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Abstract
The circadian clock exerts an important role in systemic homeostasis as it acts a keeper of time for the organism. The syn-
chrony between the daily challenges imposed by the environment needs to be aligned with biological processes and with 
the internal circadian clock. In this review, it is provided an in-depth view of the molecular functioning of the circadian 
molecular clock, how this system is organized, and how central and peripheral clocks communicate with each other. In this 
sense, we provide an overview of the neuro-hormonal factors controlled by the central clock and how they affect peripheral 
tissues. We also evaluate signals released by peripheral organs and their effects in the central clock and other brain areas. 
Additionally, we evaluate a possible communication between peripheral tissues as a novel layer of circadian organization by 
reviewing recent studies in the literature. In the last section, we analyze how the circadian clock can modulate intracellular 
and tissue-dependent processes of metabolic organs. Taken altogether, the goal of this review is to provide a systemic and 
integrative view of the molecular clock function and organization with an emphasis in metabolic tissues.
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Function and organization of the circadian 
timing system

How organisms keep track of time

The rotation of the Earth around its own axis creates a pre-
cise 24-h natural light and dark rhythm. This predictability 
promoted the evolution of internal timekeeping systems that 
serve to anticipate and adapt to associated changes in envi-
ronmental demands. Indeed, such internal circadian clock 
systems can be found from uni to multicellular organisms 
with an increasing complexity in terms of mechanism and 
organization [1, 2].

Mammals possess a hierarchical circadian system with 
a central oscillator, the suprachiasmatic nucleus (SCN), 
localized in the hypothalamus [3]. The primary role of SCN 
is to provide subordinate clocks in the brain and periph-
eral tissues, through several pathways (See "Overview of 
SCN-driven inputs to peripherel clocks"), with temporal 

information aligning a multitude of clock-associated bio-
logical processes to a single time zone shared by the entire 
organism in line with the cyclic demands posed by the envi-
ronment [4–9]. Disbalance or disruption of this temporal 
harmony has been shown to contribute to the development 
and progression of several diseases [2, 5, 10, 11].

The main synchronizing (or entraining) signal of the cir-
cadian clock is light. In the early 2000s, pioneering studies 
by Ignacio Provencio demonstrated the presence of a novel 
non-visual photoreceptor in the mammalian retina, mel-
anopsin (OPN4) [12, 13]. OPN4 was shown to participate, 
together with cone and rod photoreceptors, in the synchro-
nization of the SCN to the environmental light–dark cycle 
[14, 15]. Two isoforms of OPN4 are expressed in a subset of 
intrinsically photosensitive retinal ganglion cells (ipRGCs) 
[12, 16, 17] and are further subdivided into five categories 
[16–18]. OPN4 not only serves as a regulator of circadian 
rhythms, but it also controls several other light-responsive 
biological processes such as pupil constriction, melatonin 
synthesis, glaucoma development, migraine photophobia, 
and sleep [19]. Upon photon capture by ipRGCs, light 
information is transformed into electric pulses that travel 
through the retinohypothalamic tract (RHT), a monosynaptic 
pathway that innervates the ventromedial (or core) portion 
of the SCN containing vasoactive intestinal polypeptide 
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(VIP)-expressing neurons. Glutamate and pituitary ade-
nylate cyclase-activating polypeptide (PACAP) are released 
from ipRGC termini in the SCN (Reviewed in [20]). As the 
core SCN receives direct input from the retina, its photo-
sensitivity leads to a fast increase in transcription of some 
genes, including the Period (Per1/2) clock genes (Pers), and 
increased neuronal firing. Single-cell transcriptomics reveal 
eight cellular subtypes within the SCN, of which five are 
neurons [21]. There exists intensive communication between 
the SCN’s core and its dorsoventral (arginine vasopressin-
expressing) shell region. The latter has an essential role as 
the central circadian oscillator, which is beyond the scope 
of this paper, but the reader is referred to a recent review 
[22]. Glutamate-induced upregulation of Per gene expres-
sion is mainly depended on cAMP-CREB signaling during 
the night, which results in phase resetting of the molecular 
circadian clock machinery in the SCN pacemaker [20].

At the cellular level, mammalian circadian clocks are 
based on interlocked transcriptional-translational feedback 
loops (TTFLs) comprised of positive and negative arms. In 
the beginning of the subjective day (circadian dawn), expres-
sion of Per (1–3) and Cryptochrome (Cry1/2) genes starts 
through direct action of the basic helix-loop-helix (bHLH) 
transcription factor heterodimer, Circadian Locomotor 
Output Cycles Kaput (CLOCK), or its paralogue Neuronal 
PAS Domain Protein 2 (NPAS2), and Brain and Muscle 
ARNT-Like 1 (BMAL1 or ARNTL), acting on E-box cis-
regulatory enhancer regions. As gene transcription increases 
throughout the day, PER/CRY heterodimers accumulate, 
first in the cytoplasm and then in the nucleus, to represses 
the activity of CLOCK/BMAL1, leading to a reduction of 
Per and Cry gene transcription during the subjective night. 
Critically, PER and CRY protein stability is dependent on 
post-translational modifications that initiate protein degra-
dation. Casein Kinase 1 δ and ε are responsible for PER 
protein phosphorylation and degradation while CRY stabil-
ity is regulated by F-box and Leucine Rich Repeat Protein 3 
(FBXL3)-mediated ubiquitination. Once negative-feedback 
repression is relieved through PER/CRY protein degrada-
tion, a new circadian cycle is initiated. In addition to this 
main TTFL, a secondary loop involves CLOCK/BMAL1 
activating the expression of Nuclear Receptor Subfamily 1 
group D Member 1 and 2 (Nr1d1/2, also known as Rev-
erbα/β) and nuclear receptor Subfamily 1 group F Member 
1, 2, and 3 (Nr1f1-3, also known as Rorα-γ). Through com-
petition for binding to orphan receptor response elements 
(ROREs) in the Bmal1 promoter, REV-ERBs and RORs 
regulate rhythmic Bmal1 transcription. A third loop consists 
of BMAL1/CLOCK driving the expression of the PAR-bZip 
(proline and acidic amino acid-rich basic leucine zipper) 
transcription factor DBP (Albumin D‑site Binding Protein) 
that interacts at D-box enhancer regions with the repressor 
NFIL3 (Nuclear Factor, Interleukin‑3 Regulated, also known 

as E4BP4), expression of which is driven through the REV-
ERB/ROR loop. Such D-box elements are found in the Per 
promoter regions (Fig. 1).

Cyclic chromatin modifications contribute to the stability 
of the TTFL system and are associated with circadian gene 
transcription [23]. Through the above-mentioned circadian 
enhancer motifs hundreds to thousands of tissue-specific 
clock-controlled genes (CCGs) are regulated in a circadian 
fashion by the core clock machinery [24]. Collectively, 
the resulting rhythms of gene/protein abundance allows 
the organism to keep track of time at the molecular level 
(reviewed in [9, 22, 25–27]). Of note, recent advancements 
in proteomics suggest that there is only a moderate degree 
of overlap between rhythmic transcripts and their respec-
tive protein products, which argues for a major function of 
post-transcriptional and translation modifications in circa-
dian timekeeping (reviewed in [28]). As just one example, 
RNA methylation by N6-adenosine Methyltransferase 70 
(METTL3) was shown to affect the period of the molecular 
clockwork in mice [29].

The molecular clock machinery is not restricted to the 
SCN. It is, at least in mammals, rather expressed in most—
if not all—cells and tissues of the body, thus forming a 
systemic network of cellular clocks. One may stress that 
molecular rhythms based on TTFLs are less pronounced or 
absent in stem cells, but they become detectable as cells dif-
ferentiate (reviewed in [30]). Several key genes that encode 
important regulators of biological processes are directly or 
indirectly affected by the clock gene machinery, a mecha-
nism that ultimately allows biological processes to be within 
the same time zone [25, 27]. In mice, more than 40% of all 
protein coding genes display rhythmic transcription in at 
least one tissue of the body [24].

Organization of the circadian clock network

The most accepted system of circadian organization is the 
“Orchestra Model”—a hierarchical system. In this orchestra, 
the SCN is considered the maestro, responsible for provid-
ing complete information and ensuring coordination among 
the different band members, i.e., the peripheral clocks. Each 
musician (tissue/organ) can play its own instrument (regu-
late biological processes), but the coordination is ensured 
by the maestro (SCN) [31, 32]. Many researchers argue 
for a master–slave type of organization between the SCN 
and peripheral clocks, which is a limited view in face of 
such complex relationship [33]. Several layers of evidence 
gathered over the past 20 years have created a consensus 
in the literature regarding such a hierarchical—top to bot-
tom—control of the SCN over peripheral clocks. Physical 
disruption of the SCN leads to arrhythmic locomotor activ-
ity profiles in rodents kept in constant conditions (DD) or 
under a light or dark cycle (LD) [3, 34] as well as other 



4565The circadian clock and metabolic homeostasis: entangled networks﻿	

1 3

important biological functions [35–38]. However, most of 
experimental data that led to the creation of this model is 
based on SCN lesion experiments. Such lesions not only 
disrupt neuronal connections of SCN but may also affect 
SCN neighboring connections to other parts of the brain 
(reviewed in [39]). In addition, evidence arisen from studies 
in early 2000’s, provided some findings that are difficult to 
fit into a top to bottom model of organization, such as the 
fact that timely given food affects peripheral clocks without 
altering the SCN [40–43]. Novel experimental tools such as 
tissue-specific genetic deletion indeed led to changes in the 
understanding of how the SCN and its surrounding struc-
tures regulate circadian rhythms. Mice with Bmal1 deletion 
in SCN neurons [44, 45] or in the forebrain [46] show rhyth-
mic locomotor activity in LD that is lost in DD [44, 45]. 

Gene expression data of peripheral clocks of these mice kept 
in LD also show a rhythmic pattern, while in DD peripheral 
clock gene expression rhythms are rapidly dampened [44]. 
Such dampening is paralleled by dampening of corticoster-
one secretion rhythms [44]. Bioluminescence analyses in 
tissues from forebrain Bmal1 knockouts (KOs) showed that 
decreased amplitudes of peripheral clock oscillations upon 
release into DD was due to impaired cellular rhythmicity and 
higher phase desynchrony between single cellular clocks. 
Moreover, time-restricted feeding in forebrain KO mice kept 
in DD rescues peripheral clock oscillatory responses in the 
liver, but not in heart, lung, and spleen [46].

The above-described studies demonstrate that in the 
absence of a functional SCN clock, peripheral clocks 
still entrain when mice are kept in LD. In zeitgeber free 

Fig. 1   The molecular mechanism of the circadian clock in mammals. 
Every 24  h, a complex machinery comprised of genes and proteins 
undergoes changes in mRNA and protein levels through interlocked 
transcriptional-translational feedback loops (TTFLs). The reader 
is referred to the text for a detailed description of this mechanism. 
Abbreviation of the genes: Per = Period; Cry = Cryptochrome; 

Clock = Circadian Locomotor Output Cycles Kaput; Bmal1 = Brain 
and Muscle ARNT-Like 1; CKδ = Casein Kinase 1δ; CK1ε = Casein 
Kinase 1ε; Nfil3 = Nuclear Factor, Interleukin‑3 Regulated; Rev-
erbα/β = Nuclear Receptor Subfamily 1 group D Member 1 and 
2; Rorα/β = Nuclear Receptor Subfamily 1 Group F Member 1/2; 
Dbp = Albumin D‑site Binding Protein 
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conditions, the SCN plays a vital coordinating role in sus-
taining internal rhythms. Such data argue for non-SCN 
regions that receive input from the retina and are able to 
share such information with other regions in the brain 
and peripheral organs, thus sustaining internal synchrony 
(reviewed in [39]). Thus, a new model of organization has 
been brought forward, the “Federated Model”. It suggests 
that the SCN is only required to sustain the rhythms of the 
organism in the absence of zeitgebers or under partially con-
flicting zeitgeber conditions, which resembles a hierarchical 
structure. This situation changes when reliable zeitgebers 
are present, when peripheral organs are able to sustain their 
rhythms in a SCN-independent fashion, through a tissue-spe-
cific combination of zeitgebers, which is expected to allow 
for more flexible entrainment under complex zeitgeber con-
ditions than a strict hierarchical structure (Fig. 2) (reviewed 
in [39]).

Chronodisruptive environment and its impact 
on the clock

Our current society’s living conditions are strikingly dif-
ferent from the early days of Homo sapiens [47]. With 
the implementation of widespread illumination in the late 

1870’s, the presence of light during the evening became a 
reality. One may not overcast the advancement that lighting 
made for mankind, but it should be stressed that its putative 
deleterious effects may have been overlooked in the past 
decades. In this new environment in which light is strongly 
present, an important consequence takes place: reduction 
of the regulatory role of the light/dark cycle as a circadian 
zeitgeber. In this sense, social cues have increased their 
effect on human rhythms and some authors consider that 
we are currently living in a constant social jetlag paradigm 
(reviewed in [11]).

Advancements made in the food industry during the 
last decade have led to a state of 24-h food abundance. 
Moreover, modern food items are often loaded with fat and 
sugar. As an additional confounder, our current lifestyle is 
often associated with a lack of exercise as well as work-
ing in shifts [2, 11]. Therefore, the conditions in which 
our biological clock evolved are vastly different from the 
ones we face now. The biological clock is programmed 
to anticipate physiological events based on predictable 
environmental factors that include mainly light, tempera-
ture, food, and activity. However, our current society’s 
lifestyle poses as a challenge to this system since we have 
a combination of factors that negatively affect our clock. 

Fig. 2   Current model of circadian network organization in mammals. 
The suprachiasmatic nucleus (SCN) is regulated by environmental 
light that is sensed by OPN4 in ganglion cells of the retina. Light 
information is transformed into electrical stimuli that reach the SCN. 
Upon SCN synchronization, the organism uses redundant temporal 

timing cues such as temperature, hormones, and autonomic nerv-
ous input to ensure systemic synchronization of biological processes 
across organs. In addition, behavior can be modulated by a direct 
effect of environmental light, the SCN, or by food availability which, 
in turn, can directly affect the molecular clocks of peripheral organs
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Overall, the presence of light at night, continuous avail-
ability of high-fat and -sugar food, which can be associated 
with a sedentary lifestyle, and the presence of night shift 
works, result in a condition of chronodisruption of which 
we currently do not fully comprehend the consequences 
to human’s health.

The last decade witnessed a worldwide movement to 
replace traditional lamps for LEDs due to their high energy 
efficiency [48]. However, such LEDs display a sharp blue 
emitting peak that is able to influence our circadian system 
via OPN4-detection in the eye [49] and may promote eye-
related pathologies [50]. However, there are a scarce number 
of studies with appropriate control to evaluate the effects of 
LED vs. traditional lamps, which is acknowledged by the 
European Scientific Committee on Health, Environmental 
and Emerging Risks (SCHEER). However, SCHEER also 
acknowledges the effects of LEDs on the circadian system 
via melatonin suppression in controlled studies. Due to 
insufficient data in humans and appropriated controls in the 
studies, SCHEER reached to the conclusion of no evidence 
of direct adverse health effects from LED emission devices 
[51]. Nevertheless, SCHEER also recognizes that LED tech-
nology is still growing and a closer attention to its long-term 
effects is required [51].

The best example of chronodisruption in humans are shift 
workers. An increasing number of epidemiological studies 
show an association of shift work with the development of 
several diseases (reviewed in [52, 53]). Remarkably, very 
recently the International Agency for Research on Cancer 
(IARC) kept the same recommendation made in 2007 that 
shift work in humans is “probably carcinogenic to humans”, 
evidence grade 2A, i.e., with sufficient data in experimen-
tal models but limited in humans, mainly due to a higher 
variability between the studies [54, 55]. Moreover, studies 
that combine satellite images with epidemiological data sug-
gest a correlation between light at night (LAN) exposure 
with increased incidences of breast cancer—but not with 
colorectal, larynx, liver, and lung cancers [56]—as well as 
overweight and obesity [57]. Nevertheless, conclusive data 
about LAN effects are still pending. Despite the lack of hard 
evidence for the deleterious effect of shift work and LAN in 
humans, it is clear that the conditions of our society are com-
pletely different from the ones in which biological clocks 
evolved [1, 47].

Based on such knowledge, it is tempting to link the 
increasing incidence of several diseases such as metabolic, 
cardiovascular and neurological disorders, and cancer 
in humans to a possible disruption of the circadian clock 
(reviewed in [1, 2, 10, 47, 58, 59]). Ultimately, the conse-
quences of chronodisruption to human health are still being 
comprehended—it is an ongoing field of investigation. How-
ever, the more we understand the long-term consequences, 
the better policy makers can act, which could potentially 

prevent a substantial loss of life and provide a better life 
quality for large parts of the population.

Communication between central and peripheral 
clocks: a one‑way street?

Overview of SCN‑driven inputs to peripheral clocks

The pathways used by the SCN to relay temporal informa-
tion to the organism comprise of complex and partly redun-
dant signals which can be divided into four categories: 
sympathetic and parasympathetic nervous stimuli, hormo-
nal outputs, feeding-fasting rhythms, and circadian oscil-
lations of core temperature rhythms (Fig. 2). SCN efferent 
projections have been shown to terminate in several brain 
regions such as sub-paraventricular zone, the preoptic area, 
the nucleus of the stria terminalis, the lateral septum, the 
dorsomedial hypothalamus, the arcuate nucleus (ARC), and 
the paraventricular nucleus (PVN reviewed in [6, 8, 31]). 
In addition, the SCN receives input from hypothalamic and 
extra-hypothalamic regions, which also are important for 
regulating SCN physiology [6, 60].

The first pathway is autonomic output from the SCN 
that leads to rhythmic clock gene expression [61]. How-
ever, autonomic denervation is not required for rhythmic 
gene expression in the liver [62], thus arguing for additional 
routes of synchronization. Interestingly, SCN-driven sympa-
thetic outputs have been shown to decline with aging [63].

A second pathway is comprised of hormonal outputs 
mainly comprised of the pituitary–adrenocortical axis 
(HPA), specifically via glucocorticoids. Corticoliberin 
(CRH) secretion by the PVN exerts a control over the rhyth-
mic release of adrenocorticotropic hormone (ACTH) in the 
pituitary. Through downstream signaling by the pituitary, 
glucocorticoids are rhythmically released by the adrenal cor-
tex peaking at the beginning of the active phase [35, 64, 65]. 
Glucocorticoid action takes place through mineral (MR) and 
glucocorticoid receptors (GR), whose expression is widely 
found in peripheral tissues [66]. It is worth mentioning that 
the promoter region of the Per genes contains glucocorticoid 
response elements (GREs) whose activation leads to gene 
transcription and provides a molecular basis for glucocorti-
coid action in the circadian machinery [67]. Another clas-
sical synchronizing hormone is melatonin, which (known 
as the hormone of darkness) is secreted exclusively during 
the night in both nocturnal and diurnal species. Upon light 
exposure, the SCN sends inhibitory information to the PVN 
region, leading to suppression of melatonin synthesis. In 
the dark, a glutamatergic activation of the PVN leads to 
norepinephrine release in the pineal gland and subsequent 
melatonin synthesis (Reviewed in [68]). Melatonin conveys 
temporal information to peripheral organs through its inter-
action with its G-protein coupled receptors (MTNR1A/B or 
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MT1/2) found in peripheral organs (reviewed in [68, 69]). 
Melatonin suppression by light at night (LAN) as result of 
modern lifestyles [1] is associated with several diseases, 
probably through its disruptive effect on the circadian clock 
network [70, 71].

A third pathway involves feeding-related activities. Tem-
poral food restriction is an important zeitgeber for metabolic 
tissues, being able to synchronize local clocks while exert-
ing few effects on the SCN [41, 42, 72]. Of note, though, 
combining timed feeding with hypocaloric diet regimes can 
affect SCN activity and SCN-driven outputs such as locomo-
tor activity, melatonin synthesis [73, 74]. In rodents, very 
restrictive feeding regimes also led to alterations in SCN 
clock gene expression, though SCN outputs were not evalu-
ated in these studies [75, 76].

The last pathway used by the SCN is internal tempera-
ture rhythms. Thermoregulatory coordination processes are 
centralized in the hypothalamic preoptic area in which the 
median preoptic nucleus is a key player [77, 78]. Core body 
temperature increases and decreases before the onset of the 
active and resting phases, respectively. Such anticipatory 
regulation is controlled by the SCN [79]. Along the day, 
core temperature is known to be rhythmic oscillating from 
36.5 to 38.5 °C with a mean of 37 °C in humans and rodents 
[80–82]. Mounting evidence from in vitro studies has dem-
onstrated that tissues and cells of peripheral clocks are able 
to respond to cold or warm temperature when presented as a 
short pulse or cycles. Thus, diurnal variations in body tem-
perature are assumed to play an important role in peripheral 
clock synchronization [83–87]. The receptors responsible 
for detecting thermal energy in peripheral tissues are still 
elusive. However, the large family of transient receptor 
potential (TRP) channels [88–90] and, more recently opsins, 
whose thermo-detecting capabilities have been demonstrated 
in mammals, are interesting candidates that may detect tem-
perature fluctuations to reset molecular clocks [83, 91, 92].

Overview of peripheral inputs affecting the SCN

The SCN is considered largely resistant to potential synchro-
nizing factors other than light. For instance, glucocorticoids 
display no or only indirect effects on the SCN due to an 
absence of GR receptors in this area [93, 94]. The same 
holds true for temperature changes since the SCN is able to 
compensate these effects [86, 95]. The insensitivity of the 
SCN to synchronizing factors is important for its role as a 
central oscillator, though this does not mean that it cannot 
integrate feedback factors to adapt systems rhythms.

One of such factors, leptin, the satiety hormone, dis-
plays peak blood levels at night in nocturnal rodents, which 
are controlled by SCN-driven sympathetic innervation of 
adipose tissue [96]. In vivo leptin injections at the begin-
ning and the end of the diurnal activity phase do not affect 

locomotor activity of mice kept in either LD or DD condi-
tions. However, leptin augments the phase-shifting effects 
of light pulses during subjective night specifically in females 
[97]. Vice versa, in leptin deficient ob/ob mice, leptin admin-
istration normalizes photic responses at the behavioral and 
molecular level [98]. Another important metabolic hormone, 
ghrelin that is synthetized by the oxyntic gland cells of the 
stomach participates in the anticipation of feeding time by 
activating its receptors in the ARC [99, 100]. In addition, 
ghrelin positive neurons in the hypothalamus receive direct 
input from the SCN [101]. In vivo experiments reveal that 
ghrelin, when given to animals kept under an ad-libitum diet, 
does not affect locomotor activity. However, upon food dep-
rivation ghrelin analogs phase advance locomotor activity 
in mice in DD [102]. Of note, the SCN is resistant against 
insulin-induced clock resetting [103].

Hypocaloric restricted feeding regimes display a strong 
effect on the SCN [73, 74]. In addition, long-term high-fat 
diet (HFD) conditions influence the SCN of male mice [104, 
105], but not of females [106, 107]. One week-long HFD 
does not affect SCN rhythms but disrupts liver clock regu-
lation [108]. Remarkably, the starvation signal, fibroblast 
growth factor 21 (FGF21), a liver-born molecule, leads to 
decreased systemic insulin levels and locomotor activity, 
and increased corticosterone, which represents a classical 
starvation response. Such responses were dependent on the 
presence of β-klotho in the SCN and in the dorsal vagal com-
plex of the hindbrain [109]. Moreover, β-hydroxybutyrate 
(β-OHB), a liver-borne molecule, has been implicated as 
a player in food-anticipatory activity (FAA) response via a 
putative interaction with brain regions, which are still elu-
sive [110].

Melatonin, whose receptors are present in the SCN, has 
important effects on neuronal firing and clock gene expres-
sion in the central pacemaker [111–113]. Additionally, 
increased blood pressure was shown to affect neuronal activ-
ity in the nucleus tractus solitarius (NTS), but also in the 
SCN. Interestingly, the SCN receives direct projections from 
the NTS and plays an important integrative and regulatory 
role in blood pressure circadian control [114]. Physical exer-
cise does not affect the SCN, but it resets many peripheral 
clocks [115]. More recently, the presence of a non-metastatic 
melanoma tumor in mice was shown to reduce Bmal1 and 
increase cFos gene expression in the SCN compared to con-
trol animals, suggesting that molecules released from the 
tumor may affect the SCN as well peripheral tissue clocks 
[116].

Relative autonomy of peripheral tissue clocks

Global knockout mice have allowed a substantial increase 
in our knowledge regarding gene function. However, with 
regard to the circadian clock network, this strategy is limited 
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since gene deletion is global and do not allow dissecting the 
effects of specific tissue clocks on physiological functions. 
Such limitation was circumvented by tissue-specific gene 
knockout strategies such as the Cre/loxP system, which can 
also be conditional, i.e., gene deletion may be induced at 
a specific timepoint of development (Reviewed in [117]). 
Regarding the molecular clock, only the Bmal1 deletion 
results in loss of rhythms as other clock genes are func-
tionally compensated by their paralogs which makes dual 
knockouts necessary, which is the case for Per and Cry genes 
(reviewed by [118]). So far, an increasing number of studies 
using global and tissue-specific knockouts has allowed our 
current understanding regarding the functional organization 
of the clock network in both physiological and pathological 
scenarios.

Early organ transplantation experiments between clock 
gene mutant and wild-type animals have been key to under-
stand circadian organization at the network level [3, 65]. 
More recent advancements in molecular biology allowed 
studying the molecular clock in a single organ while the 
others remain without a functional clock machinery. In 
these landmark studies, using a conditional gene trap strat-
egy, in mice lacking Bmal1 in all tissues, Bmal1 expression 
and, thus, clock function is restored upon Cre expression in 
either liver or the epidermis of the skin [119, 120]. In the 
liver clock rescue mice, glycogen synthesis and nicotina-
mide adenine dinucleotide (NAD +) salvage production are 
rhythmic, but only when mice are kept in LD. Thus, the liver 
clock is able to sustain its autonomy despite the absence 
of functional clocks in the rest of the organism—including 
the SCN. Rhythmic hepatic lipid and xenobiotic metabolites 
are not restored, though. In line with this, compared to wild 
type mice, reconstitution of the molecular clock of the liver 
rescues rhythmicity in approximate 10% of gene transcripts 
and 20% of metabolites. These data show that most rhythmic 
processes of the liver are not autonomous and dependent 
on systemic time cues that only exist in an intact circadian 
organism. Along this line, liver clock restoration does not 
revert the reduced life span of global Bmal1 KO mice [119]. 
In an accompanying study, clock gene restoration of the epi-
dermis yielded similar findings to the ones described above. 
Upon epidermal clock rescue, approximately 15% of tran-
scriptional rhythmicity is restored. Again, all rhythms are 
completely lost in DD [120]. Overall, local tissue clocks in 
the epidermis controls basic tissue functioning, i.e., epider-
mal turnover. Epidermal clock restoration does not rescue 
the reduced life span of Bmal1 KO mice, but it inhibits pre-
mature skin aging [120].

This new strategy has opened a new investigative field, 
which will allow the precise contribution of each organ sys-
tem to the overall circadian organization. Importantly, both 
studies do not establish whether the arrhythmicity found in 
the clock rescued liver or skin in DD is due to complete loss 

of rhythms at single cell levels or due to a loss of coupling 
(i.e., circadian communication between cells), which ulti-
mately leads to an apparent loss of rhythms. At the same 
time, it emphasizes the key role of light in clock resetting—
even at the peripheral tissue level. One may argue that mouse 
skin cells, which are known to be photosensitive [121–125] 
could be responsible for synchronizing the local clock 
in vivo. Indeed, such concept has been proven as neuropsin 
(OPN5) participates in light-induced clock gene synchroni-
zation of the skin [124]. This does obviously not apply for 
liver, though. Studies from our lab had previously shown 
that light synchronizes peripheral clocks in the absence of 
a functional SCN, thus suggesting that other brain regions 
that receive light input via retina may ultimately sustain cir-
cadian rhythms of the organism [44, 45]. In summary, these 
findings argue for a less SCN-centric organizational view of 
the circadian clock system, which agrees with the federated 
model of organization [39].

Very recent experiments provide evidence that liver or 
fibroblasts from Bmal1 KO mice, when cultivated ex vivo 
and synchronized with dexamethasone, indeed display robust 
rhythms in gene and protein expression for days. The authors 
also ruled out a putative compensatory function of Bmal2 
(Arntl2). Interestingly, Bmal1 KO cells displayed almost no 
overlapping rhythmic transcripts and proteins compared to 
wild-type cells. Indeed, in the absence of Bmal1 a new set 
of transcription feedback loop is recruited controlling novel 
and non-canonical molecular rhythms [126].

Taken altogether, systemic cues are important to drive 
circadian rhythmicity of liver, skin, and likely all other 
organs. However, local clocks can sustain rhythmicity of 
some biological processes even in the absence of a func-
tional circadian network. It will be of great importance to 
identify the mediators of circadian network timekeeping as 
they make great targets for chronotherapies. In addition, a 
novel non-canonical clock was reported in the absence of 
Bmal1. Such processes may be of importance in diseases in 
which circadian disruption alleviates physiological control 
by the clock machinery.

Putative mediators of inter‑tissue communication

As described previously, we have uncovered how SCN sig-
nals to periphery as well as how periphery may affect SCN 
functioning. In this section, our aim is to provide an over-
view of putative signals released by peripheral organs and 
how they may affect clock gene functioning of peripheral 
tissues.

Based on a decentralized circadian organizational view, 
one may expect the presence of redundant signals that arise 
from: (1) the SCN to periphery; (2) periphery to SCN, (3) 
and between peripheral organs. Collectively, these path-
ways sustain the circadian network organization (Fig. 3). 
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Twenty-four hours long metabolomic data of SCN, medial 
prefrontal cortex, liver, muscle, sperm, WAT, BAT, and 
serum demonstrated an extensive communication net-
work between organs to sustain coherence of the temporal 
metabolic pathways. Remarkably, such coordination and 
inter-tissue metabolite correlation and coordination is lost 
and rewired by high-fat diet. Interestingly, while some tis-
sues show partial gain or loss of metabolites rhythms, the 
serum metabolites are the most affected, i.e., being the most 
affected (loss of correlation) under HFD [127].

The identification of putative players responsible for 
regulating the molecular clock of peripheral organs is still 
largely elusive. Indeed, the role of several gastrointestinal 
peptides such as cholecystokinin (CCK), gastrin, ghrelin, 
glucose-dependent insulinotropic polypeptide (GIP), moti-
lin, neurotensin, neuropeptide Y family, secretin, and VIP 
in regulating circadian rhythms have been suggested but 
experimental evidence is still lacking (reviewed in [128]). 
On the other hand, oxyntomodulin (OXM), a glucagon-like 
hormone, administration to liver explants was shown to 
affect the molecular clock and carbohydrate-related CCGs as 
well as when given in vivo. Interestingly, blockade of OXM 
suppresses food-induced molecular clock alterations in the 

liver—but not in the SCN—thus placing OXM as a direct 
link between food-related effects in hepatic circadian clock 
[129]. Ghrelin administration to steatotic liver was shown 
to restore circadian rhythmicity in in vitro and in vivo in an 
mTOR-dependent fashion [130]; however, the role of ghrelin 
in a physiological setting is still unknown.

Insulin and glucose are classical players in modulating 
the molecular clock of metabolic and non-metabolic organs. 
For instance, insulin and insulin-like growth factor-1 (IGF-
1) affect both the phase and amplitude of clock genes in 
in vitro, ex vivo, and in vivo through increased PER tran-
scripts of liver and kidney. Such response was not dependent 
on the classical clock genes and the SCN was insensitive to 
the insulin-dependent effects [103]. It has been suggested 
that insulin is an important player in food-induced clock 
gene alteration in the liver as streptozotocin-treated ani-
mals, i.e., without insulin production, are not affected by 
food regimes while exogenous insulin rescued the effects of 
food in the hepatic clock [103].

Indeed, insulin has been shown to signal through phos-
phatidylinositol 3-kinase (PI3K) and Forkhead box class 
O3 (FOXO3) signaling to sustain liver rhythms in a Clock-
dependent fashion [131]. Insulin has also been shown to 

Fig. 3   Bidirectional communication between central and peripheral 
tissue clocks. Temporal cues controlled by the central pacemaker 
(SCN) and other CNS clocks such as glucocorticoid and melatonin 
secretion, autonomic inputs, and body temperature are known to 
affect the molecular clocks in peripheral organs. At the same time, 
peripheral clocks, through molecules like leptin, ghrelin, FGF21, and 

adiponectin can feed back on the SCN and other brain region clocks. 
The overall result of this entangled communication network is an 
integrated rhythmic control of behavior and metabolic outputs. In this 
figure, it is didactically represented the phase (day or night) in which 
each factor has its highest value in humans
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phosphorylate BMAL1 in a protein kinase B (AKT)-depend-
ent process, which results in BMAL1 dissociation from the 
DNA, and consequently, a reduction in its transcriptional 
activity [132]. Moreover, cAMP Responsive Element Bind-
ing Protein 1 (CREB)/ CREB regulated transcription coacti-
vator 2 (CRTC2) role has been suggested in liver clock syn-
chronization during fast and feeding. During fast, glucagon 
activates CREB/CRTC2 that ultimately induces Bmal1 tran-
scription while insulin, on the other hand, suppresses Bmal1 
expression by inhibiting CREB/CRTC2 activity [133]. Inter-
estingly, CRTC2 has been shown to regulate hepatic gluco-
neogenesis in a cooperative fashion with glucocorticoid hor-
mones and its receptor and glucagon via CREB-dependent 
pathway [134]. Whether CRTC2-dependent interaction with 
glucocorticoid, whose role as a synchronizer of the hepatic 
clock is established [135], is still elusive.

Importantly, mTOR signaling has been suggested as a 
vital pathway through which peripheral clocks use to adjust 
their local circadian rhythms. In both central and periph-
eral clocks, mTOR activation results in shorter oscillatory 
profile, i.e., it speeds up the clock while mTOR inhibition 
results in the opposite effect [136]. Therefore, mTOR path-
way seems to be a broad signal hub for adjusting the molecu-
lar clocks; however, the identity of players that modulate this 
pathway is largely unknown. Nevertheless, such widespread 
pathway may play useful in restoring circadian functioning 
in pathological conditions.

Taken altogether, the identification of peripheral clock 
regulators that are not directly driven by the SCN, but rather 
by peripheral clock themselves is ongoing field of investi-
gation, and there are many gaps of knowledge. Indeed, one 
may suggest a complex and redundant communication net-
work through which peripheral clocks communicate with 
each as elegantly shown by Dyar and colleagues (2018) 
[127]. Comprehending the role of each hormone, peptide, 
and/or metabolite will prove an exhausting task; however, 
it must be emphasized that the discovery of such players 
and pathways would be crucial for the development of novel 
pharmacological targets for metabolic diseases.

Clock‑metabolism crosstalk

Cellular processes

The importance of the biological clock as a temporal regula-
tor and coordinator of complex biological processes of tis-
sues and systems can be appreciated when key biological 
processes of a particular organ are comprehended. Exten-
sively revising each biological process is beyond the scope 
of this review. However, in the next lines, we will high-
light how the molecular clock is of importance to ensure 
metabolic homeostasis by controlling some important 

intracellular processes as well as biological processes of 
metabolic organs.

One of the most important clock-regulated processes is 
the information flow from DNA to proteins. In recent years, 
a close association between clock proteins and histone modi-
fications has been unraveled contributing to the regulation 
of circadian rhythms at the molecular level. Specific cyclic 
chromatin transitions happen along 24 h and are associ-
ated with changes in transcriptional activity [23, 137–139]. 
Among different types of histone modification, acetylation 
is the most studied with regard to circadian rhythms [23].

As for the mRNA level, several lines of evidence show 
that most transcripts (nascent and processed RNAs) are not 
transcribed in a circadian fashion, thus ruling out a concept 
that most gene rhythms would be driven by E-box mediated 
transcription. Indeed, abundance of only approximate 25% 
of cycling mRNA transcripts are controlled by de-novo tran-
scription, thus suggesting that post-transcriptional regula-
tory mechanisms are critical to generate expression rhythms 
for the remaining 75% of mRNAs [138, 140]. On the other 
hand, recent mathematical modeling has suggested that a 
lesser faction (~ 35%) of rhythmic mRNAs are regulated 
at the post-transcriptional level [130]. mRNA processing 
such as capping, splicing, polyadenylation, and cytoplasm 
exportation have been shown to be clock regulated, thus 
contributing to overall circadian organization (reviewed in 
[141]). Another important regulatory step is miRNA-medi-
ated mRNA degradation. In this sense, a liver-specific Dicer 
knockout demonstrated that in the absence of most miRNAs, 
the hepatic clock machinery is still functional and shows 
modest alterations in gene expression in terms of phase and 
period. Such findings demonstrate that miRNAs may not be 
major driving forces of mRNA rhythms, but rather miRNAs 
are a fine-tuning tools of rhythmic transcriptomes [142], 
which is further supported by other experimental studies 
[143, 144].

Many studies have highlighted an important lack of con-
cordance between rhythmic mRNA and protein levels, thus 
suggesting that many rhythmic proteins do not undergo an 
oscillation at the transcript level [130, 145, 146]. This may 
be explained by oscillatory rhythms in ribosome biogen-
esis and translation initiation complex formation [147–149] 
which may overcome the lack of oscillation at the mRNA 
level. Additionally, recent studies have revealed further 
post-translational modifications and their regulatory role 
in circadian timekeeping. Phosphoproteome analyses from 
liver revealed that 25% of phosphorylation sites and 40% of 
phosphoproteins are regulated in a clock-dependent manner 
[145]. In the murine hippocampus, approximately 2% of pro-
teins and 5% of phosphorylation sites exhibit a circadian pro-
file; however, in this study, no clock proteins were detected 
[150]. In mouse liver, 8% of proteins are rhythmic and are 
associated with immune responses, cell cycle regulation, 
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lipid and glucose metabolism. Interestingly, almost 3,500 
ubiquitination sites were found on 1144 proteins, which 
were enriched during daytime compared to night [151]. 
For a detailed view of post-translational processes involved 
circadian clock function, the reader is referred to a recent 
review [152].

Taken altogether, recent evidence highlights the various 
layers of circadian control, starting from DNA accessibility 
to transcription factors, a histone dependent process, which 
is followed by RNA transcription. Upon mRNA synthe-
sis, several regulatory (post-transcriptional) steps need to 
be met, and most of them are subject to circadian control. 
Finally, information is translated from mRNA to protein, 
which also undergo several post-translational modifications 
that directly affects biological function. The increasing 
view that de-novo transcription accounts for just a fraction 
of rhythmic gene expression, a long-standing concept in the 
field, associated with the lack of overlap between rhythmic 
genes and proteins, place post-transcriptional and transla-
tional modifications as important regulatory steps of the 
circadian clock (Fig. 4), whose role and functions are still 
being understood.

The cell cycle consists of three main processes that 
include a DNA replication step (S phase) that is followed 
by a stage of mitosis (M Phase), and in between growth 

stages (G1 and G2) in which cells prepare themselves for the 
next division. In G1, cells prepare for DNA replication by 
increasing protein synthesis and cell growth. In G2, growth-
related processes also take place in addition to the DNA 
damage check point, a fundamental step to avoid wrong, 
potentially deleterious, information to be passed on to 
daughter cells. Sequentially speaking, dividing (non-quies-
cent) cells start increasing their size (G1), which is followed 
by DNA replication (S Phase) and another growth phase 
(G2) that is followed by mitosis (M Phase). Quiescent cells 
(G0) may enter the cell cycle depending on a series of envi-
ronmental factors. Senescent cells, on the other hand, are 
terminally differentiated and cannot re-enter the cell cycle. 
The progression through each stage is strongly controlled 
and dependent on a series of activations of cyclin-dependent 
kinases (CDKs) that form specific complexes with cyclins 
(CCNs) for each cell cycle transition [153–155]. Elegant 
in vitro studies have demonstrated that in free-running con-
ditions there is a robust coupling between cell cycle and 
circadian clock. Interestingly, in active dividing cells a 
shortening of clock period happens when compared to non-
dividing cells, thus suggesting an influence of the cell cycle 
on the molecular clock [156, 157]. On the other hand, in 
synchronized cells, two major events take place: a fraction of 
cells remains phase locked, i.e., one cell cycle per one clock 

Fig. 4   The classic cellular information flow from DNA to RNA and 
to protein is subject to circadian control at all levels. This rhythmic 
biological information flow contributes to the circadian control of cel-

lular physiology and downstream biological processes. Among these, 
we highlight DNA repair, oxidative stress, and cell cycle regulation
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cycle while another sub population displays three cell cycles 
for each two clock cycles [157]. Taken together, these stud-
ies suggest that in absence of synchronizers (free-running 
conditions), the influence of the cell cycle on the molecular 
clock is dominant. On the other hand, in synchronized condi-
tions the circadian clock displays a dominant role over the 
cell cycle. Some researchers have suggested that the molecu-
lar clock is able to “gate”, i.e., allow cell cycle progression 
[158], a concepted that has been challenged [156, 157, 159]. 
The molecular clock exerts its effects on the cell cycle either 
by controlling transcription of key regulatory genes or by 
protein–protein interaction (reviewed in [160]). In this line, 
it is not surprising to realize that disruption of the circadian 
clock is in fact correlated to a loss of cell cycle progression 
control, often seen in cancer [161] [162–164].

In an elegant and complex process, DNA repair can revert 
DNA damage caused by a myriad of genotoxic agents. There 
are several types of DNA repair in mammals such as direct 
repair (by alkyl transferases), base excision repair (BER, by 
glycosylases and AP endonucleases), double-strand break/
crosslink repair, and nucleotide excision repair (NER) [164]. 
Available evidence suggests that NER is strongly controlled 
by the clock. NER-dependent DNA repair is carried out by 
six factors: replication protein A (RPA), Xeroderma Pig-
mentosum Complementation Group A, (XPA), Xeroderma 
Pigmentosum Complementation Group C (XPC) complexed 
with RAD23 Homolog B (HR23), Transcription factor II 
Human (TFIIH), Xeroderma Pigmentosum Complementa-
tion Group G (XPG), and Xeroderma Pigmentosum Com-
plementation Group F (XPF). For a detailed view of this pro-
cess the reader is referred to in-depth reviews [164–166]. In 
pioneering studies led by Aziz Sancar’s group, NER medi-
ated activity was shown to be rhythmic in brain [167] and 
liver, but not in testis [168] and skin [169]. In these tissues, 
XPA was the only NER-related protein to show an oscilla-
tory profile, in antiphase to CRY1 [167–169]. In the absence 
of CRY1/2, such rhythmic profile of XPA was abolished in 
liver and skin [168, 169]. In terms of functional activity, 
excision repair of cisplatin adducts in the liver and UVB-
induced DNA damage are highest in the afternoon (4–5 pm) 
and lowest in the morning (4–5 am), thus highlining impor-
tant findings for chronomodulated therapies [168, 169]. 
Moreover, UVB-induced erythema is maximal in the morn-
ing vs. exposure in the afternoon in mice, which is associated 
with reduced DNA repair in the early morning compared to 
the afternoon [170]. Indeed, such concept has been trans-
lated recently to humans as UVB-induced erythema was 
shown to be milder in the morning compared to evening 
exposures [171]. Some studies have suggested that BER-
dependent activity may also be influenced by the molecular 
clock. BER-mediated DNA repair activity has also been 
suggested to display a rhythmic profile in humans as the 
expression of 8-oxoguanine DNA glycosylase (OGG1) is 

rhythmic. Oxidative DNA repair in lymphocytes is higher 
in the afternoon compared to the morning. In vitro experi-
ments show that Bmal1 knockdown leads to loss of rhythmic 
expression of OGG1 [172]. In addition, in hepatocytes, BER 
activity, via N-methylpurine DNA glycosylase (MPG) pro-
tein expression, is rhythmic and depends on CLOCK [173].

Controlled generation of reactive oxygen and nitrogen 
species (ROS/RNS) in a cell is an important step for cel-
lular signaling processes since these molecules may act as 
secondary messengers. Disruption of this rigid control may 
result in increased ROS levels, which may give rise to oxida-
tive stress, damage macromolecules, and ultimately promote 
apoptosis or necrosis (reviewed in [174]). Cellular ROS is 
predominantly generated as superoxides because of mito-
chondrial oxidative phosphorylation. Detoxification of ROS 
takes places via a complex set of enzymes such as super-
oxide dismutases (SODs), catalase, glutathione peroxidase 
(GPx), and free radical acceptor molecules like peroxire-
doxins (PRDXs), glutathione (GSH), or thioredoxin (TRX) 
(reviewed in [174, 175]). Without a proper control of ROS/
RNS generation and detoxification, the consequences for cel-
lular fate can be disastrous. Indeed, chronic oxidative stress 
has been implicated in the development of several diseases 
such cardiovascular, endocrine, aging, neurodegenerative, 
cancer, and many others [174, 176, 177]. Since ROS is 
linked to cellular metabolic state, which itself is known to 
undergo an oscillatory rhythm, the generation of ROS and 
the expression of detoxification enzymes have been shown to 
oscillate along the day in mammals [178–183]. Indeed, the 
presence of E-box elements in promoter regions of several 
detoxification enzymes has been shown in humans and mice, 
thus suggesting a possible route of ROS control via tran-
scriptional activity by the molecular clock [184]. Interest-
ingly, circadian control of oxidative defenses was shown to 
take place in absence of transcriptional activity in red blood 
cells [185]. For a more in-depth information, the reader is 
refereed to excellent reviews on this topic [186, 187].

Metabolic tissue circadian functions

In the last section, we will provide an overview of clock 
regulated biological processes in metabolic organs (Fig. 5) 
and some recent advancements made in the field.

White adipose tissue (WAT) is the most abundant type 
of adipose tissue in mammals and has traditionally been 
associated with its energy storage capacity in form of tria-
cylglycerol (TAGs). In this process, TAGs are released from 
WAT via lipolysis to generate free fatty acids (FFAs) and 
glycerol, which are taken up by other tissues to generate 
energy [188]. The WAT molecular clock has been shown 
to control the above-mentioned process of lipolysis [189, 
190]. In addition to its classical energy storage capacity, it 
has become increasingly recognized that WAT is an active 
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endocrine organ able to synthesize several biologically 
active molecules, which may regulate homeostasis [191]. 
Several studies have demonstrated rhythmic expression 
of clock genes in WAT of different origins in mice [189, 
192–194] and humans [195–197]. Moreover, microarray and 
transcriptomic analyzes have demonstrated that hundreds 
of genes show an oscillatory profile in mice [24, 193, 198] 
and humans [196, 199, 200], many of which are involved 
in key physiological processes such as lipolysis, adipo-
genesis, and energy conversion. The role of the molecular 
clock in regulating WAT physiology can be clearly seen in 
clock gene knockout mice. Global deletion of Bmal1 or Rev-
Erbα inhibits [201, 202] while Per2 or RORα/γ knockouts 
favor adipogenesis [193, 203]. Along this line, peroxisome 
proliferator-activated receptor gamma (PPARγ), a classical 
clock-controlled factor, plays a pivotal role in adipocyte dif-
ferentiation [204, 205]. Interestingly, rhythmic expression of 
core clock genes and Pparγ is severely dampened in experi-
mental models of HFD [105]. However, female mice are 
protected from the deleterious effects of HFD [106, 107] 
which seems to be associated with smaller effects on the 
molecular clock machinery [206]. In the clinical setting, 
the therapeutic value of PPAR agonists is clear as fibrates 
(targeting PPARα) are known to reduce plasma lipids while 
thiazolidinediones (PPARγ) improve insulin sensitization in 
diabetic patients [207]. Moreover, clinical investigation of 

dual or pan-PPAR activators for treating metabolic-related 
disorders are currently being evaluated [207]. Global clock 
gene knockout is often associated with altered WAT func-
tioning and body weight, which is gene-dependent (reviewed 
in [208]). As data from global knockout mice suffer from 
several limitations, the physiological role of each clock gene 
in a particular organ might be over- or underestimated. In 
recent years, adipocyte-targeted clock gene deletion has ren-
dered interesting results. Adipocyte protein 2 (aP2) gene-
Cre driven Bmal1 removal leads to increased food consump-
tion and body weight—regardless of diet type. In addition, 
mice with targeted Bmal1 deletion in WAT show altered 
polyunsaturated fatty acid serum levels, which affects cen-
tral mechanisms of appetite regulation in the hypothalamus. 
Indeed, non-obese patients display rhythmic serum levels of 
leptin and adiponectin [209], which are dampened in obese 
subjects [210]. A specific WAT Bmal1 deletion under adi-
ponectin (Adipoq) Cre control has a mild phenotype and 
regular body weight on standard diet, but displays a higher 
probability to become obese under HFD [190]. WAT of mice 
with targeted SCN clock gene disruption show arrhythmic 
expression of genes related to lipid and carbohydrate metab-
olism. However, in this model genes involved in immune 
response gain rhythmicity in the absence of an SCN clock 
[198]. In humans, single nucleotide clock gene polymor-
phisms (SNPs) have been associated with development of 

Fig. 5   Overview of the main clock regulated biological processes of energy metabolic tissues. Each organ is represented in the figure with major 
clock-dependent biological functions
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metabolic disorders (reviewed in [211]). Moreover, loss 
of clock gene rhythms in type-2 diabetic patients has been 
shown when compared to healthy individuals. Interestingly, 
in diabetic patients, loss of rhythms in lipolysis was also 
found [200].

Brown adipose tissue (BAT) is a specialized thermo-
genic organ that can convert chemical energy into heat 
and recently. BAT has recently moved into the focus of 
translational research due to its putative role in fighting 
obesity and diabetes [212]. BAT thermogenic activity 
is triggered by cold stimuli in an adrenergic-dependent 
pathway, which results in lipolysis. FFAs are transported 
into mitochondria in which they undergo β-oxidation. 
In BAT, this process does not lead to energy genera-
tion, but rather results in non-shivering heat generation. 
This is possible due to uncoupling protein 1 (UCP-1), 
which creates proton leaks in the respiratory chain, thus 
generating heat instead of energy [213]. Interestingly, 
circadian transcriptome analyzes have revealed that 
approximately 10% of protein-coding genes [24] as well 
as approximately 40% of nuclear receptors in BAT oscil-
late within a day [214]. Glucose levels, FFAs uptake, 
and clearance of serum lipids in BAT is rhythmic [215, 
216]. Interestingly, mice exposed to a cold stimulus at 
5 a.m. respond better compared to controls exposed at 5 
p.m. due to reduced Rev-erbα expression in the morning. 
Remarkably, loss of Rev-erbα improves cold tolerance. 
Rev-erbα knockout mice show increased UCP-1 levels 
and loss of rhythmic body temperature and BAT activity 
[217]. In Rorα knockout animals increased UCP-1 levels 
and browning of WAT is found in addition to a higher 
ex vivo respiration in both BAT and WAT compared to 
control [218]. On the other hand, Per2 knockout mice 
are cold-sensitive due to impaired heat shock factor 1 
(HSF1) signaling [219] while Bmal1 knockout mice show 
no difference in cold-stimulation responses compare to 
controls. An interesting study has demonstrated that 
increased light exposure (16 h per day) vs. standard light 
regimes (12 h light per day) leads to increased adiposity 
with no effects on food intake or locomotor activity. Such 
response is associated with decreased sympathetic input 
to BAT and reduced FFA uptake [220]. It is still elusive 
which players that regulate the proper functioning of the 
circadian clock machinery in BAT. For instance, TRP 
channels, in particularly TRPV1 and TRPM8, have been 
shown to affect the molecular clock since in Trpv1 and 
Trpm8 knockout mice, oscillatory profiles of clock genes 
are lost or disrupted [89, 90]. Moreover, β-adrenergic 
receptors are necessary for basal and cold-induced ther-
mogenic responses, but are dispensable for molecular 
clock function [221]

The endocrine pancreas is a complex organ comprised 
of different cell types that regulate glucose homeostasis in 

a daily basis. There are two cell types of major importance 
in this process: insulin-secreting β-cells and the glucagon-
secreting α-cells. It is widely established that insulin and 
glucagon levels are circadian independent of feeding regimes 
[222, 223]. Initial studies suggested an important role of the 
SCN in regulating daily rhythms of insulin and glucagon. 
However, such experiments were based on surgical SCN 
lesions, whose limitations are highlighted in "Organization 
of the circadian clock network". Several studies have dem-
onstrated a functional circadian clock in pancreas respon-
sible for controlling insulin secretion in a daily fashion in 
different mammalian models [224–226] including humans 
[227]. Amongst the clock genes, an interesting role has been 
suggested for Dbp and Thyrotroph Embryonic Factor (Tef) 
in pancreatic clocks [228, 229]. Omics approaches have 
shown that approximately 30% of the ß-cell transcriptome 
show a circadian oscillation and were involved in insulin-
related vesicle trafficking and membrane fusion processes. 
Remarkably, transcriptomic data of ß-cell-specific Bmal1 
knockout mice show rhythm blunting for genes involved in 
exocytosis [230]. In vivo and in vitro transcriptomic ana-
lyzes of α- and β-cells reveal distinguished gene programs 
throughout the day in each cell type, which are believed 
to contribute to the temporal orchestration of insulin and 
glucagon release [231]. Neonatal pancreatic clocks are not 
fully functional at early stages and miRNAs were suggested 
to participate as regulators of emerging circadian clock func-
tioning in the post-neonatal phase [232]. Global Clock dele-
tion results in increased glucose levels and impaired glucose 
tolerance. Such effects are absent in young (3 months old) 
mice, but become evident in older (8 months old) animals 
[224]. Ex vivo stimulation with glucose of isolated pancre-
atic islets shows a marked reduction in insulin secretion in 
both young and old Clock knockout mice [224]. The global 
absence of Bmal1 also yields impaired glucose-induced 
insulin responses [224]. Remarkably, a pancreas-specific 
Bmal1 knockout results in elevated glucose levels, impaired 
glucose tolerance, and decreased insulin secretion already at 
a very young (2–4 months) age [224, 233]. The role of Rev-
erbα has also been explored. Glucose-induced insulin secre-
tion and β-cell proliferation are decreased when Rev-erbα is 
silenced [234]. Moreover, a ß-cell-specific Bmal1 knockout 
results in hyperglycemia and impaired glucose tolerance 
[230, 235, 236]. Excitingly, Bmal1 has been suggested to 
have an antioxidant role since in its absence ROS levels 
accumulate in the pancreas. In addition, in vitro adminis-
tration of antioxidant may rescue glucose-induced insulin 
release via a NRF2-dependent pathway [235]. In summary, 
these data place the molecular clock as an important regula-
tor of pancreas physiology. In humans, rhythmic clock gene 
expression has been described [227] and basal and stimu-
lated insulin secretion is dependent on CLOCK [237]. Pan-
creatic islets from type-2 diabetic patients shown decreased 
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clock gene expression rhythms which are correlated with 
insulin content and glycated hemoglobin [238]. For an in-
depth view of the role of the molecular clock in the pancreas 
the reader is referred to excellent reviews [239, 240].

In addition to its canonical function as a nutrient absorp-
tive organ, the intestinal tract plays a systemic regulating 
role due to its interaction the gut microbiome. An increas-
ing body of evidence shows that gut microbiota influ-
ences immune responses, intestinal homeostasis, nutrient 
processing, and pathogen resistance. Many fecal bacte-
ria show rhythms of abundance in the gut. In the absence 
of Bmal1, these rhythms are largely lost in both genders, 
but sex-related differences were also reported [241]. Not 
surprisingly, microbiome disbalance has been associated 
with increased risks of developing obesity, inflammatory 
diseases, cancer, diabetes, and psychiatric, respiratory, 
and metabolic disorders (reviewed in [242, 243]. Concern-
ing intestinal physiological processes, several important 
parameters such as gastrointestinal motility and emptying 
[244–246], epithelial cell renewal [247–249], and absorp-
tion of nutrient and electrolytes display oscillatory profiles 
[250–252]. The presence of a local molecular clock has 
been confirmed in several parts of the intestine in mice and 
humans [252–254]. Strikingly, circadian Nfil3 expression is 
affected by microbiota, STAT3 (signal transducer and activa-
tor of transcription 3), and the epithelial cell circadian clock. 
Remarkably, NFIL3 affects lipid uptake and storage, and 
modulates lipid absorption and export, thus placing NFIL3 
as an important link between microbiota, molecular clocks, 
and host metabolism, and therefore, as a putative therapeutic 
target [255]. Gene knockout models have demonstrated the 
importance of the circadian clock in intestinal physiology. 
Clock knockout leads to the absence of circadian patterns of 
enterocyte activity and loss of food-induced synchroniza-
tion [252, 256]. Interestingly, rhythmic calcium serum levels 
have been reported in mice and are lost in mice with targeted 
Bmal1 deletion in the intestines due to disrupted calcium 
absorption, which consequently leads to increased calcium 
bone absorption. This process is dependent on a vitamin D 
receptor-related pathway [257]. For in-depth descriptions 
about the role of the molecular clock in intestinal regulation, 
please refer to recent reviews [250, 258].

The liver is the largest metabolic organ and responsible 
for a myriad of survival-limiting biological processes, of 
which we here highlight metabolism of nutrients and bile 
acids, xenobiotic metabolization, and synthesis of plasma 
proteins and cholesterol. As an object of study in the early 
years of molecular chronobiology of peripheral tissues [94], 
the liver has been one of the best-studied tissues in the cir-
cadian field. Reports on circadian oscillations in physiologi-
cal aspects of the liver date back to the early 1960’s when 
rhythmic enzyme activity of pyruvate kinase, fatty acid syn-
thetase, and glycogen-related enzymes were first described 

[259–261]. Data from the beginning of the century using 
circadian microarray analyses estimated that about 10% of 
all genes are rhythmically expressed in liver [262–264]. 
Recent transcriptomic techniques such as nascent RNA-seq, 
ChIP-seq, and proteomics, however, report a lack of over-
lap between rhythmic targets evaluated by each technique 
when compared to transcriptomics [28, 138, 140, 146], thus 
implicating post-translational modifications as an impor-
tant circadian regulatory process Furthermore, circadian 
oscillations in gene programs associated with metabolism 
of carbohydrate, lipids, amino acids and bile acid, detoxi-
fication, and synthesis of plasma proteins and cholesterol 
have been documented [36, 262, 263, 265]. Experimental 
data from global or liver-specific clock gene deletion mice 
have revealed an important regulatory role of this machinery 
in both local (hepatocyte) but also systemic homeostasis, 
as described below. Cry1 overexpression in leptin receptor 
mutant (db/db) mice was shown to improve insulin sensitiv-
ity [24]. Clock knockout mice show reduced plasma levels 
of insulin and increased circulating cholesterol, glucose, 
leptin, and triglycerides levels compared to wild-type con-
trols, and consequently, are more prone to develop metabolic 
syndrome under a HFD regime [224, 266]. Moreover, global 
Clock knockout mice show a deregulated metabolic profile 
mainly related to pyrimidine salvage, lipid metabolism, and 
Krebs cycle-related pathways [267].

Liver-targeted Bmal1 deletion in the liver leads to 
arrhythmic gene expression of glucose-related genes, 
increased glucose clearance, and hypoglycemia restricted to 
the fasting phase [268]. As expected, such responses do not 
perfectly correlate with the findings of global Bmal1 knock-
outs in glucose metabolism, but corroborates the regulatory 
role of the molecular clock in the physiology of the liver 
[269]. Dual Rev-erbα/β knockout specifically in the liver 
results in loss of rhythmicity in almost of 90% of wild-type 
rhythmic transcripts, altered locomotor activity, increased 
circulating glucose and triglyceride levels, and a reduction in 
FFAs compared to controls [270]. Such deleterious effects of 
dual liver-specific gene knockout have been supported by an 
independent study [271]. Targeted Rev-erbα knockout in the 
embryonic stage or in adults, on the contrary, leads to only 
modest alterations in liver physiology [270, 272]. Recently, 
Rev-erbα/β knockout in the liver was shown to disrupt tran-
scriptional and de-novo lipogenesis rhythms. Interestingly, 
hepatocyte-targeted deletion of Rev-erbα/β also affects the 
transcriptome and metabolome of non-hepatocyte cells 
within the liver. Moreover, in livers of control mice, sub-
mitted to time-restricted food access, transcriptomics reveal 
a phase shift of 12 h in gene expression, which is completely 
lost in Rev-erbα/β knockouts [273]. On the other hand, liver-
specific Rorγ knockout mice show daytime improved insu-
lin sensitivity and glucose responses as result of decreased 
hepatic gluconeogenesis. In addition, bioinformatic analyses 
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revealed that RORγ is a regulatory player of several glucose-
related genes by interacting with ROREs in their promoter 
regions [274]. In another study, liver-specific Rorγ knockout 
mice show reduced lipid levels in liver and blood as well as 
reduced bile acid synthesis [275]. In contrast of the ben-
eficial effects of Rorγ, as described above, the removal of 
Rorα in the liver results in increased HFD-induced hepatic 
steatosis through AMPK and liver X receptor α (LXRα)-
dependent pathways [276]. Remarkably, circadian lipidomic 
approaches demonstrate that in absence of Per1 and Per2, 
a similar fraction (~ 20%) of all lipids continue to display 
an oscillation. However, lipid composition and phasing 
are altered in Per1/2 knockout mice fed ad libitum. Such 
findings demonstrate that, even in the absence of a func-
tional transcriptional circadian clock mechanism, rhythms 
in lipids may still persist [277]. Food restriction regimes 
protect against the development of metabolic syndrome in 
mice [278] in a clock-dependent way [279] as well as in a 
functional peripheral clock network only in LD, but in a 
SCN-independent manner [280], thus following the feder-
ated model of circadian regulation (See Sect. 1.2). Recent 
evidence supports an interesting regulatory role of neutro-
phils in liver rhythms. Reduced neutrophil infiltration, under 
different experimental conditions, is protective against jetlag 
and diet-induced liver steatosis in a FGF21-dependent man-
ner [281]. Sirtuin1 (SIRT1) is an important nutrient-sensing 
protein that interacts with the molecular clock. It upregulates 
the expression of Nicotinamide phosphoribosyltransferase 
(Nampt) via E-box interaction. Interestingly, NAMPT is 
responsible for daily oscillations in intracellular NAD+ lev-
els, which are used by SIRT1 as a cofactor to deacetylate 
clock- and energy metabolism-related proteins [282, 283]. 
BMAL1/CLOCK heterodimers bind to Sirt1 promoter lead-
ing to its transcription [284]. SIRT1-dependent deacetylation 
contributes to the rhythmic expression of its target genes to 
modulate liver physiological processes [282–285]. SIRT7 
deacetylates CRY1, leading to its degradation, as well as 
regulating liver molecular clock and glucose homeostasis 
[286].

An important feature of liver is its metabolism of xeno-
biotics. It has been shown that lipophilic drugs are more 
rapidly absorbed in the morning compared to the evening 
in humans while no time-of-day dependence in hydrophilic 
drug absorption has been reported (reviewed in [287]). 
Higher morning gene expression of some organic anion 
transporting polypeptides (OATPs), organic anion trans-
porters (OATs), and organic cation transporters (OCTs) 
compared to the evening was reported in mice [288]. 
Phase-I xenobiotic metabolism mainly consists of oxida-
tion, reduction, and hydrolysis, processes that are mainly 
carried out by cytochrome p450 enzymes. Oscillation at the 
mRNA levels in several members of the p450 superfamily 
has been reported with peaks during the dark phase [288]. 

Interestingly, loss of positive transcriptional factors (Bmal1 
or Clock) or negative members (Pers) of the clock TTFL 
leads to low or high xenobiotic metabolism, respectively 
[289]. In phase II, detoxification takes place via conjuga-
tion to charged compounds such as glutathione, sulfate, and 
others, thus making a compound more polar and easier to 
be transported. Gene expression of phase-II-related enzymes 
has been reported to be abundant during different times 
within the light phase (peak in the early day or around the 
day-night transition) [288]. Lastly, phase III comprises sev-
eral types of membrane transporters of the multidrug resist-
ant protein (MRP) family. Circadian rhythms in this class 
are less marked, but some transporters show an oscillatory 
profile, peaking during the light phase in a similar fashion 
as phase-II genes [288]. Overall, it is accepted that the abun-
dance of phase-I enzyme-related transcripts increases dur-
ing the dark phase while phase-II and -III transcripts are 
more abundant during the light phase [288]. More in-depth 
reviews are found here [290, 291].

Conclusions

The circadian clock system is a complex and pervasive net-
work that directly or indirectly controls a significant portion 
of all biological processes. Its role as a systemic regulator is 
seen in experimental models of gene silencing or knockout. 
Advancements in tissue-specific clock gene modulation has 
been important for a better understanding of tissue clock gene 
organization at both cellular as well as systemic levels. In 
addition to its molecular basis, the organizational aspects of 
the circadian clock network have received increased attention 
over the last years. Understanding how this biological timing 
machinery works at all levels of organization will be important 
to fully assess the consequences of circadian rhythm disruption 
by modern lifestyles and devise ways to prevent chronodisrup-
tion and treat associated diseases and conditions.
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