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Abstract

Background: A growing body of evidence links maternal exposure to particulate matter < 2.5 

μM in diameter (PM2.5) and deviations in fetal growth. Several studies suggest that the placenta 

plays a critical role in conveying the effects of maternal PM2.5 exposure to the developing fetus. 

These include observed associations between air pollutants and candidate placental features, such 

as mitochondrial DNA content, DNA methylation and telomere length. However, gaps remain in 

delineating the pathways linking the placenta to air pollution-related health effects, including a 

comprehensive profiling of placental processes impacted by maternal PM2.5 exposure. In this 

study, we examined alterations in a placental transcriptome-wide network in relation to maternal 

PM2.5 exposure prior to and during pregnancy and infant birthweight.

Methods: We evaluated PM2.5 exposure and placental RNA-sequencing data among study 

participants enrolled in the Rhode Island Child Health Study (RICHS). Daily residential PM2.5 

levels were estimated using a hybrid model incorporating land-use regression and satellite remote 

sensing data. Distributed lag models were implemented to assess the impact on infant birthweight 

due to PM2.5 weekly averages ranging from 12 weeks prior to gestation until birth. Correlations 

were assessed between PM2.5 levels averaged across the identified window of susceptibility and a 

placental transcriptome-wide gene coexpression network previously generated using the WGCNA 

R package.

Results: We identified a sensitive window spanning 12 weeks prior to and 13 weeks into 

gestation during which maternal PM2.5 exposure is significantly associated with reduced infant 

birthweight. Two placental coexpression modules enriched for genes involved in amino acid 

transport and cellular respiration were correlated with infant birthweight as well as maternal PM2.5 

exposure levels averaged across the identified growth restriction window.

Conclusion: Our findings suggest that maternal PM2.5 exposure may alter placental 

programming of fetal growth, with potential implications for downstream health effects, including 

susceptibility to cardiometabolic health outcomes and viral infections.
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Background

Studies to date have established that maternal exposure to air pollution can lead to deviations 

in infant birthweight, an indicator of gestational quality with implications for postnatal 

health. Spanning high and low income countries, these studies particularly point to 

reductions in fetal growth due to exposure to fine particulate matter < 2.5 μM in diameter 

(PM2.5)(1–8). Reported findings include temporal associations between maternal PM2.5 

exposure and infant birthweight, suggesting critical windows of susceptibility during 
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gestation(9–16). Additional nuances in the overall relationship between maternal PM2.5 

exposure and birth outcomes include reports of sex-specific effects(17).

The mechanism through which maternal PM2.5 exposure derails appropriate fetal 

development is not well characterized. The placenta, a transient gestational organ that sits at 

the maternal-fetal interface, is a likely candidate for conveying the effects of maternal PM2.5 

exposure to the developing fetus. Studies have shown the responsiveness of placental 

molecular features to PM2.5 exposure, including alterations in global methylation(18), 

mitochondrial methylation(19), gene-specific expression(20) and gene-specific 

methylation(21). A few studies have further examined whether PM2.5-induced changes in 

birthweight may be mediated through alterations in these placental molecular features, 

including global methylation(22), candidate gene expression levels(22), and mitochondrial 

DNA content(23). However, no reports to date include a whole transcriptomic survey that 

comprehensively captures placental processes in the pathway between maternal PM2.5 

exposure and aberrant fetal growth. We recently described a placental gene coexpression 

network(24) and reported associations with deviations in birthweight and trace metal 

exposure(25). In the current study, we leverage this placental gene network to evaluate 

coordinated perturbations in placental processes that may impart PM2.5-related deviations in 

fetal growth.

Methods

Study Population.

Women were enrolled at Women and Infants Hospital in Rhode Island between 2009 and 

2013 (n=840) as part of the Rhode Island Child Health Study (RICHS). Sex and gestational 

age matched birthweight percentiles were generated based on the 2013 Fenton growth 

curve(26). Small for gestational age (SGA, ≤10th birthweight percentile) and large for 

gestational age (LGA, ≥90th birthweight percentile) infants were oversampled in this 

population and matched by sex, gestational age and maternal age to appropriate for 

gestational age infants (AGA, >10th and <90th birthweight percentile). Enrollment was 

restricted to non-pathologic, singleton, term (≥37 weeks) pregnancies without congenital/

chromosomal abnormalities. Obstetric and anthropometric data were abstracted from the 

medical record and additional lifestyle and family history data were recorded through an 

interviewer-administered questionnaire.

Air Pollution Exposure.

Daily PM2.5 estimates were assigned to maternal residential addresses using hybrid 

spatiotemporal models as previously described(27–29). Briefly, participant addresses at the 

time of delivery were geocoded using ArcMap 10.1 (ESRI; Redlands, CA). Daily satellite 

aerosol optical depth (AOD) measurements were assigned to grid cells at a 1×1km 

resolution. Predicted PM2.5 values for each grid cell were based on daily calibrated models 

(R2=0.88), regressing ground-level PM2.5 data from monitoring sites on the assigned AOD-

based PM2.5 values and additional temporal and land use predictors using mixed-effects 

models. The initial set of daily calibrated PM2.5 models were fit on data where both ground 

monitoring and AOD measurements were available. These models were then updated and 
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applied to fill in predictions for cells with missing monitoring data as well as days with 

missing AOD values. Finally, the residuals of the finalized models were regressed against 

local land use factors at a 200 × 200m scale to map predicted grid-level exposures to 

residential address-specific estimates. Among participants of the RICHS cohort, PM2.5 data 

was available for infants born prior to 2013 and with a known residential address at the time 

of delivery. For each participant, we evaluated PM2.5 exposure during a window spanning 12 

weeks pre-conception until birth. We focus on this exposure window as it captures the 

timespan most relevant to placental development. In the period immediately prior to 

conception, air pollution may derail maternal processes necessary to support optimal 

placentation(30). Following placentation, air pollution may continue to impede placental 

function throughout gestation as the placenta adapts to accommodate the needs of the 

developing fetus.

Placenta Specimen Collection.

Placental biopsies were excised exclusively on the fetal side from four quadrants within 2 

cm of the cord insertion site, rinsed, and stored in RNALater. Within 72 hours, the biopsies 

were pooled, snap-frozen in liquid nitrogen, homogenized and stored at −80°C until further 

analysis.

Nucleic Acid Extraction and RNA-sequencing.

Total RNA was isolated from placental samples using an RNeasy Mini Kit. RNA yield was 

quantified using a NanoDrop ND-1000, and RNA integrity was assessed using an Agilent 

Bioanalyzer. Following rRNA depletion using a RiboZero kit, RNA libraries were prepared 

for sequencing on a HiSeq 2500 platform (Illumina, San Diego, CA). Sequencing runs 

generated single-end 50bp reads. Raw FASTQ files that passed quality control assessment 

using the FASTQC software were mapped to the human reference genome (hg19) using the 

Spliced Transcripts Alignment to a Reference (STAR) aligner. The data was filtered to 

remove lowly expressed genes, adjusted for GC content, corrected for library size using the 

trimmed mean of M values (TMM) method, and transformed to log counts per million 

(CPM) values. The final data-set included 12,135 genes. Placental RNASeq data was 

generated in a representative subset of RICHS participants (n=200) (24).

Statistical Analysis.

Daily estimated levels of PM2.5 exposure for each participant were aggregated into weekly 

averages, We implemented distributed lag models (DLMs) to evaluate the time-varying 

association between PM2.5 exposure during a given week and size for gestational age at birth 

(birthweight percentile, SGA vs. AGA, LGA vs. AGA). This method incorporates data from 

all time points simultaneously and assumes that the association between the outcome and 

exposure at a given time point, controlling for exposure at all other time points, varies 

smoothly as a function of time. The shape of the exposure-lag-response relationship is 

constrained by a set of basis functions (e.g., splines), with the functions defining the 

exposure-response relationship and the lag-response relationship combined in a bi-

dimensional space of cross-basis functions. Estimation is then performed using a standard 

regression model, including the matrix of cross-basis functions in the model formula(31). In 

the current study, the exposure-response relationship was assumed to be linear, and the lag-
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response relationship was fit using basis spline (B-spline) functions centered at 0, with 

degrees of freedom selected based on model parsimony and Akaike information criterion 

(AIC). The continuous birthweight percentile model was fit with 2 degrees of freedom, the 

SGA model was fit with 2 degrees of freedom, and the LGA model was fit with 4 degrees of 

freedom; additional smoothing did not significantly improve the model. Sensitive windows 

to PM2.5 exposure were identified in regions where point estimates and 95% confidence 

bands do not include 0 (continuous models) or 1 (categorical models). Models were also 

evaluated stratified by infant sex. DLMs were performed using the dlnm R package version 

2.3.9.

Weighted gene coexpression network analysis (WGCNA) was performed using placental 

transcriptome-wide gene expression data as previously described(24). Briefly, a similarity 

matrix was generated based on absolute values of pairwise Pearson correlations and 

transformed into an adjacency matrix using a weighted soft threshold (β =6). Genes were 

grouped into modules based on hierarchical clustering of their topological overlap. Each 

module was summarized by the first principal component of each module, defined as the 

module eigengene. To overlay PM2.5 exposure with the placental gene coexpression 

network, PM2.5 exposure was averaged across the identified growth restriction exposure 

window (GREW, 12 weeks prior to conception through 13 weeks gestation). Spearman 

correlations were calculated between average PM2.5 and the module eigengenes.

In addition to accounting for infant sex and gestational age in the Fenton growth curve-based 

outcome assignment, all regression models were additionally adjusted for maternal age, 

maternal education, and season of birth. All analyses were conducted using R version 3.6.2. 

R code for the presented analysis is available at https://github.com/mdeyssen/

RICHS_WGCNA_AirPop.

Results

The demographic characteristics of the study population and comparisons to the full RICHS 

cohort are shown in Table 1. For the current study, we performed two sub-cohort analyses, 

one leveraging all participants with available PM2.5 exposure data (n=471) and one 

overlapping the PM2.5 data with available placental gene network information (n=149). 

Overall, both sub-cohorts are representative of the full cohort, reflecting a population of 

primarily of Caucasian descent (> 70%) and average PM2.5 levels across gestation of 

approximately 8 μg/m3. Notable differences include a slightly older maternal age, a shift in 

the season of birth distribution and higher birthweight percentiles among the analyzed sub-

cohorts compared to the full RICHS cohort.

We observe a reduction in infant birthweight percentiles due to a 1ug increase in PM2.5 

sustained across all lags. However, this cumulative effect did not meet statistical significance 

(−4.62, [95% Confidence Interval (CI): −9.35, 0.09]). Evaluating the time-varying 

association between maternal PM2.5 exposure and infant birthweight percentiles, we observe 

a significant inverse association during an exposure window spanning 12 weeks prior to 

conception until 13 weeks gestation (Figure 1a). For the categorical birthweight outcomes 

(AGA, LGA and SGA), we observe a significant increased risk of SGA status due to a 1 ug 
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increase in PM2.5 sustained across all lags (cumulative Risk Ratio (RR): 1.60, [95% CI: 

1.03, 2.47]. In addition, an increased risk of SGA compared to AGA status is specifically 

observed during an exposure window spanning 2 weeks prior to conception until 14 weeks 

gestation (Figure 2a). There is no significant effect on LGA status due to a 1 ug increase in 

PM2.5 sustained across all lags (cumulative RR: 0.93, [95% CI: 0.67, 1.29]. However, a 

time-varying effect on LGA status due to PM2.5 is observed during two sensitive exposure 

windows. A decreased risk of LGA compared to AGA status is observed during an exposure 

window spanning 3 weeks prior to conception until 8 weeks gestation. Additionally, an 

increased risk of LGA compared to AGA status is observed during an exposure window 

spanning 29 until 32 weeks gestation (Figure 3a).

In our sex-stratified analysis, we observe a significant cumulative effect on birthweight 

percentiles due to a 1 ug increase in PM2.5 sustained across all lags among female infants 

(−7.37, [95% Confidence Interval (CI): −14.68, −0.06]). In addition, a significant inverse 

association is specifically observed between maternal PM2.5 exposure in the 6 weeks prior to 

conception until 13 weeks gestation and birthweight percentiles (Figure 1b). No significant 

cumulative effect across all lags (−2.71, [95% Confidence Interval (CI): −9.18, 3.77]) or 

sensitive window of exposure is observed among male infants (Figure 1c). Modeling 

birthweight as a categorical outcome, we observe a significant cumulative effect on SGA 

status due to a 1 ug increase in PM2.5 sustained across all lags among female infants 

(cumulative RR: 2.13, [95% CI: 1.09, 4.16]) but not male infants (cumulative RR: 1.64, 

[95% CI: 0.83, 3.24)]. We observe a time-varying effect on SGA risk due to maternal PM2.5 

exposure among both male and female infants, in offset windows of exposure. Among 

female infants, a sensitive exposure window is detected between 7 and 16 weeks gestation 

(Figure 2b). Among male infants, a sensitive exposure window is detected between 12 and 7 

weeks prior to conception (Figure 2c).

No significant cumulative effect on LGA status due to a 1 ug increase in PM2.5 sustained 

across all lags is observed among female infants (cumulative RR: 0.79, [95% CI: 0.46, 

1.34]) or male infants (cumulative RR: 1.06, [95% CI: 0.68, 1.65]). However, two sensitive 

windows of PM2.5 exposure are observed in relation to LGA status is observed among 

female infants. A significant inverse association is observed in the 5 weeks prior to 

conception until 6 weeks gestation, and a positive association is observed between 26 weeks 

and 30 weeks gestation (Figure 3b). No significant sensitive window of exposure was 

observed in relation to LGA status among male infants (Figure 3c).

To overlay our PM2.5-related findings with our previously described placental gene 

coexpression network(24), we averaged maternal PM2.5 exposure from 12 weeks prior to 

conception and 13 weeks gestation, corresponding to the sensitive window of exposure 

identified in the birthweight percentile analysis, as this window also includes the growth 

restriction window identified in the SGA and LGA analyses. We refer to this summary 

measure as the PM2.5 growth-restriction exposure window (GREW) average. Differences in 

this PM2.5 GREW average across the birth weight groups are shown in Figure S1.

Consistent with the full cohort of participants with PM2.5 measurements (n=470), in the sub-

cohort of participants with both PM2.5 and placental gene expression data (n=149), 
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birthweight decreases as average PM2.5 levels increase, although this change did not reach 

statistical significance (p=0.10).

In a previous study, we identified 17 placenta gene modules in the placenta(24). Spearman 

correlations between these coexpression modules and the PM2.5 GREW average as well as 

key demographic variables are shown in Figure 4. The Gene Ontology (GO) enrichment 

analysis terms associated with each module are shown along the y-axis. The PM2.5 GREW 

average is positively correlated with modules enriched in amino acid transport (red), cellular 

respiration (turquoise) and cell adhesion (tan) processes and inversely correlated with 

modules enriched in the vasculature development (blue) and organ development (yellow) 

processes. As shown in the figure, the amino acid transport (red) and cellular respiration 

(turquoise) modules are additionally inversely correlated with birthweight percentiles. An 

increase in both amino acid transport and cellular respiration module activity as well as 

PM2.5 GREW average is linked to a decrease in birthweight percentiles. Hence, the positive 

correlation between the PM2.5 GREW average and these two modules is consistent with 

their respective inverse relationships with fetal growth.

Figures 5 and 6 further demonstrate the opposing direction in the correlations between genes 

in the cellular respiration and amino acid transport modules and the PM2.5 GREW average 

and birthweight percentiles. Thirty-two genes in the cellular respiration module are 

correlated (r > |0.20|) with both the PM2.5 GREW average and birthweight percentile, as 

indicated on the y-axis of each panel in Figure 5. Thirty genes (ACBD3, C14orf153, 

C1orf212, CCDC53, CLTB, DCTN6, DNLZ, EIF5A, FUNDC2, GNG4, HSD17B10, LLPH, 

NCRNA00116, NDUFA1, NDUFB10, PDE6D, PGM2, PTMA, RAB2A, SNRPG, SRP54, 

SSU72, SYAP1, TMUB1, TXNDC12, UBQLN1, UBXN1, UTP18, ZBTB11, ZC3H15) are 

positively correlated with the PM2.5 GREW average and inversely correlated with 

birthweight percentiles, and 2 genes (CDK18, LRRC4) are inversely correlated with the 

PM2.5 GREW average and positively correlated with birthweight percentiles. Additionally, 

as these are among the genes most highly correlated with the module eigengene value (x-

axis of each plot), these genes are considered module hub genes reflective of overall module 

activity. In the amino acid transport module (Figure 6), only one gene, SPTY2D1, is 

correlated (r > |0.20|) with both the PM2.5 GREW average and birthweight percentiles. This 

gene is positively correlated with the PM2.5 GREW average and inversely correlated with 

birthweight percentiles. Given its correlation with the module eigengene value (x-axis), 

SPTY2D1 expression is also a module hub gene representative of overall module activity.

Discussion

We observed associations between maternal PM2.5 exposure extending from the 

preconception to the early gestational period and reductions in infant birthweight. The 

identified window of sensitivity was largely consistent across different parameterizations of 

birthweight. The window identified in association with reduced birthweight percentiles (12 

weeks prior to conception – 13 weeks gestation) is consistent with the PM2.5 window in 

association with increased risk of SGA compared to AGA status (2 weeks prior to 

conception – 14 weeks gestation) and the PM2.5 window in association with decreased risk 

of LGA compared to AGA status (3 weeks prior to conception – 8 weeks gestation). In the 
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LGA analysis, a PM2.5 exposure window late in gestation (29 weeks – 32 weeks gestation) 

is additionally associated with increased risk of LGA compared to AGA status. Stratifying 

by sex, the findings among female infants coincide with the overall findings while the 

findings among male infants are largely null.

Our findings of a PM2.5 exposure window early in gestation in association with reduced 

birthweight is consistent with a number of studies reported in the literature (9,10,12–

14,16,32–35). We also identified an exposure window late in gestation that is associated with 

LGA status. Prior studies that specifically evaluated fetal overgrowth have reported similar 

associations (36,37). The apparent differential effect of PM2.5 exposure on birthweight in 

early gestation compared to late gestation could reflect a shift in how the placenta functions 

as it adapts to accommodate the increasing metabolic demands of the fetus. PM2.5 may 

impact the role of the placenta in appropriate implantation and establishment of maternal 

blood flow early in gestation. Later in gestation, the placenta plays a more pronounce role in 

growth hormone and fatty acid regulation, and PM2.5 exposure may disrupt these placental 

processes in support of the rapid fetal growth and changes in fetal tissue composition that 

occur during this period.

However, there are also studies that did not identify specific temporal windows (2,37–44) 

while others identified different temporal windows (45–61). It is important to note that our 

findings are based on weekly averages of PM2.5 while these prior reports mainly evaluated 

trimester-specific effects. Trimesters represent three month averages that can coincide with 

seasonal trends in PM2.5 levels, introducing a potential bias due to induced correlations 

among the averages. The implementation of a distributed lag model on weekly PM2.5 

averages as applied in the current study is less susceptible to this type of bias(62). Given that 

not all developmental processes are neatly encapsulated within trimesters, using a more fine-

scale approach of weekly averages also has the additional benefit of greater sensitivity to 

identify more refined windows of susceptibility that can capture perturbed biological 

processes that may otherwise be missed using trimester-level averages. While we did not 

interrogate the biological underpinnings of the preconception and early pregnancy period of 

susceptibility identified in the current study, this window may reflect an impact due to PM2.5 

exposure on maternal physiology that compromises the ability to adequately establish and 

provide placental support to the developing fetus. Indeed, studies have shown that exposure 

to criteria air pollutants in the preconception and early pregnancy period are associated with 

maternal comorbid conditions, such as gestational diabetes. (63). Priming of such 

derailments in maternal physiology may occur as early as the pre-conception period, 

impeding maternal support of placental development required for adequate fetal growth.

Few studies to date have reported on sex-specific effects of maternal PM2.5 exposure on fetal 

growth(17,64). Contrary to the findings reported in the current study, these studies report a 

stronger deficit in fetal growth among male infants due to PM2.5 exposure. However, the 

studies differ in how PM2.5 exposure was parameterized and evaluated, limiting the 

comparability of the reported findings. For example, one study evaluated personal PM2.5 

exposure levels averaged across a 48hr period during the second trimester, and another study 

evaluated ambient PM2.5 averaged across gestation and stratified by maternal obesity.”
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The underpinnings of a differential impact on female infants due to preconception and early 

gestational PM2.5 exposure warrant further exploration.

Overlaying our previously delineated placental gene coexpression network with PM2.5 

exposure averaged across the identified growth restriction window, we identified 5 

coexpressed gene modules that are correlated with maternal PM2.5 exposure. Out of these 

five modules, modules enriched for amino acid transport and cellular respiration processes, 

based on Gene Ontology (GO) enrichment analysis, are additionally correlated with 

birthweight percentiles.

Consistent with the Gene Ontology term assigned to the cellular respiration module, ATP-

dependent processes predominate among the module hub genes that are correlated with 

maternal PM2.5 exposure and infant birthweight percentile. These include genes that directly 

interact with mitochondrial processes, including ACBD3(65), C14orf153(66), DCTN6(67), 

DNLZ(68), FUNDC2(69), HSD17B10(70), NDUFA1(71,72), NDUFB10(72). The 

upregulation of mitochondrial processes fuels ATP-dependent cellular processes, with genes 

involved in cell motility (PDE6D)(73), muscle contractility (SYAP1, TMUB1)(74,75), 

intracellular vesicle transport (ACBD3, DCTN6, CCDC53) (65,76,77), and autophagy 

(TMUB1, UBQLN1)(78,79). Autophagy, in turn, is an important component in host 

response to viral infections (ACBD3, TMUB1, C1orf212, DCTN6, UBXN1) (65,78,80–82). 

Changes in CpG methylation levels at one of these viral infection susceptibility loci, 

C1orf212, was previously additionally linked with PM2.5 exposure(83). For the amino acid 

transport module, only one hub gene, SPTY2D1, was correlated with both maternal PM2.5 

exposure and infant birthweight percentile. Prior studies most commonly link single 

nucleotide polymorphisms (SNPs) in this gene with overall(84,85) and sex-specific(86) 

differences in lipid profiles.

Recently reported human and animal studies also implicate PM2.5 exposure with alterations 

in the placenta, including histopathology changes(87,88), increased oxidative stress(89), 

increased placental aging(90), altered expression of candidate genes(20,91), mitochondrial 

DNA content and elevated global methylation(92). Among these studies, those that 

additionally evaluated placental impacts across temporal windows of exposure also 

identified early gestation as a critical period of sensitivity(20,92). The findings of the current 

study build upon these early links through a more comprehensive placental transcriptomic 

survey that pinpoints specific biologic processes as candidates for being dysregulated 

through PM2.5 exposure during the early gestational period. Taken together, these findings 

suggest that early maternal exposure to PM2.5 impacts fetal growth, particularly among 

female infants, and may program immune activation in response to viral infections and 

cardiometabolic outcomes later in life.

There are several limitations in this study that warrant caution in the interpretations of the 

findings. Complete data on maternal PM2.5 exposure, placental gene expression, and infant 

birthweight was only available on a subset of the cohort (n=149), limiting the power of our 

study. For example, formal testing of the placental network genes as mediators in the 

pathway between maternal PM2.5 exposure and infant birthweight was not feasible since the 

main effect between maternal PM2.5 exposure and infant birthweight did not reach statistical 
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significance within the subcohort of participants with both PM2.5 and placental gene 

expression data. In addition, gene expression changes were evaluated in placenta collected at 

birth while the presented findings suggest early gestation as a sensitive window to maternal 

PM2.5 exposure. While it is possible that early gestational exposure impacts appropriate 

placentation with persistent effects detectable at term (e.g., insufficient vascularization), we 

cannot discern whether our identified marks reflect such a direct effect or rather a secondary 

adaptive placental response. A live birth bias may also impact our findings if we expect air 

pollution exposure to contribute to early fetal loss(93). Since early fetal loss is often 

unreported, this critical susceptible subset among the truly exposed is not accounted for in 

our study, and conditioning our analyses on data stemming from recorded birth information 

can introduce a selection bias. Finally, our air pollution exposure assessment specifically 

focused on particulate matter components while data on other criteria air pollutants (e.g., 

carbon monoxide, nitrogen dioxide and ozone) and indoor air pollutants were not available 

to be evaluated. Future studies that account for the mixed sources and composition of air 

pollution may better capture effects reflective of true exposure profiles.

Conclusions

This study adds to the existing body of literature pinpointing the preconception and early 

gestation periods as critical windows of susceptibility to maternal PM2.5 exposure induced 

effects on fetal growth restriction. Furthermore, this is among the first epidemiologic studies 

linking a critical window of susceptibility due to maternal PM2.5 exposure to potential 

placental programming impacts on fetal development. Our findings suggest that maternal 

PM2.5 exposure may alter placental programming of fetal growth, with potential 

implications for downstream health effects, including susceptibility to viral infections and 

cardiometabolic health outcomes. This adds to the growing policy impetus to reduce global 

air pollutant levels to protect the unborn child. Until this goal is realized, interim strategies 

should focus on emphasizing exposure mitigation strategies, particularly among women of 

childbearing age.
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Highlights

• PM2.5 exposure in the periconceptional and early prenatal period is associated 

with reductions in fetal growth.

• Female infants are particularly vulnerable to PM2.5 induced deficits in fetal 

growth.

• Disruptions in placental processes involved in protein transport and other 

ATP-driven processes may play an important role in conveying the impact of 

PM2.5 on the developing fetus.
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Figure 1. Association between maternal PM2.5 exposure and infant birthweight percentiles.
A. Maternal PM2.5 exposure from 12 weeks prior to conception until 13 weeks gestation is 

inversely associated with infant birthweight percentiles. B. Among female infants, maternal 

PM2.5 exposure from 6 weeks prior to conception until 13 weeks gestation is inversely 

associated with birthweight percentiles. C. Among male infants, no association is observed 

between maternal PM2.5 exposure and birthweight percentiles. Stratifying our analyses by 

sex, an overall cumulative effect on infant birthweight percentiles due to a 1 ug increase in 

PM2.5 sustained across all lags is observed among female infants (−7.40, [95% CI: −14.78, 

−0.03]) but not among male infants (−2.72, [95% CI: −9.21, 3.77]).
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Figure 2. Association between maternal PM2.5 exposure and SGA status at birth.
A. Maternal PM2.5 exposure from 2 weeks prior to conception until 14 weeks gestation is 

associated with increased risk of SGA status at birth. B. Among female infants, maternal 

PM2.5 exposure from 7 weeks to 16 weeks gestation is associated with increased risk of 

SGA status at birth. C. Among male infants, maternal PM2.5 exposure between 12 weeks to 

7 weeks prior to conception is associated with increased risk of SGA status at birth.
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Figure 3. Association between maternal PM2.5 exposure and LGA status at birth.
A. Maternal PM2.5 exposure from 3 weeks prior to conception until 8 weeks gestation is 

associated with a decreased risk of LGA status at birth. In addition, PM2.5 exposure from 29 

weeks gestation until 32 weeks gestation is associated with an increased risk of LGA status 

at birth. B. Among female infants, PM2.5 exposure from 5 weeks prior to conception until 6 

weeks gestation is associated with a decreased risk of LGA status at birth. In addition, PM2.5 

exposure from 26 weeks until 30 weeks gestation is associated with an increased risk of 

LGA status at birth. Among male infants, no association between PM2.5 exposure and LGA 

status at birth is observed.
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Figure 4. Spearman correlations between placental coexpression modules and RICHS 
demographic characteristics.
The y-axis indicates the Gene Ontology terms enriched in each module. The color gradient 

reflects the direction (red = positive, blue = negative) and strength of the correlation between 

the eigengene values of the modules (y-axis) and RICHS study participant characteristics (x-

axis). Significant correlation coefficent values (p<0.05) are indicated on the plot.
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Figure 5. Cellular respiration module gene correlations (n=3073) with maternal PM2.5 exposure 
and infant birthweight percentiles.
The x-axis indicates the correlation between gene expression and the module eigengene 

value. The y-axis indicates the correlation between genes and (A) maternal PM2.5 exposure 

or (B) infant birthweight percentiles. Genes with correlation coefficients > |0.20| with both 

maternal PM2.5 exposure and infant birthweight percentiles are indicated on the plot with 

black points, and all other genes are indicated as turquoise points. One locus, C1orf212, is 

labeled in the plot to illustrate the inverse gene correlations observed with maternal PM2.5 

exposure and infant birthweight percentile.
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Figure 6. Amino acid transport module gene correlations (n=486) with maternal PM2.5 exposure 
and infant birthweight percentiles.
The x-axis indicates the correlation between gene expression and the module eigengene 

value. The y-axis indicates the correlation between genes and (A) maternal PM2.5 exposure 

or (B) infant birthweight percentiles. Genes with correlation coefficients > |0.20| are 

indicated on the plot with black points, and all other genes are indicated as red points. Only 

one gene, SPTY2D1, passed this threshold.
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Table 1.

Demographic characteristics of the study population compared to the full RICHS cohort (n=799)

Full cohort (n=799) PM2.5 subset (n=471) WGCNA subset (n=149) p-value

Mean (SD) Mean (SD) Mean (SD)

Birthweight percentile 53.48 (34.48) 58.18 (34.07) 56.93 (34.14) 0.05

Gestational age (weeks) 39.00 (0.95) 38.99 (0.92) 38.95 (0.96) 0.87

Maternal age (years) 29.72 (5.47) 30.03 (5.65) 31.23 (4.78) 0.01

Maternal BMI (kg/m2) 26.60 (7.00) 26.94 (7.10) 26.25 (6.28) 0.53

PM2.5 (ug/m3) 7.97 (0.79) 7.97 (0.79) 7.99 (0.74) 0.94

N (%) N (%) N (%)

Birthweight Group 0.12

 SGA 157 (19.6) 77 (16.3) 22 (14.8)

 AGA 456 (57.1) 260 (55.2) 82 (55.0)

 LGA 186 (23.3) 134 (28.5) 45 (30.2)

Sex (Male) 398 (49.8) 244 (51.8) 78 (52.3) 0.73

Delivery Mode (Vaginal) 391 (48.9) 221 (46.9) 82 (55.0) 0.23

Maternal Race/Ethnicity 0.50

 White 585 (73.2) 361 (76.6) 120 (80.5)

 Black 60 (7.5) 28 (5.9) 7 (4.7)

 Other 151 (18.9) 81 (17.2) 22 (14.8)

 NA 3 (0.4) 1 (0.2) 0 (0.0)

Maternal Education 0.19

 Less than HS grad 400 (50.1) 249 (52.9) 91 (61.1)

 HS grad 144 (18.0) 76 (16.1) 17 (11.4)

 Some College 60 (7.5) 26 (5.5) 5 (3.4)

 College grad and above 188 (23.5) 115 (24.4) 34 (22.8)

 NA 7 (0.9) 5 (1.1) 2 (1.3)

Maternal Smoke status 0.38

 No 746 (93.4) 441 (93.6) 142 (95.3)

 Yes 42 (5.3) 23 (4.9) 3 (2.0)

 NA 11 (1.4) 7 (1.5) 4 (2.7)

Season of Birth 0.03

 Spring 171 (21.4) 136 (28.9) 42 (28.2)

 Summer 216 (27.0) 111 (23.6) 29 (19.5)

 Fall 261 (32.7) 137 (29.1) 55 (36.9)

 Winter 151 (18.9) 87 (18.5) 23 (15.4)
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