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A B S T R A C T   

The COVID-19 outbreak has catastrophically affected both public health system and world economy. Swift 
diagnosis of the positive cases will help in providing proper medical attention to the infected individuals and will 
also aid in effective tracing of their contacts to break the chain of transmission. Blending Artificial Intelligence 
(AI) with chest X-ray images and incorporating these models in a smartphone can be handy for the accelerated 
diagnosis of COVID-19. In this study, publicly available datasets of chest X-ray images have been utilized for 
training and testing of five pre-trained Convolutional Neural Network (CNN) models namely VGG16, Mobile
NetV2, Xception, NASNetMobile and InceptionResNetV2. Prior to the training of the selected models, the number 
of images in COVID-19 category has been increased employing traditional augmentation and Generative 
Adversarial Network (GAN). The performance of the five pre-trained CNN models utilizing the images generated 
with the two strategies has been compared. In the case of models trained using augmented images, Xception 
(98%) and MobileNetV2 (97.9%) turned out to be the ones with highest validation accuracy. Xception (98.1%) 
and VGG16 (98.6%) emerged as models with the highest validation accuracy in the models trained with synthetic 
GAN images. The best performing models have been further deployed in a smartphone and evaluated. The overall 
results suggest that VGG16 and Xception, trained with the synthetic images created using GAN, performed better 
compared to models trained with augmented images. Among these two models VGG16 produced an encouraging 
Diagnostic Odd Ratio (DOR) with higher positive likelihood and lower negative likelihood for the prediction of 
COVID-19.   

1. Introduction 

The world is fighting against Corona Virus Disease 2019 (COVID-19) 
and till date, it has infected 92,983,900 people around the globe and 
claimed 2,009,781 lives (WHO, 2020). As the disease is fast spreading, 
the need for rapid diagnosis is of utmost importance during these crucial 
times. Generally, Reverse Transcription-Polymerase Chain Reaction 
(RT-PCR) tests are performed to detect the presence of SARS-CoV-2, the 
virus responsible for COVID-19 (FDA, 2020). Nevertheless, RT-PCR 
testing is expensive, time consuming, and suffers from low detection 
rate and sensitivity (Ozturk et al., 2020; Ucar & Korkmaz, 2020; Wang, 
2020). Consequently, radiological imaging such as X-rays and Computed 
Tomography (CT) scans are being used in conjunction with PCR tests in 
order to improve diagnosis (Ozturk et al., 2020). However, due to the 
disparity in pathology and potential chances of human fatigue, there are 
chances of errors in the manual interpretation of such medical images 
(Shen, Wu, & Suk, 2017). 

In this sense, computer-aided technological interventions, making 
use of Machine Learning (ML) techniques, have shown to be a fast and 
reliable alternative for medical image interpretation. In particular, Deep 
Learning (DL) approaches, implemented with Convolutional Neural 
Networks (CNNs), have proven to be useful in the detection of bone 
fractures (Guan, Zhang, Yao, Wang, & Wang, 2020), ostopenia and 
osteoporosis (Zhang, Yu, & Ning, 2020), bone age (Chen, Li, Zhang, Lu, 
& Liu, 2020), breast cancer (Ribili, Horváth, Unger, Pollner, & Csabai, 
2018; Tsochatzidis, Costaridou, & Pratikakis, 2019; Cao, Yang, & Liu, 
2019; Abdelhafiz, Yang, Ammar, & Nabavi, 2019; Agarwal, Díaz, Yap, 
Lladó, & Martí, 2020) and pneumonia (Rajpurkar, Irvin, Zhu, Yang, & 
Mehta, 2017; Wang et al., 2017; Al Mubarok, Dominique, & Thias, 2019; 
Islam, Maity, Ray, & Mandal, 2019; Liang & Zheng, 2020). These studies 
clearly show the usefulness of DL techniques, and in particular CNNs, for 
image-based medical diagnosis. 

Detection of COVID-19 from chest X-ray images has also been 
addressed through various CNN models. However, in the early phase of 
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the pandemic, studies based on such methods were carried out with a 
very limited number of chest X-ray images (Hemdan & Shouman, 2020; 
Sethy, Behera, Ratha, & Biswas, 2020), which resulted in model over
fitting and less than satisfactory performance. To overcome this limi
tation, subsequent investigations have been made using augmentation 
approaches. Ucar and Korkmaz (2020) improved the discrimination 
rate, between normal, pneumonia and COVID-19 images, from 76.4% to 
98.3% with offline augmented images from the COVIDx dataset. Simi
larly, Farooq (2020), using the same dataset, achieved a 96.23% accu
racy on the three classes of images; while Minaee, Kafieh, and Sonka 
(2020) augmented the number of COVID-19 images from 84 to 450, and 
reported a 92.2% level of precision. 

Loey, Smarandache, and Khalifa (2020) used an alternative approach 
to solve the issue of dataset shortage by employing Generative Adver
sarial Network (GAN). With this strategy, the number of images was 
increased from 270 to 8100 for training the Alexnet, GoogleNet and 
ResNet18 models. Three case scenarios were tested making use of X-ray 
images to discriminate COVID-19 class from different combinations of 
normal, bacterial pneumonia and viral pneumonia classes. Alexnet and 
ResNet18 achieved 100% testing accuracy for COVID-19 but reported a 
lower detection accuracy for normal and other pneumonia classes. In 
another study, Waheed et al. (2020) used GAN for generating synthetic 
X-ray images of normal and COVID-19 categories. The study reported an 
improvement of 10% in accuracy and 21% in sensitivity when using 
GAN generated images over original images. Although there is a re
ported improvement in performance with GAN generated images, 
further exploration is required with different CNN architectures along 
with comparison of diagnostic ability of the trained model using 
augmented and synthetic images. Table 1 provides a comprehensive 
summary of the different CNN models, hybrid models, datasets and 
methods proposed for this problem. 

Many studies using the above-mentioned deep CNN-based approach 
need a laptop, PC or cloud based services with significant computing 
resources. This restricts the usage of such a powerful COVID-19 diag
nosis tool to a hospital-type environment and does not provide easy 
access to all patients. In lower and middle income countries, with 
inadequate medical facilities, this restriction hinders the effective use of 
AI based diagnosis (Panth & Acharya, 2015). Implementation of these 
tools in widely available platforms such as smartphones or tablets can 
aid in the effective diagnosis even for people living in rural areas 
(Anderson, Henner, & Burkey, 2013). In such a scenario, a patient can 
remotely share X-ray images to the physician for AI supported diagnosis. 
This AI-supported non-contact telemedicine can eliminate the need for 
the patient to visit the hospital (Panth & Acharya, 2015), which is 
especially relevant in the COVID-19 scenario for patient and doctor 
safety. Despite the development of various CNN-based models for 
COVID-19 diagnosis, the feasibility of implementation of such a model 
in smartphones or tablets has not been explored widely. 

This study proposes to develop a smartphone-based edge computing 
application for the effective diagnosis of COVID-19 using CNN models. 
Traditionally, cloud-based computing services are used in case of 
requirement of higher computing resources. The speed of the cloud 
based services are also dependent on the network traffic, resource 
availability, etc., and hence may not be able to provide real-time diag
nosis (Hartmann, Hashmi, & Imran, 2019). In contrast, the edge 
computing technology can operate with low computing resources and 
does not need cloud-based services. In order to develop the smartphone 
application, five models which are popular and least explored for COVID 
diagnosis namely VGG16, Xception MobileNetV2, NASNetMobile and 
InceptionResNetV2 have been utilized in this study. The performance of 
the five selected CNN models using the augmented and GAN generated 
synthetic images have been compared. The best models have been 
identified using the analysis of selected performances metrics. Finally, a 
preliminary study has been conducted with the developed smartphone- 
based application integrating these best models for the screening of X- 
ray images. 

This paper is organized in such a way that Section 2 covers materials 
and methods which include the details of utilized original dataset, 
techniques employed to increase the dataset and modifications per
formed in the selected CNN models for the diagnosis of COVID-19. The 
encouraging results along with shortcomings and scope for improve
ment have been discussed in Section 3 followed by concluding remarks 
in Section 4. 

Table 1 
Details of previous studies carried out for the identification of COVID-19 using 
chest X-ray images employing deep learning models (For studies that have uti
lized more than 1 models, the one with the highest accuracy has been furnished).  

Work Number of chest X- 
rays 

Architecture Accuracy 
(%) 

Hemdan and Shouman 
(2020) 

25: COVID-19 +
25:Normal 

VGG16 90 

Farooq (2020) 68: COVID-19 +
1591: Pneumonia 
+ 1203: Normal 

COVID-ResNet 96.23 

Loey et al. (2020) 69: COVID-19 +
79: Normal + 158: 
Pneumonia 

Googlenet 81.5 

Ucar and Korkmaz 
(2020) 

76: COVID-19 +
1583: Normal +
4290:Pneumonia 

Deep Bayes - 
SqeezeNet 

98.3 

Ezzat, Hassanien, and 
Ella (2020) 

99: COVID-19 +
104: Normal + 80: 
Pneumonia + 23: 
Others 

GSA-DenseNet121- 
COVID-19 

98.38 

Sethy et al. (2020) 127: COVID-19 +
127: Normal + 127: 
Pneumonia 

ResNet50 + SVM 95.38 

Ozturk et al. (2020) 125: COVID-19 +
500: Pneumonia +
500: Normal 

DarkCovidNet 87.02 

Ismael and Şengür 
(2021) 

180: COVID-19 +
200: Normal 

ResNet50 + SVM 94.7 

Luz, Silva, Silva, Silva, 
and Moreira (2020) 

183: COVID-19 +
8066: Normal +
5521: Pneumonia 

EfficientNetB3 93.9 

Minaee et al. (2020) 184: COVID-19 +
5000: Non-COVID- 
19 

SqueezeNet 92.2 

Apostolopoulos and 
Mpesiana (2020) 

224:COVID-19 +
700:Pneumonia +
504:Normal 

VGG19 93.48 

Brunese, Mercaldo, 
Reginelli, and 
Santone (2020) 

250: COVID-19 +
3520: Normal +
500: Pneumonia +
2753: Others 

VGG16 98 

Jain, Mittal, Thakur, 
and Mittal (2020) 

250: COVID-19 +
315: Normal + 650: 
Pneumonia 

ResNet50 & 
ResNet101 

97.77 

Toğaçar, Ergen, and 
Cömert (2020) 

295: COVID-19 +
65: Normal + 98: 
Pneumonia 

Features from 
combined 
MobileNetV2 & 
SqueezeNet 

99.2 

Mahmud, Rahman, and 
Fattah (2020) 

305: COVID-19 +
305: Normal + 610: 
Pneumonia 

CovXNet 90.2 

Narin and Kaya (2020) 341: COVID-19 +
4265: Pneumonia 
+ 2800: Normal 

ResNet50 99. 7 

Afshar, Heidarian, 
Naderkhani, 
Oikonomou, and 
Plataniotis (2020) 

358: COVID-19 +
5538: Pneumonia 
+ 8066: Normal 

COVID-CAPS 98.3 

Wang (2020) 358: COVID-19 +
5538: Pneumonia 
+ 8066: Normal 

COVID-Net 93.3 

Waheed et al. (2020) 403: COVID-19 +
721: Normal 

VGG16 95 

Karthik, Menaka, and 
Hariharan (2020) 

558: COVID-19 +
10,434: Normal +
4273: Pneumonia 

CSDB CNN + DFL 97.94  
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2. Materials and methods 

2.1. Dataset 

The dataset used for this study primarily consists of X-ray images 
categorized as normal, pneumonia and COVID-19. The images for the 
normal and pneumonia categories have been obtained from the Kaggle 
chest X-ray pneumonia dataset (Kermany et al., 2018; Mooney, 2018) 
and for COVID-19 category, the images have been obtained from the 
publicly available COVID chest X-ray image dataset (Cohen & Morrison, 
2020). A total of 598 suitable COVID-19 X-ray images have been chosen 
from this dataset to be used in this study. Sample X-ray images for all the 
three categories are shown in Fig. 1. In order to increase the number of 
images for COVID-19, two strategies have been followed namely, 
augmentation and GAN for generating synthetic images. These two 
strategies have been discussed in detail in the following sub-sections. 

2.1.1. Augmentation of images 
While applying augmentation, the images will be distorted in several 

ways to introduce uncertainties. This will generate new images with 
significant dissimilarities from the original images. This process not only 
increases dataset size but also improves the generalization ability of the 
CNN (Arvidsson, Overgaard, Astrom, & Heyden, 2019). These distor
tions can be introduced using numerous transformation operations and 
addition of noise to the image. In this study, flipping operation has been 
carried out on each image for generating one set of the mirrored COVID- 
19 images. In addition, another two sets of images have been created by 
applying a random rotation of a maximum of 5̊ to either sides. Subse
quently, a random intensity value within the range of 20 for each pixel 
has been added in every image to manipulate the brightness. With these 
augmentation steps, the number of images increased from 598 to 2344 
images. The intensity and rotation values have been selected based on 
several trials. Sample augmented images of COVID-19 are shown in 
Fig. 2. 

2.1.2. Generation of synthetic images using GAN 
In the second strategy, GAN has been used to generate new synthetic 

images of COVID-19. GAN consists of a set of CNN layers with each 
forming the part of the discriminative and generative blocks (Good
fellow, Pouget-Abadie, Mirza, Xu, & Warde-Farley, 2014). The genera
tive block generates images from the random noise as input and 
discriminative block predicts whether the generated images are real or 
synthetic based on the input of training data i.e. chest X-ray images of 
COVID-19. 

In this study, a GAN architecture has been developed to generate 
synthetic X-ray images of dimension 128 × 128 × 3 as shown in Fig. 3. A 

separate augmentation has also been performed prior to the delivery of 
images to the discriminator block to improve the variations in the 
generated images. The proposed architecture is best suited for gener
ating the images of above dimension with the hardware that has limited 
computing resources (8 GB RAM with NVIDIA GTX 1050 4 GB GPU). 

The generator block consists of six transposed convolution layers 
with a constant filter size of 4 × 4. Rectified Linear unit (ReLu) has been 
used as the activation function followed by batch normalization for the 
first five transposed convolution layers whereas, Tanh (hyperbolic 
tangent function) has been used for the last layer as shown in Fig. 4. The 
number of filters for each layer is in the order of 2(4+n) where n ranges 
from 5 to 1 in a decreasing manner for the first five layers. The last layer 
has 3 filters corresponding to the 3 color channels of the output image. 
The input layer accepts an input array of 1 × 1 × 100 random values 
which is then passed through the transposed convolution layers for 
generating an output image of dimension 128 × 128 × 3. The discrim
inator block consists of six convolution layers with leaky ReLu for 
activation followed by batch normalization for each convolution layer as 
depicted in Fig. 4. The dimension of filter is a constant value of 4 × 4 
similar to the generator block. The number of filters are also similar to 
the generator but in the increasing order which increases the depth. 

Several hyperparameters for generator and discriminator have been 
configured for training the GAN architecture. The learning rates for the 
generator and the discriminator have been set to 0.0002 and 0.0001 
respectively. For both the blocks, gradient decay factor and squared 
gradient decay factor have been set to 0.5 and 0.999 respectively. A 
mini-batch size of 128 has been set for training the generator and 
discriminator with the validation mini-batch size of 64. As the number of 
X-ray images for COVID-19 are low, training process has been carried for 
1000 epochs with validation performed for every 100 epochs to visu
alize the generated images during training. The objective is to minimize 
the negative log likelihood of the generator, during the training process, 
in order to maximize the predicted probability to real images by the 
discriminator. Hence the loss function for the generator LG and 
discriminator LDwith a mini-batch size m of 128 is given by (Goodfellow 
et al., 2014) as 

LG = −
1
m

∑m=128

i=1
log

(
1

1 + e −̂ yG

)

(1)  

LD = −
1
m

∑m=128

i=1
log

(
1

1 + e −̂ yR

)

−
1
m

∑m=128

i=1
log

(

1 −
1

1 + e −̂ yG

)

(2) 

Where ŷRand ŷG are the predicted probability for the real and 
generated synthetic images by the discriminator. 

The weight and bias parameters will be updated during each itera
tion using the Adams optimizer with the estimated gradients and back 

Fig. 1. Sample X-ray images of category (a) Normal; (b) Pneumonia and (c) COVID-19.  
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propagation. Upon completion of the training process, synthetic images 
are generated and the number of images under COVID-19 category has 
been increased from 598 to 2598. The details of number of images in the 
datasets pertaining to normal & pneumonia categories and those that are 
created using augmentation & synthetic COVID-19 X-ray images using 
GAN have been consolidated and furnished in Table 2. 

The next section discusses the utilized deep learning models and 
modification of the top layers for tuning the pre-trained models in the 
process of classification of normal, pneumonia and COVID-19 X-ray 
images. 

2.2. Deep learning models for classification 

The use of CNN in medical diagnosis is gaining momentum due to its 
ability in learning complex feature patterns inevitably making it an 
effective tool for assisting the physicians. A typical CNN consists of 
systematically architected stack of layers such as convolutions, ReLu, 
pooling, batch normalization or other customized layers for capturing 
the significant feature elements. The learnt features have been built from 
a simple to complex patterns through these series of convolution layers. 
It will then be fed to the classification layer that typically consists of fully 
connected neurons that predict the category to which the image belongs 
to. As these CNNs are data hungry models, an astonishingly large 
amount of data is required for training these models. With the limited 
availability of data using X-ray images, transfer learning approach has 
been adapted for this study. In transfer learning approach, the previ
ously trained models with large dataset similar to Imagenet have opti
mized weights and bias parameters. Surprisingly, these pre-trained 
models have shown to produce unexpected higher performance with 
relatively limited dataset when configured for other image classification 
problems. In this study, five pre-trained models namely NASNetMobile, 

InceptionResNetV2, VGG16, Xception and MobileNetV2 (Chollet, 2017; 
Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018; Simonyan & Zisser
man, 2015; Szegedy, Ioffe, Vanhoucke, & Alemi, 2017; Zoph, Vasude
van, Shlens, & Le, 2018) have been used for the development of an AI 
based tool for the diagnosis of COVID-19 using X-ray images. 

As these pre-trained models are primarily optimized for the recog
nition of 1000 categories of objects in the Imagenet dataset, a few layers 
have to be reformed and retrained for the diagnosis using X-ray images. 
The modification carried out for the five selected pre-trained models are 
shown in Fig. 5. 

In VGG16, two hidden layers each with 512 neurons have been 
added after several trials of training. In the other modified models, a 
convolution, dropout and global average pooling layers have been 
added on the top of the pre-trained models. The features obtained from 
the convolution layers are directly provided to the classification layers 
as these architectures have been designed to avoid the need for the 
several fully connected layer since it exploits the computing resources. 
The learning rate for the introduced top layers has been set to 0.01 as 
learnable parameters of these layers are optimized for the classification. 
The training process has been carried out with 80% of the dataset for 
training and 20% for validation. The training for the augmented COVID- 
19 dataset and the generated synthetic images of COVID-19 has been 
performed separately. 

2.3. Experiments 

All the training and validation processes for transfer learning have 
been done in the Google Colab cloud service. The initial experiments 
have been performed independently with the augmented and synthetic 
images created using GAN in all the five selected models. The validation 
accuracy obtained for all the five models have been compared and 

Fig. 2. Augmentation applied on sample image (a) Original; (b) Flipped; (c) Rotated left and altered intensity values and (d) Rotated right and altered in
tensity values. 

Fig. 3. Developed GAN for the generation of synthetic images for COVID-19.  
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misclassification among the three categories of X-ray images have been 
evaluated using the confusion matrix. Further, the performance of the 
models have been assessed with the performance metrics such as True 

Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate 
(FPR), False Negative Rate (FNR), Positive Prediction Value (PPV), 
Negative Prediction Value (NPV), Positive likelihood (PL), Negative 
likelihood (NL) and Diagnostic Odd Ratio (DOR) estimated using the 
following equations (Tharwat, 2018): 

TPR =
TP

TP + FN
(3)  

TNR =
TN

TN + FP
(4)  

Fig. 4. Architecture of (a) Generator; (b) Discriminator.  

Table 2 
Dataset utilized for the study.  

Categories Dataset 

Normal 1304 
Pneumonia 3804 
Augmented COVID-19 2344 
Synthetic COVID-19 2598  

Fig. 5. Modified CNN models (a) VGG16; (b) MobileNetV2; (c) Xception (d) NASNetMobile and (e) InceptionResNetV2.  
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FPR =
FP

FP + TN
(5)  

FNR =
FN

FN + TP
(6)  

PPV =
TP

FP + TP
(7)  

NPV =
TN

FN + TN
(8)  

PL =
TPR

1 − TNR
(9)  

NL =
1 − TPR

TNR
(10)  

DOR =
PL

NL
(11) 

TPR and TNR provides an insight on how well the models predict the 
positive and negative images pertaining to a particular category. The 
higher FPR or FNR poses risk of false prediction that significantly will 
affect the model’s performance. PPV provides the ratio of True Positive 
TP for a category to the total positive prediction for that particular 
category. NPV is similar to PPV but it considers negatively predicted 
images for a category. PL and NL can provide a measure on the proba
bility for the occurrence of pneumonia, healthy or COVID-19, if the 
diagnosis provided by the models is positive or negative for that 
particular category. DOR is a measure to compare the discriminative 
capacity of these five different models which will assist in the selection 
of the best model for diagnosis of COVID-19, pneumonia or normal 
categories. 

Based on the assessment, top two best models each for augmented 
and synthetic COVID-19 images have been selected and further assess
ment has been carried out using a separate test dataset with a smart
phone application. The performance has been analyzed using several 
metrics such as memory requirement, prediction time, accuracy based 
on the trial diagnosis. The discussion on the results with the some of the 
prominent shortcomings and scope for improvement will be discussed in 
the following section. 

3. Results and discussion 

The trained models have been evaluated with the validation dataset 
and resulting accuracy for each model has been furnished in Table 3. In 
the case of models trained using synthetic COVID-19 images, VGG16 and 
Xception emerged to be the top two performing models with highest 
validation accuracies of 98.6% and 98.1% respectively. Whereas, 
Xception and MobileNetV2 reported to be the top two performing 
models with highest accuracies of 98% and 97.9% respectively, in 
models trained using augmented COVID-19 images. Further analysis of 
the models using the performance metrics have been discussed in the 
subsequent sub-sections. 

3.1. Performance of the models using augmented images 

At first, the results of the five models using augmented COVID-19 
images have been analyzed using confusion matrix. This will provide 
an inference on the misclassification of the X-ray images from a 
particular category to the other category as shown in Fig. 6. Based on the 
observation in the confusion matrix, it can be inferred that X-ray images 
belonging to the normal category have been widely misclassified. It has 
to be also noted that, the NASNetMobile model had a poor performance 
as it obtained a TPR of 77.3%. The remaining 22.7% of the X-ray images 
have been falsely predicted to the pneumonia category. Earlier studies 
carried out by Loey et al. and Ucar et al. also reported a similar lower 
results for the normal category using AlexNet, GoogLeNet and ResNet18. 
In one of the other studies by Waheed et al, the authors have completely 
neglected pneumonia category and hence they reported a higher accu
racy for the detection of normal category from COVID-19. The best TPR 
of 95.8% for normal category has been reported by Xception in this 
study. Considering the main intention of this study, i.e. identifying the 
X-ray images of COVID-19, MobileNetV2 reported the best TPR value of 
99.3% followed by Xception with 98.7%. NASNetMobile produced the 
lowest TPR value of 92.1% and this reveals many false negatives of the 
X-ray images infected with COVID-19. The confusion matrices of all the 
five models also reveal that the X-ray images from COVID-19 category 
have been falsely misclassified as pneumonia but none of them have 
been predicted to be normal. 

This suggests that, even though the models were able to learn the 
distinct patterns that differentiated the images in normal and COVID-19 
categories, they failed to some extent in differentiating the character
istics of images in pneumonia category. A few of the other performance 
metrics estimated using the confusion matrix are furnished in the 
Table 4. 

According to Table 4, the TNR values for the pneumonia category is 
lower compared to the other two categories in all the five models. This 
suggests that a significant number of X-ray images belonging to the 
pneumonia category have been falsely predicted to the other categories. 
Similarly, the X-ray images from other categories have been falsely 
predicted to pneumonia. The models Xception, InceptionResNetV2 and 
MobileNetV2 reported higher TNR values of 97.7%, 96.8% and 96.8% 
respectively, which shows a lower misclassification compared to the 
other two models. The PPV values for the COVID-19 category evidently 
show that all the five models are performing significantly better with an 
average value of 99.46% for the detection of COVID-19. 

Further analysis has been carried out using the positive likelihood PL, 
negative likelihood NL and DOR that can provide an insight on the odds 
of the existence of particular category, if the models predict an X-ray 
image to this category. When the values of PL for a category is close to 
infinity it suggests a strong odd for it to be actually true. Contrastingly, 
NL values should be close to zero which increases the odds of a category 
to be negative, if the models predict negative for that particular cate
gory. According to the literature, if the PL value is greater than 10 and NL 
is less than 0.1, then the prediction of the diagnostic model has better 
discriminative ability (Glas, Lijmer, Prins, Bonsel, & Bossuyt, 2003; 
Šimundić, 2009). All the models employed in this study have signifi
cantly higher PL values and lower NL values for prediction of the COVID- 
19 category X-ray images and this satisfies the conditions stated in the 
above literature. Further, DOR value can be estimated using the PL and 
NL values which can then be compared among these models for identi
fying the best models. From Table 3 it is evident that the DOR value for 
the detection of COVID-19 ranges from 11654.6 to ∞. The higher values 
depict a strong discriminative ability that differentiates the X-ray images 
with COVID-19 symptoms to normal and pneumonia categories. VGG16, 
MobileNetV2, Xception and InceptionResNetV2 produced the strongest 
discriminative ability in all the three categories which is evident from 
the DOR values. 

Table 3 
Validation accuracy for the five different models with different dataset.  

Models Validation accuracy 

Augmented COVID − 19 Synthetic COVID-19 

VGG16 97.1% 98.6% 
MobileNetV2 97.9% 87.9% 
Xception 98% 98.1% 
NASNetmobile 93.5% 92.7% 
InceptionResNetV2 97.1% 97.1%  
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3.2. Performance of the models using synthetic GAN images 

In the second part of this study, an analysis similar to augmented 
COVID-19 images have been performed in the generated synthetic 
COVID-19 images with the aid of confusion matrices (as shown in Fig. 7) 
and various other performance metrics. VGG16 and Xception showed an 
improved performance (i.e. from 97.1% to 98.6% for VGG16 and 98% to 
98.1% for Xception)whereas MobileNetV2 and NasNetMobile depicted a 
drop in performance (i.e. from 97.9% to 87.9% for MobileNetV2 and 
from 93.5% to 92.1% for NasNetMobile). The accuracy (97.1%) of 

InceptionResNetV2 remained unchanged. 
It was surprising to observe that the classification accuracy using 

MobileNetV2 dropped significantly mainly due to increase in the 
misclassification of X-ray images belonging to normal and pneumonia 
categories. Especially many images of pneumonia category have been 
misclassified to COVID-19 category in contrast to the results of model 
trained with augmented COVID-19 images. This shows that the model 
has lost its discriminative ability significantly for the normal and 
pneumonia categories. 

In the case of VGG16, TPR value for COVID-19 category improved to 

Fig. 6. Confusion matrix using augmented COVID-19 images (a) VGG16; (b) MobileNetV2; (c) Xception; (d) NASNetMobile and (e) InceptionResNetV2.  

Table 4 
Performance metrics for the five models trained with augmented COVID-19 image.  

Models Class TPR TNR FPR FNR PPV NPV PL NL DOR 

VGG16 COVID-19 97.2% 99.7% 0.3% 2.8% 99.3% 0.7% 324 0.0278 11654.6 
Pneumonia 99.5% 94.6% 5.4% 0.5% 95.1% 4.9% 18.55 0.0056 3312.5 
Normal 90% 99.9% 0.1% 10% 99.6% 0.4% 1000 0.1 10,000 

MobileNetV2 COVID-19 99.3% 99.5% 0.5% 0.7% 98.9% 1.1% 202.75 0.0065 31192.3 
Pneumonia 98.9% 96.8% 3.2% 1.1% 97% 3% 31.31 0.0108 2899.1 
Normal 92.3% 99.7% 0.3% 7.7% 98.7% 1.3% 369.20 0.0771 4788.6 

Xception COVID-19 
Pneumonia 
Normal 

98.7% 
98.3% 
95.8% 

99.8% 
97.7% 
99.1% 

0.2% 
2.3% 
0.9% 

1.3% 
1.7% 
4.2% 

99.6% 
97.8% 
95.8% 

0.4% 
2.2% 
4.2% 

493.55 
42 
106.40 

0.0130 
0.0174 
0.0427 

37965.4 
2400 
2491.8 

NASNetmobile COVID-19 
Pneumonia 
Normal 

92.1% 
99.9% 
77.3% 

100% 
86.8% 
99.9% 

0% 
13% 
0.1% 

7.9% 
0.1% 
22.7% 

100% 
88.8% 
99.5% 

0% 
11.2% 
0.5% 

∞ 
7.57 
393.3 

0 
1.6120 
0.253 

∞ 
4.7 
1554.3 

InceptionResNet 
V2 

COVID-19 
Pneumonia 
Normal 

98.2% 
97.5% 
94.2% 

99.8% 
96.8% 
98.6% 

0.2% 
3.2% 
1.4% 

1.8% 
2.5% 
5.8% 

99.5% 
97% 
93.5% 

0.5% 
3% 
6.5% 

491.45 
30.89 
68.28 

0.0171 
0.0243 
0.0585 

28739.8 
1271.2 
1167.2  
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99.2% from 97.2% and similarly TPR value for normal category 
increased from 90% to 96.9%. The TPR value using Xception model also 
revealed an improvement to 99.4% from 98.7% for COVID-19 category. 
This shows an improvement in the detection of COVID-19 category with 
the synthetic images for the above models. Table 5 shows various per
formance metrics estimated from the confusion matrix. 

As VGG16, Xception and InceptionResNetV2 revealed an improved 
detection of COVID-19 category, the DOR values for these models have 
been compared. It can be observed that, the highest DOR value has been 
obtained for COVID-19 using Xception when compared to the other 

three models. The DOR values for VGG16 has been highest for normal 
and COVID-19 categories. Although the DOR value for NASNetMobile is 
found to be infinity in both the cases, the lower TPR value suggests 
higher FNR for the COVID-19 category. 

From the above analysis two best models each from the studies using 
augmented and synthetic COVID-19 images have been identified. In the 
case of augmented COVID-19 images, MobileNetV2 and Xception have 
been selected whereas with synthetic COVID-19 images VGG16 and 
Xception have been selected based on the performance metrics for 
further deployment in the smartphone. 

Fig. 7. Confusion matrix using synthetic COVID-19 images (a) VGG16; (b) MobileNetV2; (c) Xception; (d) NASNetMobile and (e) InceptionResNetV2.  

Table 5 
Performance metrics for the five models trained with synthetic COVID-19 image.  

Models Class TPR TNR FPR FNR PPV NPV PL NL DOR 

VGG16 COVID-19 
Pneumonia 
Normal 

99.2% 
98.8% 
96.9% 

99.7% 
98.4% 
99.5% 

0.3% 
1.6% 
0.5% 

0.8% 
1.2% 
3.1% 

99.4% 
98.4% 
97.7% 

0.6% 
1.6% 
2.3% 

330.73 
63.75 
206.21 

0.0078 
0.0119 
0.0309 

42401.3 
5357.1 
6673.5 

MobileNetV2 COVID-19 
Pneumonia 
Normal 

97.3% 
86.9% 
72.3% 

90.4% 
90.5% 
98.9% 

9.6% 
9.5% 
1.1% 

2.7% 
13.1% 
27.7% 

83.7% 
89.9% 
93% 

16.3% 
10.1% 
7% 

10.15 
9.14 
65.72 

0.0298 
0.1446 
0.2800 

340.6 
63.2 
234.7 

Xception COVID-19 
Pneumonia 
Normal 

99.4% 
98.4% 
94.6% 

99.8% 
97.8% 
99.2% 

0.2% 
2.2% 
0.8% 

0.6% 
1.6% 
5.4% 

99.6% 
97.8% 
96% 

0.4% 
2.2% 
4% 

497.05 
44.94 
121.29 

0.0058 
0.0118 
0.0544 

85698.3 
3808.5 
2229.6 

NASNetmobile COVID-19 
Pneumonia 
Normal 

90.4% 
98.3% 
81.3% 

100% 
87.6% 
98.9% 

0% 
12.4% 
1.1% 

9.6% 
1.7% 
18.7% 

100% 
88.8% 
93.4% 

0% 
11.2% 
6.6% 

∞ 
7.90 
73.97 

0.096 
0.0195 
0.1883 

∞ 
405.1 
392.8 

InceptionResNet 
V2 

COVID-19 
Pneumonia 
Normal 

99.2% 
96.3% 
95% 

99.2% 
97.9% 
98.3% 

0.8% 
2.1% 
1.7% 

0.8% 
3.7% 
5% 

98.5% 
97.9% 
92.2% 

1.5% 
2.1% 
7.8% 

125.59 
46.76 
55.23 

0.0078 
0.0374 
0.0508 

16101.3 
1250.3 
1087.2  
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3.3. Deployment in a smartphone and performance assessment 

As the health workers are severely stressed, there are probabilities of 
false diagnosis of this disease. With wide availability of smartphones, 
diagnosis of COVID-19 using X-ray images can become easier. But, the 
deployment of the trained deep learning model directly in a cost- 
effective smartphone is a challenge as it exploits the computing re
sources. To counteract this problem, the trained TensorFlow model has 
been converted to TesnorFlow Lite model using the TensorFlow Lite 
converter which is an open source tool. The converted model has been 
then integrated with the Android application by modifying the sample 
code obtained from the source (https://github.com/tensorflow/examp 
les/blob/master/lite/examples/image_classification/android/ 
EXPLORE_THE_CODE.md.). The process has to be repeated for each 
model and the input dimensions of the X-ray images have to be modified 
so as to be implemented in this code. Trials using the smartphone have 
been performed with the images in the test dataset which consists of 
271, 441 and 48 images pertaining to normal, pneumonia and COVID-19 
categories respectively. As it is a preliminary study and due to the dif
ficulty in obtaining the actual X-ray images for COVID-19 category, the 
digitized images on the computer screen have been scanned by the 
smartphone camera for diagnosis. In addition, the number of available 
COVID-19 images were limited and hence it has been augmented to 
produce 48 images for the test dataset. 

The smartphone used for the study was Realme (Model: RMX 1831) 
which has 3 GB of RAM with a camera resolution of 13MP. A sample 
output of the predicted results obtained using the smartphone applica
tion is shown in Fig. 8. 

Initially the trials using MobileNetV2 and Xception trained with 
augmented COVID-19 images detected COVID-19 with an accuracy of 
100% for both the models. Similarly, pneumonia has been detected with 
an accuracy of 97% and 99.3% using MobileNetV2 and Xception 
respectively. But the performance of the models for the prediction of 
normal category came out lower which resulted in many false positives 
to the pneumonia category and a few to the COVID-19 category. In the 

second case, VGG16 and Xception trained with synthetic COVID-19 
images have been evaluated using the smartphone application. Xcep
tion and VGG16 resulted in an accuracy of 100% and 97.3% respectively 
for the detection of COVID-19. Surprisingly, VGG16 resulted in the 
better performance for detection of the pneumonia category with an 
accuracy of 100% while Xception produced only 97.7%. VGG16 also 
depicted an improved discrimination ability for the detection of normal 
category with decreased false positives to COVID-19. The detection of 
false positives to COVID-19 will result in patient stress and causes a 
strain on the already compromised healthcare system. But despite the 
improved performance produced by VGG16, it consumes more 
computing resources and higher prediction time as shown in Table 6. 

Although the DOR values for all the three models except VGG16 
tends to infinity, lower TNR has affected the PL values for the diagnosis 
of COVID-19. Due to the acceptable performance metrics of VGG16 
(trained with synthetic COVID-19 X-ray images) compared to other 
models, it turned out to be one of the best suitable models for the 
diagnosis of COVID-19 with the smartphone-based application. 

Currently, in its existing form the smartphone-based application is 
still not suitable for deployment in diagnosis of the COVID-19. There 
exist some practical issues that may result in false diagnosis due to 
variations in distance between the smartphone and X-ray images and 

Fig. 8. A sample screenshot of the diagnosis using X-ray images with the smartphone application integrated with the deep learning model (a) COVID-19; (b) Normal 
and (c) Pneumonia. 

Table 6 
Comparison of the best performing models integrated with smartphone 
application.  

Models Memory 
space 

Average 
Prediction time 

Diagnosis test for COVID- 
19 

PL NL DOR 

MobileNetV2 9.84 MB 169.2 ms 9.7 0 ∞ 
Xception 

95.3 MB 2281.7ms 
27.3 0 ∞ 

Xception with 
synthetic image 10.6 0 ∞ 

VGG16 106 MB 3627.2ms 97.9 0.021 4617.9  
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also due to the effect of various distortions during image acquisition. 
Camera resolution also contributes significantly to the false diagnosis. 
Further, although the dataset has been increased artificially, lack of 
sufficient number of original chest X-ray images pertaining to COVID-19 
and other categories have affected the overall performance of the model. 
Hence a large dataset is required to further improve performance and 
confidence in its predictions. RT-PCR and antigen tests are the prime 
methods for diagnosis of COVID-19 in which, the RT-PCR test is 
considered to be the gold standard. If the performance of the 
smartphone-based application can be improved by incorporating a large 
dataset, then it can act as an effective support system for COVID-19 
diagnosis. Not many literature discussed in Section 1 have reported 
the deployment of AI based models on smartphones for scanning chest X- 
ray images to diagnose COVID-19. Hence this study is a small step in the 
journey towards development of efficient and reliable smartphone based 
applications for swift and accurate diagnosis of COVID-19. 

4. Conclusion 

Higher wait time and low detection rate are the major disadvantages 
of RT-PCR test. This test may take a couple of days to a week to produce 
a result and to confirm whether a person is infected with COVID-19 or 
not, the test needs to be repeatedly conducted. Fast diagnosis will help in 
moving the infected person to quarantine and provide medical attention 
in a swift manner. SARS-CoV-2 causes abnormalities in the chest X-rays 
of the infected individual and hence these X-ray images can be a tool that 
can be used in conjunction with RT-PCR test for improved diagnosis of 
COVID-19. But there is a need of qualified experts to understand and 
analyze these X-rays images. It has been proved by several researchers 
that, entailing various AI techniques with chest X-rays images can 
encourage the experts to accurately analyze these images in little time. 
Moreover, implementing such techniques in widely available platforms 
like smartphones or tablets can aid in the effective diagnosis of this 
disease. Hence in this study, a smartphone based system has been 
developed for scanning chest X-ray images so as to predict whether they 
belong to normal, pneumonia or COVID-19 categories. Publicly avail
able X-ray image dataset pertaining to normal, pneumonia and COVID- 
19 categories have been used for the study. But the number of images in 
COVID-19 category is very less compared to the other two categories. 
Hence using traditional augmentation strategy and GAN, the number of 
images in COVID-19 dataset has been increased. The performance using 
the images generated employing these two strategies has been compared 
using five pre-trained CNN models namely NASNetMobile, Inception
ResNetV2, VGG16, Xception and MobileNetV2. In the case of training 
with augmented COVID-19 images, MobileNetV2 and Xception provided 
an overall accuracy of 97.9% and 98% respectively. Xception and 
VGG16 emerged as models with the highest validation accuracy of 
98.1% and 98.6% respectively in the case of models trained with syn
thetic images generated using GAN. Considering the overall accuracy 
and other performance metrics, these models have been selected for 
further deployment in the smartphone. VGG16 trained using the syn
thetic images, with some compromise in computing resources and pre
diction time, turned out to be the best suitable model for the diagnosis of 
COVID-19 using the smartphone-based application. Any technological 
intervention, big or small, to support the front-end warriors will come 
handy in this war against COVID-19. This study and its outcome are 
preliminary steps to assist and encourage qualified experts in providing 
their service without error and in a timely manner in these times of 
distress. 
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A.-M. Šimundić Measures of Diagnostic Accuracy: Basic Definitions EJIFCC 19 4 2009 
203 211 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/27683318. 

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception- 
ResNet and the impact of residual connections on learning. 31st AAAI Conference on 
Artificial Intelligence. 

Tharwat, A. (2018). Classification assessment methods. Applied Computing and 
Informatics. https://doi.org/10.1016/j.aci.2018.08.003 
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