT, NP, CT and L6b types with yellowish ovals, and HIP types with blueish ovals. 

Each oval spans the major region(s) cells in each supertype come from. Within CTX, most 
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supertypes span all areas. Some clusters within a given supertype exhibit preference for one 

or a few areas, and these clusters are shown as smaller ovals contained within the larger 

supertype oval. Cell types with similar projection patterns (intratelecephalic, 

extratelencephalic/subcerebral, or corticothalamic) are grouped by large brackets.

See also Figures S2–S3.
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Figure 4. Transcriptomic relationship and anatomical distribution of IT-like cell types in 
retrohippocampal regions.
(A-B) UMAP representation of IT neurons from CTX and HPF, colored by region (A) or 

subclass (B). The CTX neurons are faded out.

(C) Constellation plot of IT types from CTX and HPF. Clusters are grouped by subclass.

(D-E) Enlarged view of UMAP in B of ENT- (D) or PPP-specific (E) types colored by 

cluster.

(F) Dendrogram of CTX, ENT and PPP IT clusters with branches annotated by subclass and 

supertype.

(G) Anatomical annotation of various supertypes marked in D. UMAP representations, as in 

B, show expression of select supertype marker genes in red (blue boxes). RNA ISH images 

of supertype markers along three rostral to caudal sections reveal specific locations of the 

different supertypes (blue arrowheads). Green dashed circles and green arrows show 

additional expression sites of markers.
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(H) Spatial verification of supertypes shown in G using Visium. Spatial RNA-seq barcoded 

spots are labeled by prediction score for specified supertype.

(I-J) Same as G-H but for supertypes marked in E.
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Figure 5. Parallel sets of NP/CT/L6b and L5 PT related cell types in isocortex and hippocampal 
formation.
(A-B) UMAP representation of NP/CT/L6b cell types from CTX and HPF, colored by 

region (A) or cluster (B).

(C) Constellation plot of NP/CT/L6b clusters. Clusters are grouped by supertype.

(D) Dendrogram of NP/CT/L6b clusters followed by dot plots showing proportion of cells 

within each cluster derived from each region of dissection and marker gene expression in 

each cluster from the 10xv2 dataset. Clusters are grouped by supertype.

(E-H) Same as A-D but for L5 PT related cell types. Regional dot plot in H shows number 

of cells per cluster and region.

See also Figure S4.

Yao et al. Page 45

Cell. Author manuscript; available in PMC 2022 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Multi-dimensional distribution of glutamatergic cell types in hippocampus and 
subiculum.
(A-B) UMAP representation of DG/SUB/CA cell types, colored by region (A) or cluster (B).

(C) Constellation plot of DG/SUB/CA clusters. Clusters are grouped by supertype.

(D) Dendrogram of DG/SUB/CA clusters with annotation of major branches.

(E) 3D and 2D schematics showing spatial axes within hippocampus and subiculum: 

proximal-distal (Pr-Di), superficial-deep (Su-De), and dorsal-ventral (Do-Ve). Images are 

rendered from CCFv3.

(F) 2D PCA plot for CA1cells. PC1 corresponds to the Do-Ve axis. Dashed line shows the 

putative Su-De separation.

(G) Violin plots showing distribution of CA1 clusters along Do-Ve, Su-De and activity axes.

(H-I) Same as F-G but for CA3 cells.
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(J) Summary of cell type variation in Pr-Di, Do-Ve, Su-De and activity dimensions for CA3, 

CA1, ProS, and SUB. Each circle represents a cluster, for which the average values for its 

cell members along each of the four dimensions are computed.

See also Figure S5, Data S1.
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Figure 7. Regional gradients of distribution of glutamatergic cell types in isocortex.
(A) UMAP plots of isocortical cells in different subclasses. At the top is a 2D flatmap 

representation of isocortical regions according to their positions in CCFv3.

(B) Heatmap of correlation between cortical regions for each subclass. At the top of B-D is a 

dendrogram of cortical regions generated based on their average gene expression within 

each subclass and concatenated across all subclasses.

(C) Confusion matrix of the predictability of cortical regions for each subclass. Rows and 

columns correspond to the actual and predicted regional identities of cells, with the rows 

adding up to 1.

(D) Heatmap of region-specific marker genes for each subclass. Color corresponds to 

fraction of cells expressing the given gene in each region.
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(E) RNA ISH images for numbered genes in D, showing regional distribution of marker 

gene expression for specific subclasses.

See also Figures S6–S8, Data S1.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

rAAV2-retro-EF1a-Cre Tervo et al., 2016; Allen 
Institute Viral Core

N/A

rAAV2-retro-CAG-GFP Tervo et al., 2016 N/A

rAAV2-retro-CAG-tdTomato Tervo et al., 2016 N/A

rAAV2-retro-EF1a-dTomato Tervo et al., 2016; Allen 
Institute Viral Core

N/A

RVΔGL-Cre Chatterjee et al., 2018; from 
the lab of Ian Wickersham

N/A

CAV-Cre Hnasko et al., 2006; from 
the lab of Miguel Chillon 
Rodrigues

N/A

rAAV-mscRE4-minBGpromoter-FlpO-WPRE3 Graybuck et al., 2021; 
Allen Institute Viral Core

N/A

rAAV-mscRE10-minBGpromoter-FlpO-WPRE3 Graybuck et al., 2021; 
Allen Institute Viral Core

N/A

rAAV-mscRE16-minBGpromoter-FlpO-WPRE3 Graybuck et al., 2021; 
Allen Institute Viral Core

N/A

Chemicals, Peptides, and Recombinant Proteins

Trimethoprim (TMP) Sigma-Aldrich T7883-5G

Tamoxifen (TAM) Sigma-Aldrich T5648-5G

Critical Commercial Assays

SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing Takara 634894

Nextera XT Index Kit V2 Set A-D Illumina FC-131-2001, FC-131-2002, 
FC-131-2003, FC-131-2004

Chromium Single Cell 3’ Reagent Kit v2 10x Genomics 120237

Deposited Data

Transcriptomic data – fastq files This paper; NeMO https://assets.nemoarchive.org/dat-
jb2f34y

Transcriptomic data – SMART-seq processed count file and sample 
metadata

This paper; Allen Institute 
for Brain Science; NeMO

https://portal.brain-map.org/atlases-
and-data/rnaseq/mouse-whole-cortex-
and-hippocampus-smart-seq; https://
assets.nemoarchive.org/dat-jb2f34y

Transcriptomic data – 10x processed count file and sample metadata This paper; Allen Institute 
for Brain Science; NeMO

https://portal.brain-map.org/atlases-
and-data/rnaseq/mouse-whole-cortex-
and-hippocampus-10x; https://
assets.nemoarchive.org/dat-jb2f34y

Cell type cards website that provides specific information for each 
cell type: markers, cell type metadata, correspondence with cell 
types in previous publications and relation to neighboring cell types

This paper; Allen Institute 
for Brain Science

https://taxonomy.shinyapps.io/
ctx_hip_browser_v2/

Experimental Models: Organisms/Strains

Mouse: B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J, Ai14(RCL-tdT) The Jackson Laboratory RRID: IMSR_JAX:007914

Mouse: B6;129S-Gt(ROSA)26Sortm65.1(CAG-tdTomato)Hze/J, 
Ai65(RCFL-tdT)

The Jackson Laboratory RRID: IMSR_JAX:021875

Mouse: B6;129S-Gt(ROSA)26Sortm66.1(CAG-tdTomato)Hze/J, 
Ai66(RCRL-tdT)

The Jackson Laboratory RRID: IMSR_JAX:021876
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: Ai65F(RCF-tdT) Daigle et al., 2018 N/A

Mouse: Ai110(RCL-FnGF-nT) Daigle et al., 2018 N/A

Mouse: B6.Cg-Gt(ROSA)26Sortm75.1(CAG-tdTomato*)Hze/J, Ai75(RCL-
nT)

The Jackson Laboratory RRID: IMSR_JAX:025106

Mouse: B6.Cg-Igs7tm140.1(tetO-EGFP,CAG-tTA2)Hze/J, Ai140(TIT2L-
GFP-ICL-tTA2)

The Jackson Laboratory RRID: IMSR_JAX:030220

Mouse: B6.Cg-Igs7tm148.1(tetO-GCaMP6f,CAG-tTA2)Hze/J, Ai148(TIT2L-
GC6f-ICL-tTA2)

The Jackson Laboratory RRID: IMSR_JAX:030328

Mouse: B6.Cg-Snap25tm1.1Hze/J, Snap25-LSL-F2A-GFP The Jackson Laboratory RRID: IMSR_JAX:021879

Mouse: B6.Cg-Calb1tm2.1(cre)Hze/J, Calb1-IRES2-Cre The Jackson Laboratory RRID: IMSR_JAX:028532

Mouse: B6(Cg)-Calb2tm1(cre)Zjh/J, Calb2-IRES-Cre The Jackson Laboratory RRID: IMSR_JAX:010774

Mouse: STOCK Ccktm1.1(cre)Zjh/J, Cck-IRES-Cre The Jackson Laboratory RRID: IMSR_JAX:012706

Mouse: B6;129S6-Chattm2(cre)Lowl/J, Chat-IRES-Cre The Jackson Laboratory RRID: IMSR_JAX:006410

Mouse: STOCK Tg(Chrna2-cre)OE25Gsat/Mmucd, Chrna2-
Cre_OE25

MMRRC RRID: MMRRC_036502-UCD

Mouse: STOCK Tg(Chrnb3-cre)SM93Gsat/Mmucd, Chrnb3-
Cre_SM93

MMRRC RRID: MMRRC_036469-UCD

Mouse: B6(Cg)-Crhtm1(cre)Zjh/J, Crh-IRES-Cre_ZJH The Jackson Laboratory RRID: IMSR_JAX:012704

Mouse: B6.Cg-Ccn2tm1.1(folA/cre)Hze/J, Ctgf-T2A-dgCre The Jackson Laboratory RRID: IMSR_JAX:028535

Mouse: B6(Cg)-Cux2tm3.1(cre/ERT2)Mull/Mmmh, Cux2-CreERT2 MMRRC RRID: MMRRC_032779-MU

Mouse: B6;129S-Esr2tm1.1(cre)Hze/J, Esr2-IRES2-Cre The Jackson Laboratory RRID: IMSR_JAX:030158

Mouse: B6(Cg)-Etv1tm1.1(cre/ERT2)Zjh/J, Etv1-CreERT2 The Jackson Laboratory RRID: IMSR_JAX:013048

Mouse: B6J.Cg-Gad2tm2(cre)Zjh/MwarJ, Gad2-IRES-Cre The Jackson Laboratory RRID: IMSR_JAX:028867

Mouse: STOCK Tg(Colgalt2-cre)NF107Gsat/Mmucd, Glt25d2-
Cre_NF107

MMRRC RRID: MMRRC_036504-UCD

Mouse: B6.Cg-Gnb4tm1.1(cre/ERT2)Hze/J, Gnb4-IRES2-CreERT2 The Jackson Laboratory RRID: IMSR_JAX:030159

Mouse: Tg(Gng7-cre)KH71Gsat, Gng7-Cre_KH71 Gerfen et al., 2013; from 
the lab of Charles Gerfen

MGI:4367014

Mouse: STOCK Tg(Htr3a-cre)NO152Gsat/Mmucd, Htr3a-
Cre_NO152

MMRRC RRID: MMRRC_036680-UCD

Mouse: B6.Cg-Ndnftm1.1(folA/cre)Hze/J, Ndnf-IRES2-dgCre The Jackson Laboratory RRID: IMSR_JAX:028536

Mouse: STOCK Nkx2-1tm1.1(cre/ERT2)Zjh/J, Nkx2.1-CreERT2 The Jackson Laboratory RRID: IMSR_JAX:014552

Mouse: B6;129S-Nos1tm1.1(cre/ERT2)Zjh/J, Nos1-CreERT2 The Jackson Laboratory RRID: IMSR_JAX:014541

Mouse: B6;129S-Npr3tm1.1(cre)Hze/J, Npr3-IRES2-Cre The Jackson Laboratory RRID: IMSR_JAX:031333

Mouse: B6.Cg-Npytm1.1(flpo)Hze/J, Npy-IRES2-FlpO The Jackson Laboratory RRID: IMSR_JAX:030211

Mouse: FVB-Tg(Nr5a1-cre)2Lowl/J, Nr5a1-Cre The Jackson Laboratory RRID: IMSR_JAX:006364

Mouse: B6.FVB(Cg)-Tg(Ntsr1-cre)GN220Gsat/Mmucd, Ntsr1-
Cre_GN220

MMRRC RRID: MMRRC_030648-UCD

Mouse: B6;129S-Oxtrtm1.1(cre)Hze/J, Oxtr-T2A-Cre The Jackson Laboratory RRID: IMSR_JAX:031303

Mouse: B6;129S-Pdyntm1.1(cre/ERT2)Hze/J, Pdyn-T2A-CreERT2 The Jackson Laboratory RRID: IMSR_JAX:030197

Mouse: B6;129S-Penktm2(cre)Hze/J, Penk-IRES2-Cre-neo The Jackson Laboratory RRID: IMSR_JAX:025112

Mouse: B6.Cg-Pvalbtm3.1(dreo)Hze/J, Pvalb-T2A-Dre The Jackson Laboratory RRID: IMSR_JAX:021190

Cell. Author manuscript; available in PMC 2022 June 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yao et al. Page 52

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: B6.Cg-Pvalbtm4.1(flpo)Hze/J, Pvalb-T2A-FlpO The Jackson Laboratory RRID: IMSR_JAX:022730

Mouse: B6;129P2-Pvalbtm1(cre)Arbr/J, Pvalb-IRES-Cre The Jackson Laboratory RRID: IMSR_JAX:008069

Mouse: B6.Cg-Rasgrf2tm2.1(folA/flpo)Hze/J, Rasgrf2-T2A-dgFlpO The Jackson Laboratory RRID: IMSR_JAX:029589

Mouse: STOCK Tg(Rbp4-cre)KL100Gsat/Mmucd, Rbp4-
Cre_KL100

MMRRC RRID: MMRRC_031125-UCD

Mouse: B6;129S-Rorbtm1.1(cre)Hze/J, Rorb-IRES2-Cre The Jackson Laboratory RRID: IMSR_JAX:023526

Mouse: B6.Cg-Rorbtm3.1(flpo)Hze/J, Rorb-IRES2-FlpO The Jackson Laboratory RRID: IMSR_JAX:029590

Mouse: Rorb-P2A-FlpO Daigle et al., 2018 N/A

Mouse: B6;C3-Tg(Scnn1a-cre)2Aibs/J, Scnn1a-Tg2-Cre The Jackson Laboratory RRID: IMSR_JAX:009112

Mouse: B6;C3-Tg(Scnn1a-cre)3Aibs/J, Scnn1a-Tg3-Cre The Jackson Laboratory RRID: IMSR_JAX:009613

Mouse: STOCK Tg(Sim1-cre)KJ18Gsat/Mmucd, Sim1-Cre_KJ18 MMRRC RRID: MMRRC_031742-UCD

Mouse: B6J.129S6(FVB)-Slc17a6tm2(cre)Lowl/MwarJ, Slc17a6-IRES-
Cre

The Jackson Laboratory RRID: IMSR_JAX:028863

Mouse: B6;129S-Slc17a7tm1.1(cre)Hze/J, Slc17a7-IRES2-Cre The Jackson Laboratory RRID: IMSR_JAX:023527

Mouse: STOCK Tg(Slc17a8-icre)1Edw/SealJ, Slc17a8-iCre The Jackson Laboratory RRID: IMSR_JAX:018147

Mouse: B6;129S-Slc17a8tm1.1(cre)Hze/J, Slc17a8-IRES2-Cre The Jackson Laboratory RRID: IMSR_JAX:028534

Mouse: B6J.129S6(FVB)-Slc32a1tm2(cre)Lowl/MwarJ, Slc32a1-IRES-
Cre

The Jackson Laboratory RRID: IMSR_JAX:028862

Mouse: B6.Cg-Slc32a1tm1.1(flpo)Hze/J, Slc32a1-IRES2-FlpO The Jackson Laboratory RRID: IMSR_JAX:031331

Mouse: B6.Cg-Slc32a1tm1.1(flpo)Hze/J, Slc32a1-T2A-FlpO The Jackson Laboratory RRID: IMSR_JAX:029591

Mouse: B6;129S-Snap25tm2.1(cre)Hze/J, Snap25-IRES2-Cre The Jackson Laboratory RRID: IMSR_JAX:023525

Mouse: B6J.Cg-Ssttm2.1(cre)Zjh/MwarJ, Sst-IRES-Cre The Jackson Laboratory RRID: IMSR_JAX:028864

Mouse: B6J.Cg-Ssttm3.1(flpo)Zjh/AreckJ, Sst-IRES-FlpO The Jackson Laboratory RRID: IMSR_JAX:031629

Mouse: B6;129S-Tac1tm1.1(cre)Hze/J, Tac1-IRES2-Cre The Jackson Laboratory RRID: IMSR_JAX:021877

Mouse: B6.FVB(Cg)-Tg(Th-cre)FI172Gsat/Mmucd, Th-Cre_FI172 MMRRC RRID: MMRRC_031029-UCD

Mouse: C57BL/6N-Thtm1Awar/Mmmh, Th-P2A-FlpO or TH-2A-Flpo Poulin et al., 2018; 
MMRRC

RRID: MMRRC_050618-MU

Mouse: B6.FVB(Cg)-Tg(Tlx3-cre)PL56Gsat/Mmucd, Tlx3-
Cre_PL56

MMRRC RRID: MMRRC_041158-UCD

Mouse: B6.Cg-Trib2tm1.1(cre/ERT2)Hze/J, Trib2-F2A-CreERT2 The Jackson Laboratory RRID: IMSR_JAX:022865

Mouse: B6J.Cg-Viptm1(cre)Zjh/AreckJ, Vip-IRES-Cre The Jackson Laboratory RRID: IMSR_JAX:031628

Mouse: STOCK Viptm2.1(flpo)Zjh/J, Vip-IRES-FlpO The Jackson Laboratory RRID: IMSR_JAX:028578

Mouse: B6;129S-Vipr2tm1.1(cre)Hze/J, Vipr2-IRES2-Cre The Jackson Laboratory RRID: IMSR_JAX:031332

Mouse: STOCK Tg(Gad1-EGFP)98Agmo/J, Gad67-GFP_X98 The Jackson Laboratory RRID: IMSR_JAX:006340

Software and Algorithms

STAR 2.5.3 Dobin et al., 2013 https://github.com/alexdobin/STAR/
releases

CellRanger 10x Genomics https://support.10xgenomics.com/
single-cell-gene-expression/software/
downloads/latest

SpaceRanger 10x Genomics https://support.10xgenomics.com/
spatial-gene-expression/software/
downloads/latest
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scrattch suites for clustering/visualization of single cell dataset that 
include scrattch.vis, scrattch.hicat, scrattch.bigcat

This paper; Allen Institute 
for Brain Science

https://github.com/AllenInstitute/
scrattch; https://github.com/
AllenInstitute/scrattch.vis; https://
github.com/AllenInstitute/
scrattch.hicat; https://github.com/
AllenInstitute/scrattch.bigcat

Seurat v3.4 Stuart et al., 2019 https://github.com/satijalab/seurat

UMAP McInnes et al., 2018 https://github.com/lmcinnes/umap

R v3.5.0 and greater R Foundation https://www.R-project.org

RStudio IDE RStudio http://www.rstudio.com
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