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Abstract

Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins 

are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical 

and degradation kinetics. The use of these natural biopolymers in biomedical applications is 

advantageous because they do not release cytotoxic degradation products, are often processed 

using environmentally-friendly aqueous-based methods, and their degradation rates within 

biological systems can be manipulated by modifying the starting formulation or processing 

conditions. For these reasons, many recent in vivo investigations and FDA-approval of new 

biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as 

scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds 

used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, 

skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.
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INTRODUCTION

Beginning in the mid 1970s, investigators explored the use of materials for biological and 

medical applications, leading to rapid growth in the field of biomaterials and their 

applications in tissue engineering.16,120,250 Successful tissue engineering strategies attempt 

to recreate or mimic the conditions present in healthy tissue in vivo. However, positive in 
vitro results have yielded limited translational success with in vivo models as well as in the 

clinic due to the simplified culture conditions, lack of cell retention in vivo, unknown 

biological factors, such as long-term immune response, which are difficult to predict or 

determine in vitro. A constant influx of new information from biological and medical 
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research as well as improvements in in vitro experimental models will continue to guide 

methodologies and product development. Due to continued advancements in the fields of 

developmental biology, optics, and assay development, biomedical research continues to 

progress rapidly building from these improvements in the fundamental building blocks to 

generate better in vitro systems that more accurately recapitulate the in vivo environment 

(e.g., evaluation, utilization, and application of extracellular matrix composition, co-culture, 

and immunomodulation). Key components of this progress involve the careful selection and 

preparation of scaffold materials and use of physical, chemical, and/or electrical stimuli to 

direct delivered cell behavior to ultimately mimic the characteristic profile of the desired 

native tissue.

The Role of Biomaterials in Translational Medicine

Two traditional groups of biomaterials are available: synthetic polymers (Table 1) and 

natural biopolymers (Table 2). Since each group possesses distinct advantages and 

limitations, a wide variety of composite materials and interpenetrating networks have been 

utilized to achieve desired results. These include composites of natural materials, such as 

silk and collagen31,233 or chitosan and alginate,48,78,201,216,243,264,287 as well as blends of 

natural and synthetic systems, such as alginate, polyacrylamide, and poly(ε-caprolactone) 

interpenetrating networks.135 In addition, hybrid variants of these materials have emerged 

through synthetic designs and genetic engineering of peptide-based biopolymers.8,18,36,203

Synthetic Materials—Synthetic polymer-based materials are widely used as biomaterials 

for tissue engineering and regenerative medicine due to their well-defined chemical and 

structural characteristics, as well as the flexibility they afford in allowing the researcher to 

control and fine-tune the final properties of their scaffold. Thus, a diverse spectrum of 

synthetic polymers has been explored for use in virtually all tissue engineering applications. 

These polymers can be designed to be either non-degradable (e.g., polyethylene 

terephthalate/Dacron™) or degradable (e.g., poly(glycerol sebacate)). Non-biodegradable 

materials are advantageous in biological systems that experience high mechanical loading 

demands since the non-degradable materials can maintain their structural integrity over time. 

In contrast, fibrotic response to an inert, non-degradable scaffold due to inability to integrate 

within the native tissue or adverse inflammatory response can result in long-term implant 

failures or secondary complications. For example, the use of Dacron™ or PTFE for repair of 

congenital heart defects in children can lead to secondary complications such as aneurism or 

fatal arrhythmia.98,102,241 Biodegradable synthetic materials are advantageous because their 

chemical formulation can be tuned to obtain specific degradation properties (e.g., chemical 

hydrolysis or surface erosion). Unfortunately, cell-based degradation or natural deterioration 

may result in the release of cytotoxic or inflammatory small molecules, prompting the need 

to determine tissue-specific degradation rates, local dose–response sensitivity, and metabolic 

response of neighboring cells to these byproducts (See Refs.219,253 for a more detailed 

review). Commonly used synthetic biomaterials for tissue engineering are listed in Table 1. 

While Table 1 does not cover all possible synthetic materials, the polymers listed highlight 

novel structures and formulations utilized in current and emerging technologies as well as 

standard clinical products that represent areas in need of improvement.
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Natural Materials—For the purpose of this review, we will define natural biomaterials as 

those found in nature, originating from a plant-based or tissue-based origin. Once properly 

purified for in vivo applications, these materials generally do not elicit an unwanted or 

unexpected immune response, leading to biocompatible and often bioactive matrices that can 

integrate with surrounding native tissue.132,204,214,267 In addition, the degradation products 

are generally more biocompatible, metabolically accessible, and less toxic when compared 

to their synthetic counterparts. A disadvantage of naturally derived biomaterials is their 

chemical heterogeneity and high dispersity, leading to variability in mechanical properties, 

structure, and performance, including variations in local degradation rates.132 Despite this 

variability, biopolymer scaffold materials have successfully advanced to the clinic for the 

repair of soft tissues, such as skin and muscle, and hard tissues, such as bone. Commonly 

investigated biopolymers and their benefits in vivo are listed in Table 2.

Natural materials can be further classified based on their origin and the processing methods 

used to obtain the material. Simple biopolymers are derived from a natural origin, such as 

rat-tail or bovine tendon for the isolation of collagen. These methods first require the 

removal of all cellular material and then the subsequent dissolution of the biopolymer in 

acidic medium to yield a semi-clear solution that has been purified to contain a specific 

protein (e.g., collagen type I).207 Alternatively, natural materials for scaffold fabrication can 

also be obtained from the decellularization of complex tissues. For example, collagen-based 

scaffolds can also arise from the decellularization of porcine dermis or pericardium. In some 

cases, such as in the use of demineralized (DMB) or decellularized (DCB) bone, the 3D 

architecture of the native tissue is maintained and utilized as the skeletal architecture of the 

scaffold. Both biopolymer-based scaffolds and decellularized matrices have achieved some 

clinical success, especially in the field of wound healing and skin regeneration. This review 

will discuss the use of biopolymer-based scaffolds for tissue repair and regeneration, with a 

focus on in vivo and clinical application (Table 3) to highlight the hurdles that still exist in 

the bench-to-bedside clinical transition.

BIOPOLYMERS FOR BONE REPLACEMENT

The rising age of the population coupled with the increasing incidence of age-related 

conditions such as osteoarthritis and osteoporosis has produced an overwhelming market for 

bone replacement materials (Fig. 1).61 Despite modest success in the development of bone 

fillers, surgeons must still resort to autografts or allografts for critical sized defect repair. 

Over the past several decades, research has turned to tissue engineering as a strategy for 

functional bone repair. However, attempts to produce high-strength, porous scaffolds for 

bone regeneration have been limited by the intrinsic weakness associated with high porosity 

materials. Moreover, many formulations of natural or synthetic polymeric materials fail to 

promote adequate vascularization, innervation, and maturation of osteogenic cells.24,220 This 

section of the review addresses the critical role that biopolymers play in the repair of bone 

tissue, and highlights the clinical translation of these natural materials to the clinic.
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Design Criteria for Bone Replacement

From an engineering perspective, bone tissue is a composite, anisotropic material built to 

preferentially withstand mechanical forces in one direction (Fig. 1a).13 Due to the unique 

organic–inorganic composite structure of osseous tissue, design strategies in vitro aim to 

mimic natural mineralization processes. For example, mineralization can be induced via 
phosphorylation of collagen or the incorporation of bioactive agents (e.g., hydroxyapatite, 

bioactive glass particles).140,151–154 Additionally, mineralization can be achieved via the 

hybridization of collagenous biomaterial constructs with non-collagenous recombinant 

proteins, such as INFUSE®.234 Clinical success of peptide-based mineralization has been 

limited by the high cost of the peptides, as well as deleterious side effects (e.g., breathing 

difficulty, hematomas, swelling) caused by secondary inflammation near the site of 

implantation.96 The secondary inflammation can be caused by an unwanted immune 

response to the non-native peptides introduced for mineralization.234 For example, 

INFUSE® delivers recombinant bone morphogenic protein-2 (rhBMP-2) via a collagen 

sponge. Clinical results demonstrated that the desired inflammatory response at the 

treatment site may spread to adjacent critical structures, leading to increased postoperative 

morbidity.234

Despite the challenges tissue engineers face in achieving collagen scaffold mineralization in 
vivo, collagen-based biomaterials continue to be one of the most highly investigated natural 

materials for bone regeneration (Table 3). The implantation of pre-mineralized collagen 

matrices or pre-seeding with osteogenic cell lines remains the primary focus of in vivo 
collagen-based bone repair. The application of collagen hydrogels in particular has received 

much attention for bone repair. Implantation of a collagen hydrogel in a critical-sized rabbit 

segmental diaphyseal defect model resulted in supporting pre-seeded osteosarcoma cells,254 

while collagen hydrogels with a collagen fibril density equivalent to native tissues (i.e., 10–

15%) maintained structural stability up to 5 weeks post-implantation.177 These studies, 

among others, demonstrate the necessity of effective strategies for in vivo mineralization for 

successful graft integration and defect regeneration.

Silk—Silk protein has been widely used as a scaffolding material for tissue development 

and cell-based remodeling both in vitro and in vivo.20,57,150,165,192,261 Due to its robust 

mechanical profile, ability to be mineralized, controllable degradation, and excellent 

osteoconductive and osteoinductive properties, extensive research has been conducted on the 

use of silk for bone repair. The biocompatibility of silk has also been thoroughly investigated 

in the trabecular bone of sheep tibia and humerus defects.261 Despite the ability of silk 

scaffolds to deliver small molecules and growth factors while maintaining biocompatibility, 

silk exhibits a low compressive strength, thereby limiting its use in non-load-bearing bone 

regeneration. Within the past few years, however, several strategies have been implemented 

to overcome this mechanical limitation. Mandal et al. addressed the need for a stronger and 

stiffer natural polymeric matrix using a solvent-processed silk sponge scaffold reinforced 

with micron-sized silk fibers.150 Alternative strategies to improve the compressive strength 

of silk scaffolds utilize the addition of hydroxyapatite or bioglass particles, or in situ 
crystallization of calcium phosphate on the scaffold surface. Silk scaffolds have also been 

evaluated for the effect of pore size in bone repair in an in vivo model.165 Collectively, these 
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studies demonstrate the potential of a natural silk material for bone tissue regeneration, and 

provide evidence for the utilization of silk or silk-based composites in clinical bone repair.

Alginate—The use of alginate-based materials for load bearing bone repair in critical-sized 

defects has been limited by the poor mechanical profile of alginate and the lack of cell-based 

degradation mechanisms, which can delay native tissue ingrowth into an alginate implant. 

However, despite these limitations, alginate-based materials and composites have been 

studied in orthopedic research for promoting osteogenesis, improving osteogenic 

differentiation, and delivering cells and growth factors to bone defect sites.265 One such 

study investigated the ability of an alginate/nanofiber mesh composites scaffold loaded with 

rhBMP-2 to enhance the repair of critically sized segmental bone defects in a rat model. 

Implantation with controlled release of rhBMP-2 resulted in consistent bony bridging within 

the defect, demonstrating the promise of these composites for growth factor delivery to 

repair of critically sized bone defects.126

Natural Materials as Bone Fillers and Cements—The rapidly rising demand for 

orthopedic tissue engineering products to repair spinal damage, musculoskeletal defects, or 

bone fractures has led to the development of several FDA-approved bone cements and filler 

materials. Calcium phosphates (CaP), particularly hydroxyapatite (HA), remain a focus for 

orthopedic applications due to their semblance to the mineral phase and crystalline structure 

of bone.59 A majority of bone filler materials are comprised of calcium phosphate cements 

(CPCs) (Table 4). In an aqueous environment, CPCs undergo rapid sedimentation and 

precipitation to apatite, hardening within minutes at body temperature. These reactive CPCs 

are optimal for on-site surgical filling of a bone gap, due to their moldability and rapid 

setting. Clinically, they are used in periodontal repair, cranio-maxillofacial surgery, and 

augmentation of an autograft or allograft. Once set, CPCs are very brittle and are therefore 

not applicable in the repair of load bearing critical-sized defects, where connection to the 

host vasculature, nervous, and muscular systems are paramount for clinical success.24,220 

Overall, CPCs, especially when formulated using natural, non-toxic processing materials 

such as silk,165 represent a current clinical success story for research driven material design 

for clinical applications.

Clinical Translation and Commercialization

Cell-free bone cements and putties represent the state of the art in repair of small bone 

defects. However, secondary limitations, such as the lack of vascularization and organized 

structure of these cements, restrict their clinical potential. Given the recent progress in 

directing differentiation of human induced pluripotent stem (hiPS) cells towards osteoblast 

and osteoclast lineages50 in combination with improved material design, the development of 

successful cell-based therapies for repair of damaged or diseased bone is within reach.7 

Progress towards clinical application of functional, critically sized bone grafts is underway, 

but current and future work must still address the combination of mineralized bone with 

other tissue structures such as bone marrow. In addition, connection of the new structure to 

the host system via vascularization/angiogenesis, innervation, and lymphangiogenesis has 

not been sufficiently addressed.7,24,43,106,114,129,220 Integration of a construct with the host 
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tissue via these factors must be addressed in order to achieve long-term improvements in 

patient prognosis,.

BIOPOLYMERS FOR SKELETAL MUSCLE AND NERVE TISSUE 

REGENERATION

Skeletal muscle tissue has the innate ability to repair and regenerate following acute injury, 

as evidenced by the successful increase in organized and functional muscle tissue following 

prolonged and repeated periods of exercise. Exercise induces small tears in the muscle 

fibers, which the body is able to not only repair, but also respond to, via increase in skeletal 

muscle volume. However, some of the most important parameters in dictating clinical 

success include the maintenance and growth of vascular and neural network architectures 

within the new muscle. In critically sized defects, such as those caused by volumetric muscle 

loss following of trauma,41,42,147 vasculature and neural networks are not maintained. 

Regeneration of these connections in vivo, specifically for the nerve (i.e., the neuromuscular 

junction (NMJ)), is paramount for functional muscle recovery resulting in controllable 

contractile function. Consequently, there is still an unmet need for the development of 

critically sized tissue replacements comprised of aligned, functional muscle containing nerve 

conduits with functional neuromuscular junctions.

Design Criteria for Critically Sized Skeletal Muscle Defects

Skeletal Muscle—Like bone tissue, the structure of skeletal muscle dictates its function. 

Muscle is composed of bundles of muscle fibers surrounded by connective tissue, with each 

muscle fiber representing a single, often multinucleated, muscle cell. Individual cells or 

fibers are bundled together into small groups called fascicle, which are surrounded by a thin 

layer of connective tissue. Multiple fascicle will make up a given skeletal muscle. The 

tubular structure formed by the fascicle is vascularized and innervated such that the vessels 

and nerve conduits run parallel to the bundled muscle fibers (Fig. 2).242

During development, changes in gene expression, structural alignment, and chemical cues 

facilitate the maturation of muscle progenitor cells into mature myoblasts or fibers, which 

are also key parameters in activating muscle progenitor or satellite cells in adult tissue.
35,41,218,255,258,266,290 Many skeletal muscle engineering strategies have leveraged bulk 

alignment within the scaffold architecture, nanotopographical cues, and either passive 

tension or stretch applied by a bioreactor in order to mimic the native muscle structure.
41,42,147,194

Engineering Skeletal Muscle with functional Neuromuscular Junctions (NMJs)

Apart from bulk alignment and cell–cell coupling, innervation of skeletal muscle is 

necessary for proper functioning of a critically sized muscle graft. Engineering the 

neuromuscular junction (NMJ) has proven extremely challenging due to the complexity 

required for proper cell-to-cell interactions that result in directed muscle movement.75,258 

The neuromuscular junction develops in a complex multistep process involving both inter 

and extracellular signaling pathways, leading to the formation of synaptic contact between 

the terminal branches of the motor neuron and a specialized area of the muscle cell 
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sarcolemma (i.e., plasma membrane) called the motor end-plate.281 To properly regenerate 

and build NMJs, interactions between motor neurons, skeletal muscle fibers, and glial cells 

must be tightly regulated through both time and space. As such, a thorough understanding 

how these cells interact and how to properly co-culture them is required before the 

development of critically sized constructs that achieve functional results will be successful.
95,137,281 To further complicate the engineering problem, it is well known that improper cell-

to-cell interaction and unorganized muscle-nerve interaction can lead to disease states such 

as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy, and muscular dystrophy.245

In Vivo Accomplishments for Muscle and Nerve Tissue Regeneration

Many recent in vitro studies have demonstrated the potential use of natural biomaterial 

systems to guide skeletal and smooth muscle and nerve development, and further establish 

the functional connection between these two tissues.75,258 Current research aims to translate 

these successes to in vivo studies, further validating the use of natural materials for 

engineering critically sized muscle constructs. In vitro analyses suggest that constructs 

formed by the co-culture of two or more cell types may lead to better vascularization and 

innervation in vivo.75,258,281 By incorporating a mixed muscle progenitor cell population 

cultured on an aligned decellularized bladder matrix in the repair of volumetric muscle loss 

in rodents, the in vivo functional capacity of injured musculature improved 2.3-fold with the 

addition of a mixed cell population promoting the generation of functional skeletal muscle 

fibers. Additionally, a rodent model was used to demonstrate that innervation of rat skeletal 

muscle seeded fibrin gels prior to implantation significantly increased force generation and 

NMJ development in vivo.55 Addition of agrin, a large proteoglycan important for NMJ 

development, significantly increased the formation of acetylcholine receptor clusters on 

differentiated C2C12 mouse myoblasts in vitro.125 Pre-fabrication of acetylcholine receptor 

clusters on differentiated C2C12s in fibrin gels prior to implantation also accelerated 

innervation in vivo in a male nude rat model.125 These recent results demonstrate the 

potential for engineering the NMJ in vivo, while also elucidating current limitations in 

scaffold design, such as lack of control over cell-to-cell contacts, and physiologically 

inaccurate 3D geometries preventing proper NMJ development on aligned muscle fibers, all 

of which must be addressed in future designs.

Clinical Translation and Commercialization

While the clinical realization of innervated skeletal muscle constructs has yet to be achieved, 

clinical success in the repair of short nerve defects within muscle tissue has been 

demonstrated. Materials for nerve repair are commercially available and focus on guiding 

nerve growth using artificial conduits. Stryker® (Kalamazoo, MI) developed type I collagen-

based biomaterials for peripheral nerve and soft tissue repair. Their products, 

NeuorMatrix™, NeuroFlex™, and NeuroMend™ all use type I collagen as a wrap or tube to 

repair peripheral nerve injuries (Fig. 2b). In addition, TissueMend™ (Stryker®, Kalamazoo, 

MI) acellular collagen scaffolds are designed to augment repair and provide mechanical 

reinforcement for damaged tissues. While these materials are FDA-approved, they do not 

meet many of the design criteria described above. For example, type I collagen-based 

materials do not provide bulk alignment, support NMJ formation, or promote differentiation 

of local progenitor cells into functional nerve or muscle tissue.
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Similarly, both natural and synthetic materials have been utilized for form aligned skeletal 

muscle fibers using a variety of formats including scaffolds, films, and limited success has 

been demonstrated in animal models (see Ref. 279 for recent review).41,42 Overall, bridging 

the gap from promising in vivo animal studies to human trials and commercialization has 

proven difficult due to the multiple tissues that must integrate fully to provide functional 

recovery. However, as further progress is made using stem or progenitor cells, these remain a 

promising avenue for the repair of critically sized muscle defects.26

BIOPOLYMERS FOR CARDIAC TISSUE REGENERATION

Heart disease is the leading cause of death in both men and women, costing the United 

States $108.9 billion each year in health care services, medication, and loss of productivity.
30 In adult patients, complications from heart disease often result in heart failure, but in 

children, heart failure is frequently caused by congenital malformations of the heart (e.g., 

birth defects), weakened heart muscle, or damaged tissue not specifically due to heart 

disease. Currently, the only clinically available treatments for congenital birth defects and 

end-stage heart failure include left ventricular assist devices (LVADs), total heart 

transplantation, and surgical reconstruction.225,282 Despite some success in heart repair and 

regeneration in small animal models, regeneration of electromechanically integrated human 

myocardium has yet to succeed, driving the need for new ideas and alternative engineering 

approaches for the repair and restoration of proper heart function.

Design Criteria for Cardiac Tissue Replacement

Scaffolds designed for cardiac tissue engineering must provide equivalent functionalities of 

physiological cardiac muscle, offering mechanical and electrical support for the native or 

encapsulated cardiomyocytes. Like skeletal muscle, cardiac muscle is striated. Therefore, 

alignment of scaffold architecture, whether achieved through passive stretch or tension, 

constant strain, or structural patterning, has shown to significantly improve cardiomyocyte 

function (Fig. 3a).21,170,174 Whether acellular or cell-seeded, scaffolds must demonstrate a 

high degree of elasticity, promote cellular remodeling, maintain cell viability, support stem 

cell differentiation, and eventually sustain cardiomyocyte hypertrophy. In a cell-delivery 

approach, the scaffold design must yield integration of the provided cells (e.g., stem cells) 

with the host tissue and electromechanically couple these cells with the native heart muscle 

through both host cell ingrowth and delivered cell outgrowth (Fig. 3a). Mechanical 

considerations depend on many factors, including the age of the patient and the presence of 

injury or disease, and therefore, the modulus of scaffolds for cardiac tissue engineering 

should range between 5 and 50 kPa with pore sizes ranging from 20 to 40 μm.204,225 

Additionally, delivery of growth factors such as insulin-like growth factor-1 (IGF-1), human 

growth factor (HGF), vascular endothelial growth factor (VEGF), and stromal cell-derived 

factor-1 (SDF-1) have improved cardiac function and tissue integration following trauma.
257,282 As designs for cardiac tissue engineering move forward, the use of time-dependent 

and slow-release delivery systems will be necessary to achieve the desired paracrine 

signaling profiles in vivo.
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In Vivo Accomplishments for Cardiac Tissue Replacement

Recent in vitro and rodent-based in vivo data support the use of both cellular and acellular 

approaches for repairing and restoring heart tissue in both children and adults, yet clinical 

realization of these strategies has proven difficult.26,128 These therapies include the use of 

hydrogels or decellularized extracellular matrix solutions that are injected into or onto the 

heart,226 the implantation of scaffolds or matrices, or the implantation of films or cell sheets.
160 Treatments are aimed at either restoring heart wall thickness and strengthening the 

muscle or minimizing scar tissue accumulation in the area and replacing it with 

electromechanically coupled tissue.

Alginate and Chitosan—Polysaccharides, such as alginate and chitosan, have been 

widely utilized for cardiac tissue engineering due to their biocompatibility and ease of use.
239 Currently, liquid alginate solutions (Sodium Alginate and Calcium Gluconate, 

NCT01226563 and Algisyl-LVR™ intramyocardial injections of alginate hydrogel, 

NCT01311791) are undergoing thorough investigation in human clinical trials. However, a 

three-dimensional, pre-formed alginate-based cardiac patch has not yet reached the clinic 

despite promising in vitro results.239 The development of a cardiac patch from one or both 

of these materials is extremely challenging due to the limitations in electrical conductivity. 

Gold nanowires, gold nanoparticles, and carbon nanotubes have been incorporated into 

polysaccharide-based hydrogels to improve electrical coupling between adjacent cardiac 

cells in vitro. As with all critically sized constructs, vascularization is paramount to the 

success of a cardiac construct. One approach is to add pro-angiogenic growth factors to the 

matrix to improve host infiltration. Recent efforts using these polysaccharide based 

biopolymers have led to the successful delivery or growth factors and small molecules in 
vivo.133,262

Gelatin and Elastin—Use of collagen alone to repair heart defects is challenging since 

the protein itself causes stiffening of the heart tissue and induces reprogramming of cardiac 

fibroblasts. Instead, gelatin and elastin based scaffolds serve as sufficient alternatives for 

cardiac tissue engineering due to their rapid cellular degradation and bulk elasticity. Gelatin-

based sheets for the fabrication of cardiac patches are currently under investigation in 

clinical trials (e.g., AutoLogous Human CArdiac-Derived stem cell to treat Ischemic 

cArdiomyopathy (ALCADIA), NCT00981006). Novel composites formed by 

methacrylating biopolymers, such as GelMa (methacrylated gelatin236) and MeTro 

(methacrylated tropoelastin10), have also been studied extensively in vitro. These 

biopolymers also lack electrical conductivity, which has prompted the in vivo investigation 

of composite materials containing single walled carbon nanotubes (SWNTs) for left 

ventricle repair following myocardial infarction. The implantation of these devices in vivo 
resulted in significantly increased fractional shortening and ejection fraction compared to 

untreated hearts, partially due to enhanced the expression of intercellular adhesive junctions 

and electrochemical junctions in rats who received SWCT-based implants.294 Overall, 

SWCT-based scaffolds integrated into infarct myocardium exerted beneficial effects on 

myocardial regeneration and remodeling in the infarct areas, resulting in the improvement of 

heart functions in rats.294 In vitro, the addition of the SWCTs enhanced spontaneous 

electrical activity in seeded cell constructs as well as cardiomyocyte connectivity, as 

Stoppel et al. Page 9

Ann Biomed Eng. Author manuscript; available in PMC 2021 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT01226563
https://clinicaltrials.gov/ct2/show/NCT01311791
https://clinicaltrials.gov/ct2/show/NCT00981006


demonstrated by the ability of SWCT-containing constructs to beat regionally after 2–3 days 

and contract synchronously at day 8, which was not observed in SWCT-free materials.294 

SWNT-based materials supported the contractile properties of engineered cardiac tissue 

through enhancement of the formation of gap junctions and promotion of the excitation–

contraction coupling of cardiomyocytes.294 However, the long-term biocompatibility of 

SWCTs in vivo raises concern for the translation of these scaffolds to human clinical trials.

Fibrin—Fibrin-based scaffolds show exciting promise for cardiac repair given the elastic 

nature of the scaffold and the rapid degradation and cellular remodeling potential afforded 

by the chemical structure.89 Initial work with this biopolymer demonstrated modulation of 

gelation rates by adjusting the fibrinogen to thrombin ratio to achieve an injectable material 

capable of delivering cells or growth factors to a damaged heart surface.39,178 Initial in vitro 
investigations of fibrin for cardiac repair established potential therapy to regenerate post-

myocardial infarction cardiac tissue using 3D functional fibrin-based myocardial equivalent 

grafts formed in vitro. Results indicated that the aligned fibrin scaffolds demonstrated a 

significant increase in twitch force compared to the isotropic constructs.21 Parameters that 

could be modulated to tailor these construct properties prior to implantation include 

regulating the magnitude of stretch used to induce alignment, preconditioning the scaffold to 

stretch in a bioreactor, or pre-seeding the graft with cardiomyocytes prior to implantation.
173–176,285,292

Clinical Translation and Future Directions

Current research on cardiac patch biomaterials is promising, yet full realization of the 

potential of these therapies remains elusive. Unless a patient is undergoing open-heart 

surgery, such as a valve replacement, surgical access to the outer left ventricle wall is 

limited. Regeneration strategies have instead focused on delivering cells or injectable gels at 

the damaged site by a catheter.226 Additionally, natural biopolymer-based cardiac patches 

may provide solutions to complex cardiac reconstruction in young patients with complex 

congenital heart defects. Natural-based cardiac patches have allowed engineers to overcome 

the limitations of current synthetic patches, which do not promote cellular remodeling, do 

not grow as the child grows, and often require reoperation (Fig. 3b).102 Furthermore, in 

young patients, both extracellular matrix composition and cardiomyocyte metabolism differ 

greatly from mature, adult tissue, necessitating a careful analysis of design criteria and 

biomaterial selection for cardiac graft fabrication.276,282 These results present two major 

implications for the future of cardiac tissue regeneration and remodeling: (1) repair in 

younger patients may be more successful due a greater percentage of proliferating cells and 

circulating progenitors and (2) the fetal environment (e.g., matrix composition, tissue 

density, tissue mechanics) may represent improved design criteria for repair and 

regeneration in the adult heart.

BIOPOLYMERS FOR CORNEAL TISSUE REPLACEMENT

The human cornea is a transparent, avascular, connective tissue that provides an optical 

interface with substantial refractive power, while protecting the eye from mechanical injury 

and potential infection. This organ is comprised of three distinct cellular layers: corneal 
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epithelium, stroma, and endothelium, which are separated by two acellular collagenous 

interfaces known as the Bowman’s Layer and Descemet’s membrane (Fig. 4).214 Improper 

corneal development, damage to the cornea and limbal cells, or nerve injury resulting from 

infection or trauma can result in loss of corneal transparency, leading to either partial or 

complete loss of vision. Approximately 10 million people worldwide suffer from corneal 

vision loss, prompting the need for an effective corneal transplant therapy. These transplants 

can be categorized into two main repair options: allogenic and synthetic materials. Although 

allogenic materials from human donors are preferred, a shortage of quality donor graft 

material has limited the broad applicability of this clinical option. Alternatively, synthetic 

homologs to donor corneal grafts are primarily used as temporary replacements until 

suitable donor tissue becomes available. The use of a synthetic homolog for long-term repair 

is limited by intrinsic risks of corneal melting, bacterial endophthalmitis, and retinal 

detachment resulting in graft failure.

Design Criteria for Cornea Tissue Replacement

The main functions of the cornea necessitate three major design requirements: protection, 

transparency, and an effective optical interface. In addition, a corneal replacement device 

must also be biocompatible in the human body and ideally bioactive such that the graft 

material can integrate within the surrounding host tissue (Fig. 4). Efforts to regenerate the 

cornea have focused on the in vitro regeneration of the epithelium, stroma, and endothelium 

strata, followed by the promotion of neural and vascular interfaces. Natural biopolymers 

have been used extensively to mimic the corneal epithelium layer. In particular, reconstituted 

and chemically cross-linked type I collagen or silk hydrogels have been used as substrates 

for human epithelial cell growth and functional tissue organization.138,169 Reconstruction of 

the corneal stroma has proven challenging due to the complex structure, mechanical strength 

requirements, and need for optical transparency. Therefore, corneal stroma engineering has 

focused on the development of functional corneal stroma substrates through chemical, 

morphological, and mechanical cues.88,131,277 In the particular context of the corneal 

stroma, type I collagen has been used extensively due to its dominant content in the native 

corneal tissue as well as its standardized processability.84 Alternatively, silk films have been 

optimized to support corneal stromal cell growth and organization in both 2D and 3D 

environments, in which topography, surface chemistry, porosity, degradation profiles, and 

transparency were controlled.87,229

In Vivo Accomplishments for Corneal Tissue Replacement

In order to study the integration of an implanted biomaterial within corneal native tissue, in 
vivo implantation of acellular corneal tissue equivalents has been investigated.139,205 Studies 

have focused on recapitulating the three-layer structure of the cornea (epithelium, stroma, 

and endothelium).2,91 Recent efforts have used decellularized biological material, such as 

amniotic membranes and animal-derived cornea. However, the results of an acellular porcine 

cornea in combination with amniotic epithelial cells in a rabbit lamellar keratoplasty resulted 

in degradation of the tissue-engineered cornea due to host rejection.143 Decellularized 

amniotic membrane was clinically evaluated in combination with human corneal endothelial 

cells in a lamellar keratoplasty model. The endothelium and part of the Descemet’s 

membrane were removed, and the construct was able to function as a corneal endothelium 
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equivalent.73 In all cases, complications due to foreign material host response and material 

performance limitations such as lack in transparency, degradability, and mismatch in 

mechanical and permeability properties hindered success in the reported animal studies.

Clinical Translation and Commercialization

Anterior partial keratoplasty performed in humans using biosynthetic corneas made from 

cross-linking recombinant human collagen type III showed that these naturally derived 

collagen scaffolds provide effective tissue regeneration by promoting endogenous tissue 

growth and innervation without signs of vascularization for up to two years. However, a 

delay in epithelial closure and a fibrotic response were observed, likely caused by surgical 

sutures.68 A 4-year follow up showed a stably integrated implant, although a more robust 

material with better shape retention may improve visual acuity.69 Partial or full-thickness 

engineered corneal tissues have been developed for in vitro preclinical cornea tissue repair 

models to reduce animal testing for commercial products for eye irritancy tests.45 A multi-

layer collagen hydrogel scaffold was developed and evaluated using primary corneal 

endothelial, stromal, and epithelial cells.209 The commercially available products mainly 

referred to engineered epithelium based on trans-well permeable membrane architecture, as 

in the case of Clonetics™ Human Corneal Epithelial Culture Model (Lonza, Hopkinton, 

MA), LabCyte Cornea-Model (Japan Tissue Engineering Co., Ltd., Gamagori City, Aichi, 

Japan), and EpiOcular™ (MatTek Corporation, Ashland, MA).

THE FUTURE OF BIOPOLYMERS: A FOCUS ON CLINICAL TRANSLATION

Given the wide range of products available on the market today, there still exists a pressing 

need for further product development to repair full thickness wounds. The path to clinical 

translation and commercialization of wound healing products presents a case where 

academics, start-up companies, and venture capitalists can reflect on both the successes and 

failures of product implementation in the medical field. A major lesson learned is that there 

is no “one-size-fits-all” solution such that a single product or biomaterial will not meet the 

design criteria and patient need for every clinical application. For instance, wound healing is 

more complex and takes longer in diabetic patients compared to healthy patients, as these 

patients often suffer from ischemia and neuropathy in their extremities. Thus, challenges 

with cost-to-patient-benefit analysis, proper doctor recommendation and utilization, long 

times between initial development and FDA approval, and other unforeseen challenges have 

impeded the clinical translation of many promising biopolymer-based products.107

A fundamental understanding of native tissue structure and organization, as well as physical, 

and biochemical properties is essential for the successful design of biomaterial scaffold 

systems to produce effective tissue replacement therapies. The goal of this review was to 

provide an overview of recent efforts based on natural polymers to mimic in vivo structures 

for tissue types including bone, muscle, peripheral nerve, cardiac, and cornea, and to 

highlight the progression of these systems from animal models into clinical settings. Despite 

major recent advancements in the tissue engineering field, significant challenges such as 

lack of vascularization, fine control of biomaterial degradation rate and byproducts, and 

construct re-innervation in critical-size grafts are limiting factors in the translation of tissue 
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engineered products to clinical scenarios. Thus, there remains a significant opportunity to 

develop new methods and techniques for the generation of pre-vascularized and re-

innervated tissues to promote angiogenesis and neovascularization, lymphangiogenesis, and 

innervation in order to create fully functioning tissues.
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FIGURE 1. 
Bone tissue replacement. (a) Overview of the anatomical structure of human bone tissue and 

essential design criteria at the macro, micro, and nano-scales. (b) Building a functional bone 

graft or bone substitute material from a bottom-up approach involves careful selection of 

natural biocompatible and biodegradable materials to mimic the inorganic–organic structure 

of native bone. Calcium phosphates, such as hydroxyapatite (HA) and tricalcium phosphate 

(TCP), are frequently complexed with polymeric materials, such as collagen or silk, to form 

a composite structure. At a micro-scale, osteoconductivity of the composite scaffold is 

supported by porosity (40–60%) and pore size (>100 μm), and osteoinductivity to promote 

osteogenesis in vivo is accomplished by release of bone morphogenic proteins (BMPs) or 

vascular growth factors. On a macro-scale, scaffolds must withstand physiologic loading 

forces (2–10 MPa in trabecular bone and 170–200 MPa in cortical bone) and should be 

defect specific. This can be achieved with various methods including 3-D printing of patient-

specific grafts or the use of an injectable, self-setting calcium phosphate cement (CPC)-

polymeric fillers.
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FIGURE 2. 
Engineering the neuromuscular junction (NMJ). (a) Anatomy of the neuromuscular junction 

showing myelinated axons of the nerve bundle interfacing with the striated muscle fibers at 

the nerve terminal. Design criteria for nerve conduits and skeletal muscle-NMJ interface 

include bulk alignment, elasticity, long-range signal propagation, and conductivity as well as 

efficient signal transmission to the sarcomere to elicit muscular response. (b) Commercially 

available scaffolds for nerve repair, such as Stryker NeuroFlex, are clinically available for 

implantation to promote the re-growth of short nerve segments. However, these conduits are 

only able to address nerve injuries or gaps of less than a critical size of 2.5 cm, nor can they 

provide effective muscle-nerve connectivity, which is essential for the regeneration of 

traumatic skeletal muscle and nerve injuries.
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FIGURE 3. 
Cardiac tissue replacement. (a) Anatomy of the heart showing the striated alignment of 

cardiac muscle. Design criteria for cardiac tissue engineering include high elasticity, aligned 

porosity, support of vascular and capillary network growth, and methods for integration into 

the host tissue both mechanically and electrically. (b) A variety of materials are 

commercially available for temporary repair of cardiac defects, but most are made from non-

degradable plastics, which do not grow with the patient or integrate with the tissue, leading 

to the risk of fatal arrhythmias. Some disadvantages of clinically available vascularized 

grafts or decellularized matrices are thrombosis or a lack of tissue integration and growth 

within the patient. Decellularized grafts represent an allogenic approach to repairing 

damaged tissue, but patients run the risk of rejection, infection, and fibrosis.
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FIGURE 4. 
Cornea tissue replacement. (a) Anatomy of the human cornea: schematic and histological 

images of human cornea layers: the corneal stratified squamous epithelium with underlying 

the Bowman’s layer, the stroma with keratocytes for the maintenance and production of 

extracellular matrix, the Descemet’s membrane, and, the single-layer endothelium. State of 

the art of tissue engineered cornea: Epithelium Human epithelial cell sheet obtained from 

oral epithelial cells after removal of the cell sheet from the thermoresponsive surface; 

Stroma Assembly diagram for 3D silk film corneal constructs seeded with human corneal 

fibroblasts; Full-thickness Synthetically crosslinked collagen, molded into an implantable, 
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full-thickness corneal substitute. Transparent samples were trephined to prepare a button for 

corneal implantation and then held in place by sutures in the patient eye.
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