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Abstract

Critical blind assessment of structure prediction techniques is crucial for the scientific community 

to establish the state of the art, identify bottlenecks, and guide future developments. In Critical 

Assessment of Techniques in Structure Prediction (CASP), human experts assess the performance 

of participating methods in relation to the difficulty of the prediction task in a biennial experiment 

on approximately 100 targets. Yet, the development of automated computational modeling 

methods requires more frequent evaluation cycles and larger sets of data. The “Continuous 

Automated Model EvaluatiOn (CAMEO)” platform complements CASP by conducting fully 

automated blind prediction evaluations based on the weekly pre-release of sequences of those 

structures, which are going to be published in the next release of the Protein Data Bank (PDB). 

Each week, CAMEO publishes benchmarking results for predictions corresponding to a set of 

about 20 targets collected during a 4-day prediction window. CAMEO benchmarking data are 

generated consistently for all methods at the same point in time, enabling developers to cross-

validate their method’s performance, and referring to their results in publications. Many successful 

participants of CASP have used CAMEO—either by directly benchmarking their methods within 

the system or by comparing their own performance to CAMEO reference data. CAMEO offers a 

variety of scores reflecting different aspects of structure modeling, for example, binding site 

accuracy, homo-oligomer interface quality, or accuracy of local model confidence estimates. By 

introducing the “bestSingleTemplate” method based on structure superpositions as a reference for 
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the accuracy of 3D modeling predictions, CAMEO facilitates objective comparison of techniques 

and fosters the development of advanced methods.
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1 | INTRODUCTION

Routine application of three-dimensional (3D) protein structure models in life science 

research requires fully automated, robust, reliable, and accurate modeling pipelines.1 

However, the performance of prediction tools reported in the literature is often based on 

different background information, inconsistent benchmarking data sets, and distinct 

evaluation metrics, impeding quantitative comparison between methods. In the field of 

protein structure modeling, this well-known problem is successfully addressed by regular 

independent blind assessments in the form of the community experiment “Critical 

Assessment of Techniques in Structure Prediction” (CASP).2,3 CASP is organized every 2 

years, with experts assessing methods based on approximately 100 prediction targets, and 

culminates in a meeting, where researchers compare the performance of the various 

approaches and discuss the latest developments. Yet, the development of automated server 

methods requires more frequent benchmarking on larger data sets in between CASP seasons 

to allow testing different hypotheses and to enable faster development cycles. The 

“Continuous Automated Model EvaluatiOn (CAMEO)”4 platform offers this functionality. 

The fully automated platform relies on the pre-release of sequences5 of structures, which are 

going to be published by the Protein Data Bank (PDB) 4 days later.6 These structures serve 

as references for the evaluations within CAMEO. The evaluation is performed across all 

participating servers at the same point in time, that is, all methods have access to the same 

background information such as template information or protein sequences in UniProt.7 

Benchmarking results (predictions, reference structures and evaluation scores) are publicly 

available to document a method’s historic performance (eg, for reference in publications) 

and can be used as training data for further method development.

CAMEO significantly facilitates the development of modern protein structure prediction 

approaches: methods are transparently assessed by a variety of scores established by the 

community, representing different aspects of structure prediction. Superposition-free 

measures8–10 are crucial for fully automated assessment and are employed for aggregated 

scores as previously described. Although results for servers registered as “public servers” are 

visible for anyone, it is helpful for developers to be able to register new methods as 

anonymous “development servers,” visible only to other developers with a CAMEO account. 

This enables testing new hypotheses and “real-time” benchmarking to other cutting-edge 

methods without revealing the details of the method. For historic comparison, we encourage 

groups to keep the last and second last public server versions available to CAMEO and 

register major releases as a new server. CAMEO is an open platform inviting the wider 
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community to propose scoring approaches, evaluation schemes, and new categories. In this 

article, we would like to focus on recent developments and results for the protein structure 

prediction (CAMEO 3D) and the local quality estimation (CAMEO QE) categories.

2 | MATERIALS AND METHODS

2.1 | Target set—3D

The CAMEO target set has been selected as previously described,4 where CAMEO deselects 

targets exhibiting high coverage in at least one template (“too easy”) and omits protein 

sequences that are shorter than 30 residues. CAMEO then submits the first 20 sequences 

every week. The CAMEO website allows accessing data in time frames “1 week,” “1 

month,” “3 months,” “6 months,” and “1 year.” For this article, the target set here is 

composed of 248 targets spanning a 3-month period from 1 May 2018 to 28 July 2018. Due 

to its continuous cycle, CAMEO refers to the target structures as first published by the PDB 

in contrast to the PDB, which updates and sometimes even supersedes experimental 

structures, for example, 2018–05-12_00000055_1 (PDB id 5xpq, chain D), 2018–

05-20_00000063_1 (PDB id 5xnu, chain B), and 2018–05-20_00000004_1 (PDB id 5ndl, 

chain B). We have excluded three targets from analyses in this article: 2018–

06-16_00000009_1(PDB id 5o7b, chain A) due to its non-contiguous structure coverage, 

targets 2018–05-12_00000031_2 (PDB id 5nl1, chain L), and 2018–06-23_00000056_2 

(PDBid 5wjc, chain B) turned out to be too short as large segments have not been 

crystallized.

Binding site accuracies have been determined for 94 targets. Oligomer-interface scores are 

available for 96 targets, where at least one biounit was assigned to be a homo-oligomer by 

the PDB deposition authors. In the case of targets with several functional forms (“biological 

assemblies,” biounits), the biounit yielding the highest score for the participant has been 

chosen (for a complete list of targets, refer to Table S1).

2.2 | Score details—3D

CAMEO currently offers 18 different metrics to assess various aspects of protein structure 

modeling. Server response time is measured as the time between the CAMEO submission 

and the arrival of the response e-mail. We note that some servers may have priority queues 

for CAMEO to ensure modeling results are delivered within the 4-day window. Although 

this may be aimed at reflecting actual modeling time, it may not correspond to real-world 

user experience. Some metrics are available at the single chain level only, for example, 

GDT_HA,11 GDC11, MaxSub,12 TM-score,13 lDDT/lDDT Cα,9 RMSD, and model 

confidence. [Correction added on 11 Nov 2019, after first online publication: In the 

preceding sentence, GDC citation updated.] Other metrics measure the accuracy of homo-

oligomer interfaces and the respective complexes like QS-score14 based measures, the MM-

align15 based TM score, RMSD, and the lDDT-oligo score.

For the analysis of the homo-oligomer predictions, only those predictions have been 

included in the scoring that matched the number of chains in the reference biounit, that is, 

with the correct stoichiometry.
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2.3 | Comparison to reference baseline predictions—3D

The “NaiveBLAST” method employs a BLAST run against all available templates of the 

PDB at the time of submission for each target. If at least one template has been detected, it 

selects the first hit for a standard MODELLER run generating a protein structure prediction.

For the “bestSingleTemplate” method, templates are discovered by structural superposition 

of the target reference structures with all PDB structures using TM-align.16 The top 20 of 

the obtained structural alignments serve as input for the subsequent template-based 

modeling. Modeling is performed with SWISS-MODEL’s14 modeling engine ProMod317 

(see Data S1 for details). [Correction added on 11 Nov 2019, after first online publication: In 

the preceding sentence, SWISS-MODEL citation updated.] Termini beyond the region 

covered by the template structure are modeled by a low-complexity Monte Carlo sampling 

approach. The final models are ranked by lDDT,9 and the top scoring model is selected for 

that particular target.

2.4 | Target set—QE

The target set for model quality estimation refers to 3D protein structure predictions (rather 

than sequences) for the time period from 1 May 2018 to 28 July 2018. The QE target set was 

generated by collecting all models of the public servers in the CAMEO 3D category 32 

hours after the submission of the 3D targets, amounting to 2798 QE targets (for details, 

please see Table S2). The targets that were excluded in the 3D category have also been 

disregarded for this analysis. The lDDT score ([0,100]) was used to classify residues as 

being of good (lDDT >= 60) or bad (lDDT < 60) quality. In an analysis of QE target 

contribution by public 3D modeling server, most servers produce models at all quality levels 

(Figure S3).

2.5 | Score details—QE

To assess the quality of a given protein structure model, numerous scores have been 

employed such as accuracy of self-estimates (ASE)18 or cumulative rankings based on 

various scores such as GDT-TS,11 lDDT,9 CAD-score,8 or Spheregrinder.10 Here, we rank 

the method’s performance based on the partial receiver-operator characteristic (ROC) area 

under the curves (AUCs) for the false positive rate from 0.0 to 0.2 and the partial precision-

recall (PR) AUCs for a recall between 0.8 and 1.0.

2.6 | Comparison to reference baseline predictions—QE

The “BaselinePotential” server implements a classical distance-based statistical potential.9 

Statistics have been extracted for pairwise distances between all chemically distinguishable 

heavy atoms in the 20 naturally occurring amino acids and histograms have been computed, 

neglecting all interactions from residues with a sequence separation of less than four 

residues. The resulting potential functions are applied on all pairwise interactions and per-

residue scores are estimated by averaging and then smoothing all outcomes of interactions a 

residue is involved in2. The baseline server “naivePSIBLAST” assumes that conserved 

regions of a protein model are of higher quality than divergent regions. It searches the most 

recent version of the NCBI NR database with PSI-BLAST and estimates the sequence 

conservation from the position-specific scoring matrix.4

Haas et al. Page 4

Proteins. Author manuscript; available in PMC 2021 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 | RESULTS AND DISCUSSION

3.1 | 3D protein structure modeling

3.1.1 | Target difficulty—The target set reported here encompassed 248 protein 

sequences, collected over the course of 3 months (1 May 2018 to 28 July 2018), reflecting 

the requirement of short evaluation cycles for continuously developed methods. To classify 

these targets, CAMEO applied a “post-diction” lDDT average across all received 3D 

structure predictions,4 where “Hard” targets are those with an average lDDT below 50, 

“Medium” targets are within an lDDT range from equal to 50 and up to 75, and “Easy” 

targets are equal to or above 75. Following this definition, 44 “Easy,” 138 “Medium,” and 69 

“Hard” targets have been evaluated. The actual oligomeric state of a protein is unknown at 

the time of the CAMEO target selection and submission. CAMEO expects the prediction 

methods to infer this context independently and model the protein in the correct oligomeric 

state.

3.1.2 | Improvement over reference methods—Among the various approaches to 

predict protein structures, utilizing previously determined structures of homologous proteins 

as templates, homology (comparative) modeling has so far produced protein structure 

models of the highest quality. Yet, recent advances in this round of CASP13 allow a glimpse 

into major improvements on template-free approaches.2,3 Here, we analyze the participants’ 

model with respect to two baseline reference methods. Both are aimed at aiding the 

comparison of each model to well-known approaches, thereby assisting the server algorithm 

developers to locate potential areas for further development. The first one represents a 

BLAST-based predictor (“NaiveBLAST”).4 Most of the methods produce higher quality 

models compared with NaiveBLAST, and the top five methods show a median improvement 

of more than 4.5 lDDT points (Figure 1). Reasons for improving the model may lie in a 

better template selection based on more sensitive profile-profile comparisons, better loop 

modeling, and multitemplate modeling in general. The second reference method is the 

structure-based “bestSingleTemplate” method, representing an upper limit for single 

template models. Here, only the top three methods improved more than 10% of the targets, 

with Robetta clearly in the lead (Figure 2). As opposed to the NaiveBLAST baseline, many 

targets have been predicted equal or worse (Figures S1 and S2). Even for the best methods, 

the limited improvement over the bestSingleTemplate approach clearly exhibits room for 

further development.

3.1.3 | General performance analysis—CAMEO evaluates the structure predictions 

applying different scores for assessing different aspects of modeling, such as accuracy of a 

single protein chain, the homo-oligomeric interface, or the binding site (Table 1). Here, we 

categorized the data into the target domains “hard,” “medium,” and “easy.” The three best 

methods “Robetta,”19 “Raptor-X,”20 and “IntFOLD5-TS21 returned all hard targets (in total 

62) with a very similar performance, both in average lDDT and SD, of 47.29±12.96, 

45.25±13.57, and 44.79±12.82 (CAD-scores8: 0.55 ±0.09, 0.53±0.10, and 0.52±0.09), 

respectively. Although the performance is very similar on this specific target set, the 

response times vary greatly with “Raptor-X” clearly in the lead (7.8 hours). For the medium 

difficulty targets (in total 139), the situation is almost identical, albeit at a much higher 
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average accuracy level with average lDDT values of 74.03±7.15, 71.50±7.28, and 

72.53±6.99 (CAD-scores: 0.71 ±0.05, 0.69±0.05, and 0.69±0.06), respectively. Here, 

“SWISS-MODEL” (69.09±10.33 lDDT, 0.69 CAD-score, 99% of medium targets), 

“IntFOLD3-TS”22 (69.21±7.40 lDDT, 0.69 CAD-score, 98% of medium targets), and 

“HHPredB”23 (68.31±9.60 lDDT, 0.68 CAD-score, 100% medium targets) are close with 

regard to performance. “SWISS-MODEL” is sticking out with a very fast average response 

time of 12 minutes, closely followed by “HHPredB” (42 minutes), “PRIMO”24 (54 

minutes), and “SPARKS-X”25 (114 minutes). For the easy targets (in total 47), 12 out of 16 

servers showed lDDT scores in the range of 80 to 84, with “Robetta” (lDDT 84.55±4.04) 

and “SWISS-MODEL” (lDDT 83.88±5.38) in a narrow lead. Within a mere 4 units lDDT 

“Raptor-X,” “IntFOLD5-TS,” “HHPredB,” “PRIMO,” “M4T-SMOTIF-TF,”26 and 

“SPARKS-X” are close in performance.

A very important way to communicate a model’s quality to the end user is by assigning 

correct per-residue confidence estimates.27 “SWISS-MODEL,” “IntFOLD3-TS,” and 

“Robetta” are providing good to very good error estimates with “SWISS-MODEL” and 

“IntFOLD3-TS” peaking at 0.87 and 0.85 as analyzed by averaging per-model ROC AUCs.

CAMEO analyses the accuracy of the binding-site residues (“lDDT-BS”4), where on the 

current data set across 94 targets and 83 unique ligands (see Data S1), the top modeling 

groups are also producing good quality binding sites with lDDT-BS scores close to 70. The 

high SD is most likely owing to local inaccuracies and the fact that missing residues have a 

very pronounced effect on the rather small number of residues involved in forming the 

binding site.

For almost 40% of this data set, the biologically active form of a protein is a homo-oligomer, 

yet only two servers “Robetta” and “SWISS-MODEL” are routinely predicting homo-

oligomers. “Robetta” returned 37 out of 96 assemblies correctly, while “SWISS-MODEL” 

returned 47. For 11 and 16 assemblies, respectively, the servers predicted wrong 

stoichiometries—these models have not been included in the analysis. Both servers failed to 

produce homo-oligomer models for 29 out of 96 (30%) of the targets.

3.2 | Quality estimation

3.2.1 | Analyses—Closely related to computing reliable and biologically relevant 

protein structure models is robust model quality estimation—justifying its own category 

both at CASP and in CAMEO evaluations since many years. The CAMEO quality 

estimation (CAMEO QE) category focuses on per-residue evaluations, where the task is to 

distinguish residues of bad quality from high quality in protein structure models. Among 

many others, the ROCs and its AUC have a long history and have, thus, been implemented 

within CAMEO QE. PR curves are also featured to investigate potential bias in the data sets 

and to better capture performance in the case of a very low number of bad residues observed 

in high-quality structures. Here, in ROC space, a large change in the false positives has a 

small effect, while it is clearly captured in the PR space performance.28 Consequently 

CAMEO QE considers both analysis domains and offers a performance analysis based on 

partial ROC and partial PR. For the partial ROC analysis, we calculate the AUC only in the 

FPR range of 0.0 to 0.2 (Figure 3A) and for the partial PR analysis in a recall (TPR) range 
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from 0.8 to 1.0 (Figure 3B). We condense the information in a scatterplot with the AUCs 

obtained for the partial ROC plotted against the AUCs’ partial PR analyses. Within the top 

performing regime of this performance domain “QMEANDisCo3”,27 “QMEANDisCo2,”29 

“ModFOLD6,”30 and “ModFOLD7-lDDT”22 are clearly in the lead (Figure 3C), followed 

by “QMEAN3,” “ModFOLD4,”31 and “VoroMQA.”32 All these methods clearly outperform 

the “Baseline Potential” based on a full-atomic statistical potential of mean force as has been 

reported earlier4 (Table 2). In CAMEO, the current threshold of lDDT has been selected 

based on earlier unpublished investigations and discussions with the CAMEO participants. 

An analysis to study the stability of rankings dependent on different thresholds for lDDT and 

CAD score is provided as Data S1 (see Figures S4–S9). Methods that are similar in 

performance show minor variances in ranks across the thresholds. In PR space, the “Baseline 

Potential” showed the highest variation, likely due to its simplicity. For the lower two 

thresholds in ROC and partial ROC vs partial PR space, both lDDT and CAD score show 

similar behavior, while higher thresholds are reflecting the well-known issues of binary 

classifications. The findings confirm that for the question at hand, pROC AUC vs pPR AUC 

is the most stable ranking methods for both lDDT and CAD score. When considering the 

historic development of quality estimation methods, it is obvious that a tremendous 

performance gap exists between the original approaches, for example, PROSA33,34 or 

DFIRE35 and current methods (Figure 4). All analyses have been performed on a data set 

that is biased toward high-quality models (Figure 3D), aiming at reflecting a real-case 

modeling scenario.

4 | CONCLUSION AND OUTLOOK

CAMEO continuously evaluates automated methods that either already run as a public 

productive server or are considered private development pipelines every week throughout the 

entire year. This distinguishes CAMEO from CASP and complements it at the same time, as 

many methods in CASP are not available as public services. CAMEO collected a large 

number of targets in the 3D (248) and QE (2798) category in just 3 months. This underlines 

the importance of a continuous evaluation, where server algorithm developers benefit from 

immediate feedback on their latest developments. These methods are often registered as 

anonymous servers, thereby hiding the identity until the performance improvements have 

been concluded. Apart from these anonymous server registrations, we encourage the 

independent re-registration of public servers following major release versions to 

retrospectively discuss improvements of algorithms more transparently. CAMEO is an open 

platform and features many scores from single chain accuracies to homo-oligomer interfaces 

reflecting different aspects of modeling.

CAMEO 3D introduced the “NaiveBLAST” baseline early on to estimate a lower bound of 

quality. Unsurprisingly, based on its simple approach, all actively developed servers show 

major improvements for more than 50% of the targets. Here, “Robetta” and “IntFOLD5-TS” 

are in the lead, closely followed by “SWISS-MODEL,” “RaptorX,” and “IntFOLD3-TS”. 

Besides “NaiveBLAST,” we have now introduced the “bestSingleTemplate” (bST) method, 

which yields an upper baseline for single template models. Consequently, the fraction of 

models scoring higher than bST is considerably lower than the “NaiveBLAST” method, 

where only three servers markedly improve their models compared with bST. The correct 
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oligomeric state is crucial for biological relevance, yet with “SWISS-MODEL” and 

“Robetta” only two of the registered servers in CAMEO are currently modeling homo-

oligomers. Here, “SWISS-MODEL” is in the lead at the moment, modeling more of the 96 

targets with the correct assembly and with a higher QS-score. With a maximum of 31% 

correctly modeled homo-oligomer assemblies and no models for 29% of the targets from 

either server, this aspect clearly shows room for improvement.

For CAMEO QE, the emphasis lies on per-residue quality estimation. Global scores are not 

currently evaluated and the task of the predictors in this category is to find bad quality 

residues (local lDDT <60) in a data set of models ranging from low quality to high quality. 

Although ROC analyses are well suited for this kind of comparison, CAMEO also includes 

PR analyses to capture a large change in the false positives, which has a small effect in ROC 

space, while it is clearly captured in the PR space. We have introduced a combined partial 

ROC AUC and partial PR AUC analysis, where most servers exhibit a comfortable lead over 

the “Baseline Potential” predictor. In the respective time frame, “QMEANDisCo3” and 

“ModFOLD7-lDDT” clearly have the lead, with the Voronoi tessellation-based method 

“VoroMQA-v2” located in the midfield.

Recent advances have again pushed the boundaries as compared to the special issue 2 years 

ago,4 which marks the summit of continuous improvements over the last 22 years (Figure 4).

The continued development of CAMEO will focus on the selection and validation of target 

reference structures with the aim to maximize target diversity and target quality at the same 

time. Sets of previously established validation criteria will be employed for this task, which 

are based on the reports of the PDB validation pipeline.39 We envision to include ligand 

poses as well as assess heteromers in the near future stimulating the development of 

structure prediction methods even further.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Compared with the NaiveBLAST server in units lDDT, the medians are depicted by the 

horizontal bar in the boxes. The sort order is by the decreasing median. The number of 

targets used in the comparison by server is indicated at the top of each column, with a 

maximum of 228 out of a total of 248 targets returned by NaiveBLAST. The data set covers 

the time from 1 May 2018 to 28 July 2018
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FIGURE 2. 
Compared with the “bestSingleTemplate” method in units lDDT, the medians are depicted 

by the horizontal bar in the boxes. The sort order is by the decreasing median. The number 

of targets returned by each server is indicated, and the total number of targets is 248. The 

data set covers the time from 1 May 2018 to 28 July 2018
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FIGURE 3. 
A, Partial precision-recall AUC, blue vertical line depicts the threshold of 0.2 FPR; B, partial 

ROC AUC, the blue vertical line indicates the threshold of 80% recall; C, pROC AUC vs the 

pPR AUC domain, applying an lDDT threshold of 60. The dashed lines represent the AUCs 

for the random predictor in the ROC domain and for the expected precision at 100% recall 

for the PR domain. Areas in grey are below these thresholds and would be considered 

performing worse than random. D, model quality distribution of the QE target set in units 

lDDT. The data set covers the time from 1 May 2018 to 28 July. AUC, area under the curves; 

ROC, receiver-operator characteristic
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FIGURE 4. 
Historic development of quality estimation tools. The improvements are impressive spanning 

early developments and recent approaches over the last 22 years, from well-known tools 

such as PROSA,33,34 Verify3D,36 DFIRE35 to the latest contestants such as ProQ3,37 

ModFOLD7_lDDT22 and QMEANDisCo3.27 The years are assigned roughly to the best 

server of a particular year. The black empty circle illustrates estimated performance of 

QMEAN (Version 7.11)38 based on earlier CAMEO data. The blue star depicts the estimated 

performance of ProQ3 based on three months (17 May 2019 to 10 August 2019) of CAMEO 

data
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