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Abstract

Optical coherence tomography (OCT) has shown potential in differentiating normal colonic 

mucosa from neoplasia. In this study of 33 fresh human colon specimens, we report the first use of 

texture features and computer-vision-based imaging features acquired from en face scattering 

coefficient maps to characterize colorectal tissue. En face scattering coefficient maps were 

generated automatically using a new fast integral imaging algorithm. From these maps, a gray-

level co-occurrence matrix algorithm was used to extract texture features, and a scale-invariant 

feature transform algorithm was used to derive novel computer-vision-based features. In total, 25 

features were obtained, and the importance of each feature in diagnosis was evaluated using a 

random forest model. Two classifiers were assessed on two different classification tasks. A support 

vector machine model was found to be optimal for distinguishing normal from abnormal tissue, 

with 94.7% sensitivity and 94.0% specificity, while a random forest model performed optimally in 

further differentiating abnormal tissues (i.e., cancerous tissue and adenomatous polyp) with 86.9% 

sensitivity and 85.0% specificity. These results demonstrated the potential of using OCT to aid the 

diagnosis of human colorectal disease.
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Introduction

As of 2020, colorectal cancer (CRC) is estimated to be the third most prevalent type of 

cancer and to have the third highest mortality rate among all cancer types in the US[1]. CRC 

typically starts in the mucosa layer, which is within 1 mm from the surface, in the form of 

polyps. It has been proposed that the progression of CRC follows the adenoma-carcinoma 

sequence[2,3]. Although the vast majority of cancers arise from a polyp beginning with an 

aberrant crypt, deterministically predicting the outcome of a polyp remains a medical 

challenge[4]. As the polyp develops, it penetrates through deeper layers, and, left untreated, 

the disease is fatal. Currently, screening for colorectal abnormality is performed by flexible 

endoscopy, which relies on a camera for visual inspection of the colon and rectum[5,6]. 

Although colonoscopy is considered the gold standard for accuracy, it has limitations, such 

as the lack of quantitative justification beyond visual inspection and the challenge of 

detecting diminutive, flat, or subsurface neoplastic growths[7,8]. Often, early malignancies 

can be missed[9], but early intervention can provide significant survival advantages[10]. 

Therefore, we hypothesized that knowledge of subsurface tissue optical properties would 
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improve screening and surveillance of CRC and its potential risk factors when they are still 

undetectable under direct visual examination.

Optical coherence tomography (OCT) is a high-resolution imaging technique that can probe 

about 1 mm into the surface[11-13], and it has been commercialized in ophthalmology and 

cardiology[14-17]. OCT has also been extensively studied as an “optical biopsy” tool for 

differentiating malignant tissue from abnormal/normal tissue in multiple organ 

systems[18-21]. Recently, Yu et al. has used en face images acquired from ex vivo colorectal 

tissue using micro-OCT for differentiating adenomas and non-neoplastic polyps[22]. A 

94.83% accuracy was achieved when evaluating the micro-OCT images. This study used 

tissue morphology and professional readers. Tissue optical scattering coefficient maps can 

be computed from OCT volumetric data, enabling quantification of early cancer 

morphological changes for diagnostic purposes. Yi et al. used inverse spectroscopic OCT to 

evaluate the optical scattering coefficient and ultrastructural properties of ex vivo colorectal 

biopsy samples[23]. They discovered an alternation in optical and ultrastructural properties 

in cancerous tissues. However, no further quantitative evaluation of diagnostic accuracy or 

machine learning capability was introduced. However, the OCT technique generates an 

enormous volume of data, which is slow and laborious to process manually. That’s why 

computer-aided diagnosis from OCT data, especially from within the GI tract, has garnered 

increasing interest in recent years[24-26].

Computer-aided diagnosis based on radiographic images requires feature extraction and 

texture analysis, and most features/textures are difficult to register under visual inspection. 

Texture analysis assumes that textural information is contained in the local gray-scale 

variations of an image[27]. Currently, its major medical applications are in oncology, such as 

automated tumor segmentation and grading, as well as in characterization of tumor 

heterogeneity[28]. Relevant oncological studies on PET[29,30], MRI[31], and CT[32] have 

demonstrated diagnostic results that are comparable to diagnoses from expert radiologists. 

Specifically, texture analysis has been applied in OCT for feature extraction. Almog et al. 

found more success using texture features which enabled them to differentiate between 

homogeneous gray matter and other brain regions with more complex structures[33]. Chen 

et al. used retinal vessel OCT images and their corresponding GLCM features for anemia 

screening. Experimental results demonstrated an 83.6% accuracy, suggesting potential for 

future clinical utilization[34]. Ashok et al. combined Raman spectroscopy and OCT for 

colorectal cancer diagnosis[35]. With the help of texture features, a sensitivity and 

specificity of ~94% was achieved for cancer versus normal snap-frozen tissue samples. 

Scale-invariant feature transform (SIFT) is an algorithm used in computer vision for object 

detection[36]. Unlike texture analysis, this algorithm detects local image descriptors that can 

be visually identified. It then quantifies these features by finding interest points, using 

Gaussian kernels with different scales. This algorithm has been adopted in genetic analysis 

of colorectal cancer[37] and segmentation of kidney lesion areas in CT images[38]. Sun et 

al. proposed a method using SIFT descriptors and multiclass linear SVM for OCT image 

classification between diseased and normal retina OCT scans[39]. Using this method, 100% 

of 30 OCT volumes under the diseased classes were correctly classified and 93.33% of 15 

OCT volumes under the normal class were correctly classified.
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In this ex vivo study of human colorectal cancer, we used swept-source OCT (SS-OCT) to 

acquire volumetric structural information about the colorectal tissue. Then the tissue 

scattering coefficient was computed using an algorithm developed in-house, generating 

scattering coefficient maps of the entire imaged region. An integral image algorithm, which 

reduced the processing time by 25%, was employed for image preprocessing. Regions of 

interest (ROIs) were manually selected from scattering maps and analyzed using a set of 

statistical texture features along with computer-vision related features. Significant features 

were selected based on feature importance, and a model with the reduced feature set was 

constructed to classify a tissue sample into normal tissue, cancerous tissue, or polyp. The 

results demonstrated the feasibility and potential for an alternative and improved way to 

differentiate colorectal tissue. To the best of our knowledge, this is the first report on using 

texture features and computer vision-based image features acquired from scattering 

coefficient maps to differentiate malignant, polypoid, and normal colorectal tissues.

Materials & Methods

Colon Specimen Preparation

Thirty-three patients (mean age, 66 years; range, 42-91; detailed characterizations in Table 

1) undergoing extirpative colonic resection at Washington University School of Medicine 

were recruited to our initial study from August 2017 to February 2020. We studied one 

resected colorectal specimen from each patient. Among these specimens twenty-five were 

cancerous and four contained adenomatous polyps. We imaged one area per abnormality, 

i.e., twenty-five cancer areas and four adenomatous polyp areas. For imaging normal 

colorectal tissue regions, we used two criteria to select the imaging area. First, if there were 

any abnormal growth in the resected tissue, the normal area needed to be at least 5 cm far 

from it. Second, only a single normal area per patient was evaluated. Using these selection 

criteria, twenty-six normal areas were imaged. The study protocol was approved by the 

Intuitional Review Board and informed consents were obtained from all patients. All 

samples were imaged within one hour after resection, and diagnoses were ascertained by 

subsequent pathology examination of the surgical specimen. Twenty-five cancer areas, 

twenty-six normal areas, and four adenomatous polyp areas were imaged.

OCT System Setup

The SS-OCT system was based on a 1310 nm center-wavelength swept source (HSL-2000, 

Santec Corp., Japan) with a 110 nm full-width-at-half-maximum bandwidth and a 20 kHz 

scan rate. A balanced detector (Thorlabs PDB450C) detected the interference signal and sent 

to a data acquisition board (ATS9462, Alazartec Technologies Inc). The lateral resolution of 

the system in air was 10 μm, and the axial resolution was 6 μm. Details of the imaging 

system and experimental setup can be found in our previous work[40].

en face Scattering Coefficient Mapping

To generate the en face scattering coefficient map, we first automatically located the 

epithelium layer without any human intervention. Our surface detection algorithm will first 

read in a B-scan image, and then output the coordinates of the surface of the epithelium 

layer. Adding a 1 mm depth, which is the typical mucosa thickness, the mucosa layer was 
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extracted automatically. Details can be found in our previous publication[41]. Formerly, this 

could take up to 14 hours for a 5 mm x 10 mm area, which corresponds to 500 B-scans with 

1000 pixels by 1000 pixels per B-scan. In short, we formulated the surface delineation job as 

a global optimization problem. We created a matrix representation of each B-scan image 

named I, in which each entry I(z, x) represented the intensity of pixel (z, x). Here, x 
represented the lateral dimension and z was the depth dimension. We let l represented a 

vector, with each entry l(i) representing the imaged surface depth in each column of the 

image matrix. We optimized V(l(i)) = C(i) + α * Diff(i) + V(l(i − 1)) to find the epithelium 

surface l. The most computationally expensive aspect was calculating 

Diff(i) = ∑j = l(i) − w
l(i) − 1 I(j, i) − ∑j = l(i)

l(i) + w − 1I(j, i) for every pixel, where I is the OCT signal 

intensity and w is a custom-defined window size, for which we chose 10 pixels. Hence, for 

global optimization, we needed to calculate n * n * 2w (i.e., n * n * 20) times, where n is the 

number of pixels within each B-scan. In this work, we introduce a preprocessing technique 

named integral image. As the name suggests, the value at any pixel (z,x) in the integral 

image is the sum of all the pixel intensities above and to the left of the pixel (z,x), expressed 

as II(z,x) = ∑z′≤z,x′≤x I(z′,x′), where I(z′,x′) is the intensity of the pixel (z′,x′) in the 

original image and II(z,x) is the intensity of the pixel (z,x) in the integral image. Figure 1 

shows an example of the integral image technique, proceeding from the original image to the 

integral image. Fig. 1A is the original image intensity distribution: I(z′,x′). Fig. 1B shows 

the calculated values for the first four elements in the integral image. For example: II(1, 2) = 

I(1, 1) + I(1, 2) = 1 + 1 = 2 ; II(2, 1) = I(1, 1) + I(2, 1) = 1 + 2 = 3 ; II(2, 2) = I(1, 1) + I(1, 2) 

+ I(2, 1) + I(2, 2) = 1 + 1 + 2 + 3 = 7. Fig. 1C is one more step from Fig. 1B: II(2, 3) = I(1, 

1) + I(1, 2) + I(1, 3) + I(2, 1) + I(2, 2) + I(2, 3) = 1 + 1 + 3 + 2 + 3 + 4 = 14. Since we have 

information in those pixels which were already derived in the integral image, we can further 

simplify the calculation of II(2, 3) to: II(2, 3) = II(2, 2) + II(1, 3) − II(1, 2) + I(2, 3) = 7 + 5 − 

2 + 4 = 14. In general, it will take n * n * 4 computations to generate the entire integral 

image (Fig. 1D). Once the integral image has been computed, evaluating the sum of 

intensities over any rectangular area requires only four pixels in the integral image, 

regardless of the area’s size. Say the coordinates of the four vertices are A = (z,x), B = (z
′,x), C = (z,x′), and D = (z′,x′). The sum of the pixel intensities over the rectangle ABCD is 

II(D = (z′, x′)) + II(A′ = (z − 1, x − 1)), − II(B′ = (z′, x − 1)) − II(C′ = (z − 1, x′)) For 

example, to calculate the sum of the green area (vertices: A = (3,3), B = (4,3), C = (3,5), D = 

(4,5)) in Fig. 1(A), we need just the four red pixels (vertices: A′ = (2,2), B′ = (4,2), C′ = 

(2,5), D = (4,5)) in Fig. 1(D): 8 + 6 + 2 + 1 + 2 + 3 = 22 = 80 + 7 − 28 − 37. In practice, we 

performed zero padding to avoid boundary conditions. Therefore, the total computation time 

needed to calculate the Diff(i) for every pixel is n * n * 4 + n * n * (4 + 4 + 1) = n * n * 13. 

Theoretically, a 35% reduction of computation time for calculating Diff is expected. In 

practice, the reduction is 25%, due to the involvement of other calculations (Table 2).

After localization of the epithelium layer, scattering coefficients were extracted using Beer’s 

Law and an en face scattering coefficient map was generated by applying this method to an 

OCT image volume. On each constructed en face scattering coefficient map, ROIs were 

manually selected for further quantitative analysis. Each ROI was 128 by 128 pixels, 

corresponding to 1.28 mm by 1.28 mm in physical dimensions. The final set of ROIs 

consisted of 121 normal regions, 84 malignant regions, and 24 adenomatous polyp regions.
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Feature Extraction

Three sets of features were extracted from the ROIs: (1) six features extracted from the 

scattering maps, i.e., the mean scattering coefficient, median scattering coefficient, image 

entropy of the scattering map, and the10th, 25th, and 75th percentiles; (2) nineteen texture 

parameters derived from the gray-level co-occurrence matrix (GLCM) of the scattering 

maps; and (3) four computer-vision based features acquired using SIFT, and one feature 

called the angular spectrum index (ASI), constructed as described in our previous work[41]. 

All feature extraction procedures were done in MATLAB 2019b.

The GLCM allows the calculation of texture features by describing the relationship among 

neighboring pixels within an image[30]. It measures how often different combinations of 

pixel intensities occur among neighboring pixels. To calculate the GLCM for each ROI, we 

first converted each ROI to a grayscale image. Then the GLCMs were generated for four 

directions, θ = {0°, 45°, 90°, 135°}, assuming the distance between two neighboring pixels 

is 1. Then these four matrices were averaged to generate the final GLCM, which is 

rotationally invariant to the intensity distribution.

We used the SIFT algorithm, a feature detection algorithm in computer vision, to locate 

points of interest[36]. The original image I(x,y) was first convolved with a Gaussian kernel 

G(x,y,kσ) at scale kσ:

L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y) .

Then the differences of the Gaussians that occurred at multiple scales were calculated by

D(x, y, kσ) = L(x, y, kiσ) − L(x, y, kjσ) .

Next, the algorithm used the differences as templates for pattern matching across each ROI, 

searching for interest points. Possible candidates were further screened using gradient and 

Hessian tests to remove edge points, and the number of interest points on each ROI was 

tallied. To characterize their distribution, the coordinate matrix of interest points was 

analyzed using principal component analysis, and the eigenvalues of the first two principal 

components were extracted. The relative difference between them was calculated to reflect 

the regularity of the interest points’ distribution.

ASI is a feature which can evaluate whether there is a periodic structural pattern within an 

image. It first calculates the 2-dimensional fast Fourier transformation (2D FFT) of the 

image. After 2D FFT, a frequency spectrum of the image is generated. If there is a periodic 

structural pattern within the image, the frequency spectrum will show in higher spatial 

frequency band. ASI measures the ratio between higher spatial frequencies and all spatial 

frequencies. In general, normal colorectal tissues have a well-organized crypt pattern and the 

ASI is higher; while cancerous tissues are heterogeneous even in histopathological level and 

have a lower ASI.
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Feature Selection & Image Classification

Feature selection is essential to avoid overfitting and to provide meaningful information 

from 25 features. Random forest (RF) is one of the most popular machine learning 

algorithms, as well as being a well-established feature selection algorithm[42]. Feature 

selection using RF is categorized as an embedded method, offering the advantages of 

accuracy and generalizability. A random forest consists of hundreds of decision trees, and 

each node within a decision tree represents a rule for splitting data by using a single feature. 

The rule is based on Gini impurity (or information gain). When training a tree, we can 

compute how much each feature contributes to decrease the weighted impurity. In the sense 

of a random forest, we average the decrease in impurity caused by a single feature over all 

the trees to evaluate the feature’s importance. According to their importance, we add 

features one-by-one to machine learning classifiers until an optimal dataset is found. A 

Python module, Scikit-Learn, was used for generating the feature importance.

Image classification was done in two phases. First, different machine learning classifiers 

were evaluated for differentiating abnormal tissues (cancers and adenomatous polyps) from 

normal tissues. Second, those classifiers were further tested on distinguishing cancerous 

tissues and adenomatous polyps. Two classifiers were evaluated, support vector machine 

(SVM) and RF. All features were normalized to avoid systematic biases. The evaluation of 

each model was based on the average performance from 100 repetitions of random train-test 

splits to minimize the randomness of single train-test splits. A train-test split for model 

fitting was defined as follows: the training set size was defined as ⅔ of the smallest sample 

set, and then training data were chosen randomly from each diagnosis, while the rest were 

used for testing. Finally, the area under the receiver operating characteristic (ROC) curve 

(AUC) was used for determining both the optimal performance and the optimal feature sets 

of each model.

Results

en face Scattering Coefficient Maps

En face scattering coefficient mapping was performed on all OCT 3-D volumes. Figure 2(A-

C) shows representative scattering map ROIs from three different diagnoses. (A) is a ROI 

from normal tissue, within which a dotted pattern can be found. This pattern appears 

because the normal crypt pattern in the colon mucosa layer results in a crater structure in en 
face scattering maps. (B) and (C) are ROIs from an adenomatous polyp and cancerous 

tissue, respectively. Since abnormality growth breaks the crypt pattern and result in 

heterogeneous tissue distribution, no clear dotted pattern is found.

Figure 2(D-F) comes from a special colorectal cancer case. Figure 2(D) is a photograph of 

this imaged tissue. The cancer area (green box) is flat and almost indistinguishable under 

visual inspection. This area was discovered using biopsy during colonoscopy since it was 

suspicious to an experienced endoscopist. It was also confirmed with following 

histopathology examination after OCT imaging. The histopathology slide is shown in Fig. 

2(G). Figure 2(E) is a scattering map of the imaged area (blue box in Fig. 2(D). The 

distribution is heterogeneous and no dotted pattern can be found. The red box is a 
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representative ROI, and Fig. 2(F) shows an enlarged view of this area. Both the regular 

cancer (Fig. 2(C)) and the flat cancer (Fig. 2(F)) show a heterogeneous scattering coefficient 

distribution.

Feature Importance

Figure 3 and Figure 4 summarize the degrees of importance for each feature derived from 

the random forest classifier using Gini impurity. Figure 3 shows the relative individual 

importance of each variable included in the model differentiating malignant from normal 

tissue. Two computer-vision based features, ASI and SIFT interest points, are the two most 

important features. This result is expected from the scattering map (Fig. 2) since there is a 

unique image pattern within normal tissues. Likewise, Fig. 4 displays the relative importance 

of the variables used in the model differentiating polypoid from cancerous tissues. Due to 

the lack of specific image patterns, texture features show higher importance among all 

features.

Image Classification

Table 3 shows the testing AUC of RF and SVM trained by different feature sets for 

distinguishing abnormal from normal tissue. The feature set starts with the most important 

feature, and adds other features one by one according to their importance rank. RF and SVM 

show similar trends, and they achieve optimal performance when three features are used. 

Adding more features does not increase the AUC. Trained by the optimal feature set, RF 

achieves an AUC, sensitivity, and specificity of 0.973, 90.0%, and 94.4%, whereas SVM 

does marginally better, with an AUC, sensitivity, and specificity of 0.984, 94.7%, and 

94.0%. We conclude that ASI, SIFT interest points, and IMC 1 form the optimal feature set, 

while SVM performs better in distinguishing abnormal from normal tissue.

Table 4 shows the testing AUC of RF and SVM trained by different feature sets for 

distinguishing adenomatous polyp from cancerous tissue. RF achieves an optimal 

performance when four features are used, and SVM achieves an optimal performance when 

six features are used. Trained by the optimal feature set, RF can achieve an AUC, sensitivity, 

and specificity of 0.913, 86.9%, and 85.0%, whereas SVM can achieve an AUC, sensitivity, 

and specificity of 0.892, 81.0%, and 84.8%. Therefore, we conclude that RF has a better 

performance in distinguishing adenomatous polyp from abnormal tissue, with an optimal 

feature set of Correlation, MCC, ASI, and Image entropy.

Discussion

This is the first report using texture features and computer vision-based image features 

acquired from scattering coefficient maps to differentiate malignant, polypoid, and normal 

colorectal tissue types. From 33 patients, 121 normal, 84 cancer, and 24 polyp ROIs were 

processed, and 25 features were then derived. Two classifications were assigned: abnormal 

tissue vs. normal tissue and adenomatous polyp vs. cancerous tissue. Based on the RF 

classifier using Gini impurity, the feature importance ranking for each task was calculated. 

Two classifiers, RF and SVM, were trained on different feature sets according to the feature 

importance, and the optimal feature set was found based on the AUC. The results indicate 
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that SVM with computer vision-based features (including ASI, SIFT interest points, and 

IMC1) is suitable for distinguishing abnormal and normal tissues, while RF with texture 

features (including Correlation, MCC, ASI, and Image entropy) shows better performance in 

identifying benign polyps.

When identifying abnormal and normal tissues, we found a specific dotted pattern related to 

the well-organized crypt pattern in the mucosa layer of the colorectal tissue. Studies have 

shown that changes in crypt size and appearance are associated with the earliest forms of 

colorectal cancer[43]. Fig. 2(D)-(F) provide evidence that our scattering map approach can 

detect early colorectal cancer before it becomes visible with a normal endoscopic camera. 

Since this dotted pattern occurs only in normal tissues, computer vision-based features show 

great predictive importance because these features fit the morphology best. Both RF and 

SVM perform well. SVM is slightly better, possibly because separating abnormal and 

normal tissue is a relatively easier task, i.e., only three features are essential for a high 

accuracy.

In classifying adenomatous polyp and cancerous tissue, no distinguishing imaging pattern 

was found. Therefore, texture features are more important for accurate differentiation. 

Abnormalities in colorectal cancer are heterogeneous even at the histology level, which 

makes separating different types of abnormality a difficult non-linear problem. Texture 

features are more important for accurate differentiation under this situation because it 

provides a statistical measure of the intensity variation in space by evaluating a pixel’s 

intensity with respect to its neighbors. By evaluating contrast, uniformity of energy, 

correlation, and homogeneity, texture features can reveal tissue functional properties beyond 

morphology. Since RF is designed for non-linear problems while SVM needs a suitable non-

linear kernel to solve such problems, RF yields a better result in this task. In a recent study 

using a deep-learning pattern-recognition method to classify OCT B-scans[44], we found 

that a very accurate diagnosis can be achieved for normal vs. cancer. However, there were 

limitations in effectively distinguishing polyp from cancer. Future study will focus on 

combining a feature-based method and a deep learning approach for a more accurate model.

Clinical translation of the scattering map requires integration of the probe into the 

colonoscopy for “optical biopsy” in real time during endoscopic evaluation. The application 

of OCT ancillary to endoscopy has been gaining momentum in recent years[45-47]. Because 

endoscopic OCT provides 3D structural information, it is particularly suited for inspecting 

diseases arising from the mucosa. Ahsen et al. investigated Barrett’s esophagus with 

volumetric en face OCT[48]. One investigator developed a reading criteria for the imaged 

volumes. Three readers with different endoscopy/OCT experience were recruited to use the 

criteria to read the OCT datasets while blinded to the histopathological diagnoses. They 

discovered an atypical gland pattern under the mucosa in dysplasia tissues. This irregular 

pattern occurred in 100% of neoplasia datasets, however, as the authors stated, there was a 

selection bias due to the unbalance of dataset. Li et al. demonstrated a multimodal 

endoscopy for colorectal cancer detection, using OCT and near-infrared fluorescence 

imaging in a rat model[49]. They used OCT and NIR to monitor the growth of colorectal 

abnormalities, and concluded that NIR fluorescence imaging can identify the suspect lesions 

rapidly, and OCT can help visualize the microanatomy of the subsurface layer. This study 

Zeng et al. Page 9

J Biophotonics. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was qualitative and injection of contrast agent was required. Mora et al. developed a 

steerable OCT catheter for real-time assistance during teleoperated endoscopic treatment of 

colorectal cancer[50]. The catheter was steerable which could be used for enhancing the 

performance of the robotically controlled flexible colonoscope. This study demonstrated 

their work using swine in vivo images. With these promising implementation of OCT 

catheters, our method can implement fully automated data quantification and diagnosis 

based on a large imaging volume. This prospective can also help foster machine learning and 

OCT for clinical translation.

Integration of this technology into a colonoscope can facilitate investigation of several areas 

of study. First, such a device would enable in vivo imaging and testing. Since the eventual 

application of such technology would be in perfused tissue, testing it in vivo is key. 

However, we suspect that with minimal modifications, the machine learning algorithm will 

also function well, so long as it is trained with in vivo images. Second, colonoscopic 

imaging would allow investigation of the device’s performance with other benign 

pathologies of the colon, such as inflammatory bowel disease and hyperplastic polyps. The 

ability to differentiate adenomatous polyps from hyperplastic polyps would have a 

significant clinical impact. Because hyperplastic polyps are a benign growth and usually not 

resected, an in vivo approach is essential to imaging such abnormalities. Certainly, more 

training samples from all types of abnormalities can improve the machine learning model. A 

large data base can enable us exploring more complicated training models that best suit the 

colorectal cancer diagnosis task. Additionally, we believe combining texture features from 

en face scattering maps and B-scan images can potentially help discriminate polyps and 

cancer, because scattering maps contain functional information of macro-structures (i.e. 

from an image volume) and B-scan images carry morphology micro-structure information.

In addition, real-time data processing is also crucial for “optical biopsy”. We improved our 

image processing speed by 25% with the usage of integral image. At present, it takes around 

11 minutes to generate an en face scattering map for a 1 mm x 1 mm area. Certainly, this is 

faster than obtaining biopsy results (at least one day), but it remains too slow to facilitate 

bedside decision-making. Migrating the data processing platform to a GPU using parallel 

processing is one possible solution that should be investigated in the future. Another 

possible solution is using a deep learning based surface detection method. This method can 

predict the surface within seconds after the deep learning model is well-trained. However, 

the ground truth has to be labeled manually and the training process is in general time-

consuming.

Based on these results, we conclude that the scattering map derived from OCT images can 

provide qualitative and quantitative information which demonstrates the potential for aiding 

the diagnosis of human colorectal tissues. In vivo study is needed to validate the 

performance of our machine learning model. With further improvement, the scattering map 

may guide physicians during colonoscopy for early cancer screening and biopsy site 

selection. Future efforts will focus on the real-time image processing algorithm and 

integrating the OCT system into a clinical endoscope.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Integral image example. A. Original image intensity distribution. B and C. Intermediate 

calculating processes of the integral image. D. The final integral image. To calculate the sum 

of the green area in the original image (8+6+2+1+2+3=22), we need only four pixels in the 

integral image (80+7−28−37=22).
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Figure 2 (revised manuscript). 
Scattering coefficient maps. ROI of (A) a normal scattering map, (B) an adenomatous polyp 

scattering map, and (C) a cancerous scattering map. (D) Photograph of a small and almost 

indistinguishable cancer (green box). The blue box is the imaged area. (E) Scattering 

coefficient map of the imaged small tumor area. The red box is a representative ROI. (F) 

Enlarged ROI. (G) Histopathology slide of the cancer area.
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Figure 3. 
Feature importance for identifying abnormal tissue from normal tissue. ASI, angular 

spectrum index; IMC, information measure of correlation; IDM, inverse difference moment; 

MCC, maximal correlation coefficient.
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Figure 4. 
Feature importance for distinguishing adenomatous polyp from cancerous tissue. MCC, 

maximal correlation coefficient; ASI, angular spectrum index; IMC, information measure of 

correlation; IDM, inverse difference moment.
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Table 1.

Characteristics of the studied patients

Histologic Examination Number of
patients

Age
(mean ± std)

Sex
(% male)

Cancer 25 65 ± 12 72 %

   T1 adenocarcinoma 2 63 ± 1 50 %

   T2 adenocarcinoma 7 69 ± 10 57 %

   T3 adenocarcinoma 15 64 ± 14 80 %

   T4 adenocarcinoma 1 71 100%

Adenomatous polyp 4 70 ± 8 50 %

   Tubular adenoma 2 74 ± 7 100 %

   Tubulovillous adenoma 2 68 ± 10 0 %

Normal 26 64 ± 11 73 %
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Table 2.

Surface detection time using different algorithms on various volumes of interest

Without integral image on
a volume

of
5 mm x 10 mm x 3 mm

With integral image on
a volume

of
5 mm x 10 mm x 3 mm

With integral image on
a volume

of
1 mm x 1 mm x 3 mm

47,989 s
(13 hrs 19 mins 49 s)

35,831 s
(9 hrs 57 mins 11 s)

700 s
(11 mins 40 s)
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Table 3.

Testing AUCs for distinguishing abnormal from normal tissue.

Features Random Forest AUC SVM AUC

ASI 0.938 0.945

+SIFT interest points 0.970 0.981

+IMC 1 0.973 0.984

+2nd eigenvalue 0.971 0.983

+IDM 0.972 0.985

+Eigenvalue ratio 0.972 0.984

All features 0.966 0.978
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Table 4.

Testing AUCs for distinguishing adenomatous polyp from cancerous tissue.

Features Random Forest AUC SVM AUC

Correlation 0.753 0.860

+MCC 0.836 0.863

+ASI 0.882 0.879

+Image entropy 0.913 0.882

+IMC 2 0.905 0.887

+IMC 1 0.906 0.892

+ Sum entropy 0.906 0.888

+GLCM entropy 0.905 0.878

All features 0.895 0.878
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